
The Odyssey Approach for Optimizing
Federated SPARQL Queries

Gabriela Montoya1(B), Hala Skaf-Molli2, and Katja Hose1

1 Aalborg University, Aalborg, Denmark
{gmontoya,khose}@cs.aau.dk

2 Nantes University, Nantes, France
hala.skaf@univ-nantes.fr

Abstract. Answering queries over a federation of SPARQL endpoints
requires combining data from more than one data source. Optimizing
queries in such scenarios is particularly challenging not only because
of (i) the large variety of possible query execution plans that correctly
answer the query but also because (ii) there is only limited access to
statistics about schema and instance data of remote sources. To over-
come these challenges, most federated query engines rely on heuristics to
reduce the space of possible query execution plans or on dynamic pro-
gramming strategies to produce optimal plans. Nevertheless, these plans
may still exhibit a high number of intermediate results or high execu-
tion times because of heuristics and inaccurate cost estimations. In this
paper, we present Odyssey , an approach that uses statistics that allow
for a more accurate cost estimation for federated queries and therefore
enables Odyssey to produce better query execution plans. Our experi-
mental results show that Odyssey produces query execution plans that
are better in terms of data transfer and execution time than state-of-the-
art optimizers. Our experiments using the FedBench benchmark show
execution time gains of at least 25 times on average.

1 Introduction

Federated SPARQL query engines [1,4,7,14,17] answer SPARQL queries over
a federation of SPARQL endpoints. Query optimization is a particularly com-
plex and challenging task in a federated setting. The query optimizer minimizes
processing and communication costs by selecting only relevant sources for a
query. It decomposes the query into subqueries, and produces a query execu-
tion plan with good join ordering and physical operators. With limited access
to statistics, however, most federated query engines rely on heuristics [1,17] to
reduce the huge space of possible plans or on dynamic programming (DP) [5,7]
to produce optimal plans. However, these plans may still exhibit a high number
of intermediate results or high execution times because of inadequate heuristics
or inaccurate estimations of cost functions [8].

In this paper, we propose Odyssey , a cost-based query optimization approach
for federations of SPARQL endpoints. Odyssey defines statistics for representing
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 471–489, 2017.
DOI: 10.1007/978-3-319-68288-4 28

472 G. Montoya et al.

entities inspired by [12] and statistics for representing links among datasets while
guaranteeing result completeness. In a federated setting, computing statistics
naturally requires access to more than one dataset. To reduce the overhead,
Odyssey uses entity synopsis to identify links among datasets. This comes at
the risk of losing some accuracy in the link identification but still guarantees
that no links will be missed during query optimization, i.e., there is a small risk
that more sources are queried than strictly necessary but the query result will
be complete.

Odyssey uses the computed statistics to estimate the sizes of intermediate
results and dynamic programming to produce an efficient query execution plan
with a low number of intermediate results. In summary, this paper makes the
following contributions:

• Concise statistics of adequate granularity representing entities and describing
links among datasets while guaranteeing result completeness.

• A lightweight technique to compute federated statistics in a federated setup
that relies on entity synopsis.

• A query optimization algorithm based on dynamic programming using our
statistics to find the best plan.

• Extensive evaluation using a well-accepted standard benchmark for federated
query processing [16], including comparison against a broad range of state-of-
the-art related work [5,7,15,17]. The results show Odyssey ’s superiority with
a speed-up of up to 126 times and a reduction of transferred data of up to
118 times on average.

This paper is organized as follows. Section 2 presents related work, Sect. 3
describes the Odyssey approach and its algorithms. Section 4 discusses our exper-
imental results. Finally, conclusions and future work are outlined in Sect. 5.

2 Related Work

Query optimization in state-of-the-art federated query engines, such as FedX [17]
and ANAPSID [1], relies on heuristics. For instance, FedX [17] integrates the
variable counting heuristic, where relative selectivity of triple patterns is heuris-
tically estimated according to the presence of constants and variables in the triple
patterns. These heuristics are lightweight but might not lead to the best query
execution plan [18]. To find an optimal plan, several approaches [5,7,14,19] rely
on dynamic programming. However, given the high number of alternative query
plans for SPARQL queries with many triple patterns, dynamic programming
is very expensive [8]. Another important factor of query optimization is source
selection. Several approaches [1,7,15,17,19] try to determine the relevance of
a source by sending ASK queries, which increases the costs for a single query
but might amortize in large federations for an overlapping query load. Another
technique is to estimate whether combining the data of multiple sources can
lead to any join results, e.g., by computing the intersection of the sources’ URI
authorities [15] or detailed statistics [10,13].

The Odyssey Approach for Optimizing Federated SPARQL Queries 473

Federated query optimization can also rely on cardinality estimations based
on statistics and used, for instance, to reduce sizes of intermediate results. Most
available statistics [3] use the Vocabulary of Interlinked Datasets voiD [2], which
describes statistics at dataset level (e.g., the number of triples), at the property
level (e.g., for each property, its number of different subjects), and at the class
level (e.g., the number of instances of each class). However, approaches based on
voiD [5,7,9] and other statistics, such as QTrees [10] and PARTrees [13], share
the drawback of missing the best query execution plans because of errors in
estimating cardinalities caused by relying on assumptions that often do not hold
for arbitrary RDF datasets [12], e.g., a uniform data distribution and that the
results of triple patterns are independent.

Characteristic sets (CS) [6,12] aim at solving this problem in centralized
systems by capturing statistics about sets of entities having the same set of
properties. This information can then be used to accurately estimate the car-
dinality and join ordering of star-shaped queries. Typically, any set of joined
triple patterns in a query can be divided into connected star-shaped subqueries.
Subqueries in combination with the predicate that links them, define a charac-
teristic pair (CP) [8,11]. Statistics about such CPs can then be used to estimate
the selectivity of two star-shaped subqueries. Such cardinality estimations can be
combined with dynamic programming on a reduced space of alternative query
plans. Whereas existing work on CSs and CPs were developed for centralized
environments, this paper proposes a solution generalizing these principles for
federated environments.

3 The Odyssey Approach

Inspired by the latest advances in statistics for centralized triple stores [8,11,12],
Odyssey uses statistics about individual datasets to derive detailed statistics for
optimizing federated queries. In the following, we first describe the foundations of
our statistics on individual datasets (Sect. 3.1) and then propose a novel method
for computing such statistics in a federated environment based on entity descrip-
tions (Sect. 3.2). As the detailed entity descriptions cause too much overhead in
a federated setup, we propose a method for reducing the sizes of the descriptions
(Sect. 3.3). Finally, we present the Odyssey approach for query optimization and
its main steps (Sect. 3.4): source selection, join ordering, and query decomposi-
tion.

3.1 Dataset Statistics on Individual Datasets

Star-Shaped Subqueries. To estimate the cardinality and costs of BGPs
sharing the same subject (or object), i.e., star-shaped subqueries, we exploit
the principle that entities sharing the same set of properties are simi-
lar. In this context, we refer to the set of an entity’s properties as its
characteristic set (CS) and use css(e) to denote the CS of entity e in

474 G. Montoya et al.

dataset s or cs(e) if s is clear from the context. For instance, in DBpe-
dia 3.5.1 cs(dbr:Gary Goetzman)=C1 = {dbo:birthDate, foaf:name, rdf:type,
dbo:activeYearsStartYear, rdfs:label, skos:subject}. In total, 260 entities share
this set of properties and therefore CS C1.

Listing 1.1. Statistics for CS C1

{ count : 260 ,
e lems :
{{ pred : dbo : b i r thDate , o c u r r e n c e s : 260 } ,
{ pred : f o a f : name , o c u r r e n c e s : 326 } ,
{ pred : r d f : type , o c u r r e n c e s : 1023 } ,
{ pred : dbo : a c t i v eYe a r s S t a r tY e a r , o c u r r e n c e s : 260 } ,
{ pred : r d f s : l a b e l , o c u r r e n c e s : 260 } ,
{ pred : sko s : s ub j e c t , o c u r r e n c e s : 1336 }}}

CSs can be computed by scanning once a dataset’s triples sorted by subject;
after all the entity properties have been scanned, the entity’s CS is identified.
For each CS C, we compute statistics, i.e., the number of entities sharing C
(count(C)) and the number of triples with predicate p occurring with these
entities (occurrences(p, C)). Listing 1.1 shows the statistics for the above men-
tioned example CS C1. Entities of C1 occur on average in 1 triple with property
dbo:birthDate and in 3.94 triples with property rdf:type.

For a star-shaped query, only CSs including all of the query’s properties are
relevant as entities that only satisfy a subset of these properties cannot contribute
to the answer.

Listing 1.2. Find persons that have been active
SELECT DISTINCT ? pe r son WHERE {

? pe r son dbo : b i r t hDa t e ? date . (tp1)
? pe r son dbo : a c t i v eY e a r s S t a r tY e a r ? sy . (tp2)
? pe r son f o a f : name ?name (tp3)

}

For star-shaped queries asking for the set of unique entities described by
some properties (query with DISTINCT modifier), the exact number of answers
can be determined precisely (no estimation). For example, the cardinality of
the query given in Listing 1.2 can be obtained by adding up the count(C) of
all CS s containing the properties dbo:birthDate, dbo:activeYearsStartYear, and
foaf:name. In DBpedia 3.5.1, there are 7,059 CSs that include these three prop-
erties, and the total number of entities with these CSs is 83,438. Formally, the
number of entities for a given set of properties P, cardinality(P), is computed
based on the CSs Cj that include all the properties in P as:

cardinality(P) =
∑

P⊆Cj

count(Cj) (1)

For queries without the DISTINCT modifier, we need to account for duplicates
by considering the number of triples with predicate pi ∈ P that an entity is
associated with on average:

estimatedCardinality(P) =
∑

P⊆Cj

(
count(Cj) ∗

∏

pi∈P

ocurrences(pi, Cj)
count(Cj)

)
(2)

The Odyssey Approach for Optimizing Federated SPARQL Queries 475

In DBpedia 3.5.1, as mentioned above, there are 7,059 CSs relevant for the query
in Listing 1.2 with 83,438 entities as answer. These 83,438 entities are described
by 109,830 triples with predicate foaf:name, 83,448 with predicate dbo:birthDate,
and 110,460 with predicate dbo:activeYearsStartYear. If the query is considered
without the DISTINCT modifier, i.e., considering duplicated results, we esti-
mate: 148,486 matching entities in the result, which is very close to the real
number (149,440).

Once the relevant CSs for a query have been identified, they can be used to
find the join order minimizing the sizes of intermediate results. For the query
in Listing 1.2, we start by estimating the cardinalities for each subquery with
two out of the three triple patterns using Formula 1: {tp1, tp2}: 98,281, {tp1,
tp3}: 209,731, and {tp2, tp3}: 127,712. The triple pattern not included in the
cheapest subquery ({tp1, tp2}) is executed last (tp3). We proceed recursively
with the cheapest subquery and determine the cardinalities for its subsets: {tp1}:
232,608 and {tp2}: 143,004. Again, the triple pattern not included in the cheapest
subquery (tp1) will be executed last of the currently considered set of triple
patterns. As a result, we will execute the join between tp2 and tp1 first and
afterwards compute the join with tp3. We also get the order in which the triple
patterns should be evaluated for the first join: first tp2 and then tp1.

Arbitrary Queries. To estimate the cardinality for queries with more
complex shapes, we need to consider the connections (links) between enti-
ties with different CSs. Entity dbr:Evan Almighty, for example, is linked
to dbr:Tom Shadyac via property dbo:director by triple (dbr:Evan Almighty,
dbo:director, dbr:Tom Shadyac).

The links between CSs via properties can formally be described by charac-
teristic pairs (CPs), they are defined as (css(e1), css(e2), p) for entities e1 and
e2 if (e1, p, e2) ∈ s. The statistics – count((Ci, Cj , p)) – capture the number
of links between a pair of CSs (Ci and Cj) using a particular property p. For
example, given the CSs of dbr:Evan Almighty and dbr:Tom Shadyac as C1 and
C2 the number of links via property dbo:director is given by: count((C1, C2,
dbo:director)).

Listing 1.3. Find movies and their directors
SELECT DISTINCT ? f i l m ? d i r e c t o r WHERE {

? f i l m dbo : runt ime ? runt ime . (tp1)
? f i l m dbo : d i r e c t o r ? d i r e c t o r . (tp2)
? f i l m dbo : budget ? budget . (tp3)
? d i r e c t o r dbo : b i r t hDa t e ? date . (tp4)
? d i r e c t o r dbo : a c t i v eY e a r s S t a r tY e a r ? sy . (tp5)
? d i r e c t o r f o a f : name ?name (tp6)

}

The number of unique results (pairs of entities with set of properties Pk and
Pl, query with DISTINCT modifier) can be exactly computed (not estimated)
using the formula:

cardinality((Pk, Pl, p)) =
∑

Pk⊆Ci∧Pl⊆Cj

count((Ci, Cj , p)) (3)

476 G. Montoya et al.

For the query in Listing 1.3 property dbo:director links several pairs of CSs rep-
resenting movies and actors. Hence, we need to compute Σf1∧f2 count((Ci, Cj ,
dbo:director)), where f1 is ({dbo:runtime, dbo:director, dbo:budget} ⊆ Ci) and
f2 is ({dbo:birthDate, dbo:activeYearsStartYear, foaf:name} ⊆ Cj); one of the
operands of this sum is count((C1, C2, dbo:director)) mentioned in the example
above. For this query, DBpedia 3.5.1 contains 1,509 CPs linking entities from
two CSs via property dbo:director.

If a query does not involve the DISTINCT modifier, result cardinality esti-
mation considers the property occurrences in the CSs:

estimatedCardinality((Pk, Pl, p)) =
∑

Pk⊆Ci∧Pl⊆Cj

(
count((Ci, Cj , p))

∗
∏

pk∈Pk−{p}

(ocurrences(pk, Ci)

count(Ci)

) ∗
∏

pl∈Pl

(ocurrences(pl, Cj)

count(Cj)

))

(4)
Assuming that the order of joins within star-shaped subqueries has already been
optimized based on the CSs as described above, we treat each star-shaped sub-
query as a single meta-node to reduce complexity. We estimate the cardinalities
of joins between the meta-nodes using the statistics on CPs and use dynamic
programming (DP) to determine the optimal join order that minimizes the sizes
of intermediate results. Although the presentation in this section focuses on
subject-subject joins, the same principle can be applied to other types of joins,
e.g., object-object.

3.2 Federated Statistics

In general, entities might occur in multiple datasets in a federation S. Hence, we
define a federated characteristic set (FCS) as follows: fcsS(e) =

⋃
s∈S css(e), S

might be omitted if clear from the context. However, triples describing the same
entity are typically part of a single dataset so that most CSs can be computed

Fig. 1. Federated computation of statistics

The Odyssey Approach for Optimizing Federated SPARQL Queries 477

over each dataset independently from the others1. The federated characteristic
pair (FCP) of entities e1 and e2 via property p in federation S is defined as
(fcsS(e1), fcsS(e2), p). For FCSs FCi and FCj and property p, we compute
statistics count(FCi), occurrences(p, FCi), and count((FCi, FCj , p)) as before
for CSs and CPs. For simplicity, the following sections focus on FCPs connecting
CSs instead of FCSs. The generalization using FCSs is straightforward.

Whereas single dataset statistics can be computed once and provided by
the sources in the same way they currently provide voiD statistics [2], FCSs
and FCPs require more effort and centralized knowledge about all entities in
the considered datasets. A naive way to compute FCSs and FCPs is evaluating
expensive SPARQL queries with FILTER expressions involving NOT EXISTS,
but this can take weeks for a dataset with thousands of CSs. It is much more
efficient if the sources directly share information about local subjects and objects
with the federated query engine: local subjectss(C) contains the IRIs of entities
with CS C for source s, while local objectss(p, C) contains the IRIs of entities
linked via predicate p to subjects with CS C. Such information can, for instance,
be obtained efficiently while computing CSs and CPs locally and then shared
with the federated query engine.

The federated query engine can then use this information to compute
FCSs and FCPs. Consider, for instance, the two datasets LMDB and DBpe-
dia in Fig. 1; based on the CSs (Fig. 1(a)), the sources compute entity descrip-
tions (local subjectsi and local objectsi in Fig. 1(b)). Entity film:28350 has
properties {movie:language, ..., owl:sameAs} =CLMDB,1. Hence, film:28350 ∈
local subjectsLMDB(CLMDB,1). There is a triple with dbr:Evan Almighty as
value of property owl:sameAs for an entity with CS CLMDB,1 (film:28350)
so dbr:Evan Almighty ∈ local objectsLMDB(owl:sameAs, CLMDB,1) (Fig. 1(b)).
The overlap between the set of entities local subjectsDBpedia(CDBpedia,1) and
local objectsLMDB(owl:sameAs, CLMDB,1) represent linked entities between
LMDB and DBpedia via property owl:sameAs. Hence, we obtain FCP
(CLMDB,1, CDBpedia,1, owl:sameAs) (Fig. 1(c)). count((CLMDB,1, CDBpedia,1,
owl:sameAs)) corresponds to the cardinality of the intersection between all the
local objectsDBpedia and local subjectsLMDB linked by property owl:sameAs.

Algorithm 1 describes in more detail how to compute FCPs only based on
the pre-computed statistics local objectsd1 and local subjectsd2 (newFunction(0)
returns a new function with default value 0). First, all common entities in
local objectsd1 and local subjectsd2 are identified in line 7. These common entities
represent links between CSs Cd1,i and Cd2,j via property p and are captured by
a FCP (lines 9–10).

Listing 1.4. Find LMDB movies that are also DBpedia movies
SELECT ? f i l m ?movie WHERE {
? f i l m dbo : budget ? budget .
? f i l m dbo : d i r e c t o r ? d i r e c t o r .
?movie owl : sameAs ? f i l m .
?movie lmdb : s e q u e l ? seq

}

1 FCSs describing entities across multiple datasets are very rare. In FedBench, for
instance, they affect less than 0.5% of all CSs.

478 G. Montoya et al.

Algorithm 1. Compute FCPs Algorithm
Input: local objectsd1 and local subjectsd2 for datasets d1 and d2
Output: A set of FCPs (FCPs) with links from d1 to d2; count(fcp) for each fcp in FCPs

1: function ComputeFCPs(local subjectsd2, local objectsd1)
2: FCPs ← { }
3: count ← newFunction(0)
4: for (p, Cd1,i) ∈ domain(local objectsd1) do
5: entities ← local objectsd1(p,Cd1,i)
6: for Cd2,j ∈ domain(local subjectsd2) do
7: entities ← entities

⋂
local subjectsd2(Cd2,j)

8: if entities �= ∅ then
9: FCPs ← FCPs

⋃ { (Cd1,i, Cd2,j , p) }
10: count((Cd1,i, Cd2,j , p)) ← count((Cd1,i, Cd2,j , p)) + cardinality(entities)
11: end if
12: end for
13: end for
14: return CPs, count
15: end function

FCPs can be used for cardinality estimation and join ordering using the
same principles as described in Sect. 3.1. Consider a federation consisting of
DBpedia (160,061 CSs) and LMDB (8,466 CSs) with 22,592 FCPs and query in
Listing 1.4. We can use Formula 4 with the FCPs connecting LMDB to DBpedia
via the owl:sameAs property to estimate the result cardinality: 171. This is close
to the real cardinality (293).

3.3 Reducing the Sizes of Entity Descriptions

As the entity descriptions (local subjectsd and local objectsd) introduced above
are often very expensive to compute, maintain, and exchange, we propose a
technique to reduce their sizes. We organize the entity descriptions in a tree
structure that summarizes the entities used as subject or object in any of the
dataset’s triples. Inspired by [10,13,15], we factorize common prefixes, trans-
form suffixes into integers, and summarize sets of integers in buckets, i.e., a set
synopsis consisting of minimum value (mn), maximum value (mx), [mn, mx],
number of elements, num, and their set of two least significant bytes (lsb). lsb(i)
is computed as i mod 216 and is included to improve the synopsis’ accuracy.

The tree structure is organized in three levels. The top level summarizes the
prefixes of entity IRIs occurring as subjects and objects in the dataset. Suffixes
are mapped to integers using a hash function, these integers are summarized in
the middle and bottom levels. The middle level includes buckets where parent
nodes subsume the synopsis of their children (containment relationship between
parent and child ranges and summation between parent and child num) and
aids in efficiently accessing the bottom level. The bottom level (leaves) stores
(in local subjects and local objects) only the integer’s lsb to reduce the storage
space while improving the synopsis’ accuracy.

In Fig. 2 we present a fragment of the reduced descriptions for LMDB.
The reduced descriptions include all the entities that are subject or object
in the dataset’s triples. In particular, it includes the entity with IRI http://
data.linkedmdb.org/resource/film/28350 (Fig. 2(c)). This IRI prefix identifies

http://data.linkedmdb.org/resource/film/28350
http://data.linkedmdb.org/resource/film/28350

The Odyssey Approach for Optimizing Federated SPARQL Queries 479

the subtree that summarizes the entity (light gray ellipses in Fig. 2(a)), while
the hash code of its suffix (resource/film/28350), 1093595742, is used to iden-
tify the leaf that includes its lsb (−3490), i.e., with 1093595742 between its
minimum and maximum values (gray rectangle in Fig. 2(b)). Its lsb is in
local subjects(CLMDB,1) and local objects(mol:link source, CLMDB,2) in the iden-
tified leaf (trapezium in Fig. 2(b)). This tree structure exhibits size reduction
and eases the computation of FCPs by allowing to discard large portions of the
descriptions contrary to descriptions in Fig. 1(b), where all the local subjects and
local objects need to be pair-wise tested for overlap.

Fig. 2. Reduced entity descriptions for LMDB in Fig. 1. The tree factorizes common
prefixes in the top level (in the ellipses) and summarizes the suffixes in the middle (in
the rectangles) and bottom (in the trapezium) levels

Computation costs are greatly reduced by pruning large portions of the tree
and comparing only a few pairs of leaves, the ones that have common prefixes
and overlapping representation of the suffixes. An important feature of these
summaries is that entities present in more than one dataset are always detected.

These trees are considerably lighter than the entity descriptions discussed
in Sect. 3.2, but they might reduce accuracy. For FedBench’s DBpedia 3.5.1
subset, a dataset with 43,126,772 triples that occupies 6.1 GB, the local subjects
and local objects occupy 1.37 GB and the tree occupies only 68 MB2. They have
compression ratios of 4.45 and 91.86, respectively. Regarding the quality, the
tree summary allows for computing all the FCSs and FCPs.

To reduce the resources used by the tree, we have reduced the number of
CSs as suggested in [8,12] to 10,000. Only the CSs that are shared by the largest
number of entities are kept, and the others are removed and merged into the
remaining CSs if possible. For instance, by selecting from the remaining CSs
2 Implementation based on Java’s HashSet and HashMap was used to measure their

sizes.

480 G. Montoya et al.

that include all the properties of the removed CS, the one with the smallest
number of properties and combining their count and ocurrences, or by splitting
the removed CS into two disjoint property sets that can be merged with other
CSs. This may reduce the accuracy of the query cardinality estimation, but it
allows to bound the resources used to store and access these statistics.

Entity summaries can be kept up-to-date in two ways. For datasets that are
rarely updated, the subtree representing the entities with the prefix affected by
the updates, e.g., Fig. 2(b) in our example, can be re-computed. For datasets that
are often updated, leaves should support removal of entities, this can easily be
done by storing the multiplicity of each least significant byte so they are removed
only if all the entities with that least significant byte have been removed from
the dataset.

3.4 Optimizing Federated Queries

Query optimization in Odyssey can logically be divided into the following steps:
(i) preprocessing and source selection, (ii) join ordering, and (iii) query decom-
position. Arbitrary queries can be handled incrementally by optimizing its sub-
queries. In the following, we address the optimization of queries with bound
predicates, Odyssey relies on existing optimizers to handle other queries.

Preprocessing and Source Selection. We first parse the query and identify
its star-shaped subqueries. Then, properties in each star-shaped subquery are
used to identify relevant CSs and sources. For example, the subquery composed
by tp3 and tp4 in Fig. 3(a) has relevant CSs that include both owl:sameAs and
movie:sequel. In the FedBench federation described in Table 1, these CSs are only
part of LMDB. Therefore, LMDB is the only relevant source for this subquery.
Afterwards, we use CPs/FCPs to identify relevant sources for the links between
the star-shaped subqueries.

Join Ordering. Once we have identified the set of relevant sources, we can
estimate cardinalities of subqueries and find the best join ordering. We first
optimize the order of joins and triple patterns within each star-shaped subquery

Fig. 3. Query QF and its optimized plan

The Odyssey Approach for Optimizing Federated SPARQL Queries 481

using CS statistics (count(C i) and occurrences(p,Ci)) as explained in Sect. 3.1.
Afterwards, as described in Sect. 3.1, each subquery is treated as a meta-node
and we estimate cardinalities of the joins between these meta-nodes using the
formulas presented in Sect. 3.1 to estimate subquery costs and apply DP. For
QF (Fig. 3(a)), three star-shaped subqueries are identified and treated as meta-
nodes to estimate the cardinalities of their joins (Fig. 4, left). Figure 4 (right)
shows the estimated cardinality and cost of the subqueries, solid arrows indicate
which smaller subqueries were combined by the DP algorithm to form larger
subqueries. As the number of subqueries is usually considerably lower than the
number of triple patterns, applying DP becomes affordable.

Fig. 4. Example query optimization

In our current implementation, the cost function is solely defined on the cardi-
nalities of intermediate results and how many results need to be transferred from
endpoints during execution. This favors query plans with selective subqueries.
For instance, the cost of the join between meta-nodes ?star1 and ?star2 (1,965)
includes the result size (417) and the sum of all transferred intermediate results
(1,548). This cost function assumes that all endpoints have the same character-
istics. We can easily extend this cost function by additional parameters that can
be fine-tuned to represent the characteristics of each endpoint individually, e.g.,
communication delays, response times, etc.

Query Decomposition. Finally, we optimize the SPARQL queries that are
actually sent to the endpoints and try to minimize their number. For instance,
we combine all triple patterns and logical subqueries to a particular endpoint
into a single SPARQL query to a particular endpoint whenever possible. For
instance, meta-nodes ?star2 and ?star3 in Fig. 4 are combined into one subquery
(Fig. 3(b)) and evaluated by the DBpedia endpoint.

482 G. Montoya et al.

Table 1. FedBench [16] dataset statistics: number of distinct triples (#DT), predi-
cates (#P), CSs (#CS), and CPs (#CP); computation time in seconds of Odyssey ,
HiBISCuS, and voiD statistics

Dataset #DT #P # CS #CP #FCP Odyssey HiBISCuS voiD

ChEBI 4,772,706 28 978 9,958 19,360 82.91 96.02 73.89

KEGG 1,090,830 21 67 239 13,822 30.15 95.23 12.84

Drugbank 517,023 119 3,419 12,589 103,070 1,299.9 76.4 6.98

DBpedia subset 42,855,253 1,063 10,000 1,069,431 6,583 2,739 770.48 1,465.36

Geonames 107,949,927 26 673 7,707 322,672 1,885.97 609.52 39,694.07

Jamendo 1,049,647 26 42 190 1,259 31.25 99.17 14.66

SWDF 103,595 118 547 6,713 17,557 7.27 69.21 2.03

LMDB 6,147,916 222 8,466 94,188 359,340 947.16 317.21 355.45

NYTimes 335,119 36 47 158 3.96 10.01 72.56 4.22

Federated 620.35

Total 7,654.27 2,205.8 41,629.5

4 Evaluation

In this section, we present the results of our experimental study that compares
our approach, Odyssey , with state-of-the-art federated query engines: HiBIS-
CuS (FedX-HiBISCuS, cold and warm cache) [15], SemaGrow [5], FedX (cold
and warm cache) [17], and SPLENDID [7]. Full implementations, statistics, and
results are available at https://github.com/gmontoya/federatedOptimizer.

Datasets and Queries: We use the real datasets and queries proposed in the
FedBench benchmark [16]. Queries are divided into three groups Linked Data
(LD1-LD11), Cross Domain (CD1-CD7), and Life Science (LS1-LS7). They have
2–7 triple patterns and star and hybrid shapes. They have between 1 and 9,054
answers. Basic statistics about the datasets are listed in Table 1. We ran each
query ten times and report the averages over the last nine runs. Standard devi-
ation is included as error bars on the plots.

Implementation: Odyssey is implemented in Java using the Jena library to
parse and transform queries into queries with SPARQL 1.1 service clauses. Our
implementation uses the FedX 3.1 framework with deactivated native optimiza-
tion to execute Odyssey ’s query plans.

Hardware Configuration: For our experiments we used virtual machines
(VMs). A VM using up to 4 GB of RAM to run the federated query engine
and nine VMs with 2 processors, 8 GB of RAM and CPU 2294.250 MHz to host
Virtuoso endpoints with the datasets described in Table 1 (one dataset and end-
point per VM).

Statistics Computation: As DBpedia has a very high number of CSs
(160,061), we reduced them to 10,000 by merging (as suggested in [8,12] and
explained in Sect. 3.3) without significant losses in the quality of estimations.
Details on creation times of statistics are listed in Table 1. Odyssey ’s statistics

https://github.com/gmontoya/federatedOptimizer

The Odyssey Approach for Optimizing Federated SPARQL Queries 483

Fig. 5. Optimization time in ms (OT, log scale). CD1 and LS2 have variable predicates
and Odyssey relies on FedX to find plan.

can be more expensive to compute for datasets with more than 3,419 CSs and
cheaper than HiBISCuS’s for datasets with less than 67 CSs. In total, Odyssey ’s
statistics are computed five times faster than voiD’s.

Evaluation Metrics: (i) Optimization time (OT): is the elapsed time since
the query is issued until the optimized query plan is produced, (ii) number of
selected sources (NSS): is the number of sources that have been selected to answer
a query, (iii) number of subqueries (NSQ): is the number of subqueries that are
included in the query plan, (iv) execution time (ET): is the time elapsed since the
evaluation of the query plan starts until the complete answer is produced (with
a timeout of 1,800 s), (v) number of transferred tuples (NTT): is the number
of tuples transferred from all the endpoints to the query engine during query
evaluation.

Result Completeness: All approaches produce the complete result set for
non-timed out queries, except SPLENDID for query LS7.

4.1 Experimental Results

Optimization Time. Figure 5 shows the optimization time (OT) for the stud-
ied approaches. Because of the detailed statistics and dynamic programming,
one might expect Odyssey to suffer from a considerable overhead in OT. As our
experimental results show, however, Odyssey ’s query planner is competitive to
most other approaches with a slight advantage for FedX-Warm as this system
has cached information about the query relevant sources. For instance, Odyssey
is up to 69 times faster (SemaGrow) than other approaches on average.

Number of Selected Sources. As Fig. 6 shows, Odyssey selects only a
small number of relevant sources; for instance, at least 1.81 times less (FedX-
Cold/Warm and SemaGrow) and up to 1.93 times less (HiBISCuS-Cold/Warm)

484 G. Montoya et al.

Fig. 6. Number of selected sources (NSS)

on average. For some queries, e.g., LS4, existing approaches already select the
optimal number of sources. For LD7, Odyssey selects a larger number of sources
than the optimum because our approach does not perform ASK queries during
execution to prune irrelevant sources. Sometimes Odyssey overestimates the set
of relevant sources – but on the other hand it never misses any relevant sources.
For LS1, most approaches select just one (100) source because there is only one
dataset that has triples with the predicate in the query.

Number of Subqueries. As Fig. 7 shows, Odyssey uses considerably fewer sub-
queries than other approaches, at least 2.62 times less (HiBISCuS-Cold/Warm)
and up to 3.41 times less (SPLENDID) on average. The fact that Odyssey
always produces the correct and complete answers confirms that Odyssey cor-
rectly identifies and exploits cases for which it is advantageous to combine sub-
queries. Odyssey ’s reduction of the number of relevant sources has a positive

Fig. 7. Number of subqueries (NSQ)

The Odyssey Approach for Optimizing Federated SPARQL Queries 485

Fig. 8. Execution time in ms (ET, log scale)

impact on the number of subqueries (NSQ), Odyssey ’s pruning of non-relevant
sources allows for combining triple patterns into subqueries without affecting
the result completeness. Some queries, like LD2, LD4, and LD9, include triple
patterns that can be evaluated by a unique endpoint of the federation and exist-
ing approaches already decompose the query into the optimal NSQ. Only for
LD7, FedX-Cold/Warm, SPLENDID, and SemaGrow decompose the query into
fewer subqueries than Odyssey , this is because they use ASK queries to assess
a source’s relevance. Odyssey could be enhanced with this strategy.

Execution Time. Some approaches failed to answer all queries before the time-
out (1,800s): SPLENDID (2 queries) and SemaGrow (4 queries). Even when
considering only those queries that completed before the timeout, Odyssey is
on average 126.26 times faster than SPLENDID and 28.30 times faster than
SemaGrow. Figure 8 shows the execution times (ET) for the studied approaches.
Odyssey is on average at least 25.46 times faster (FedX-Warm). Only for a few
queries Odyssey is (slightly) slower than other approaches, e.g., LS3. As for the
other metrics, Odyssey ’s ET can be improved if ASK queries were used during
query execution to further reduce the relevant sources similarly as it is done by
other approaches. For five of the queries, Odyssey is one of the fastest approaches
and for 11 queries, Odyssey is the fastest approach. Odyssey ’s achieved reduc-
tions on the NSS and NSQ have a positive impact on the ET; as fewer endpoints
are queried fewer times, Odyssey produces results faster than most approaches
in most cases.

Number of Transferred Tuples. Figure 9 shows the number of trans-
ferred tuples (NTT) for the studied approaches. Odyssey transfers fewer tuples
than other approaches. Even when considering only those queries that com-
pleted before the timeout, Odyssey transfers on average 1.15 times fewer tuples
faster than SemaGrow and 108.4 times fewer tuples than SPLENDID. For the

486 G. Montoya et al.

Fig. 9. Number of transferred tuples (NTT, log scale, 100 = 1)

approaches that completed all the queries, Odyssey transfers at least 117.55
fewer tuples (HiBISCuS-Cold/Warm) on average. Most approaches are compet-
itive in terms of NTT. The largest difference is observed for LS6, where Odyssey
clearly outperforms the other approaches transferring 500 times fewer tuples. In
contrast to other approaches, Odyssey not only reduces the number of requests
sent to the endpoints but also avoids non-selective subqueries, which significantly
reduces network traffic and the local query load at the endpoints.

4.2 Combining Odyssey with Existing Optimizers

We have also integrated Odyssey techniques directly into the FedX optimizer
and obtained:

– Odyssey-FedX-Cold, which relies on CSs and CPs to select sources and decom-
poses the query but uses FedX join ordering.

– FedX-Cold-Odyssey , which relies on the FedX optimizer for source selection
but uses Odyssey for query decomposition and join ordering.

Figure 10 compares the execution times (ET) of these two implementations with
Odyssey , FedX-Cold, and FedX-Warm. In most cases the combined approaches
are considerably faster than native FedX. In a few cases, however, their ET can
increase considerably. In these cases, queries include a highly selective subquery
with one triple pattern and using FedX’s heuristic to execute subqueries with
more than one triple pattern first leads to plans that are more expensive than
others. On average, the combined approaches are 26.86 and 3.99 times faster
than FedX-Cold.

For query LD7, Odyssey and FedX-Cold/Warm exhibit similar ETs whereas
FedX-Cold-Odyssey is considerably faster. For this query it happens that the
advantages of both Odyssey and FedX coincide, i.e., we can take advantage of
the good join ordering by Odyssey but also of the additional pruning based on
ASK queries by FedX.

The Odyssey Approach for Optimizing Federated SPARQL Queries 487

Fig. 10. Execution time in ms (ET, log scale) of query plans optimized using Odyssey
and FedX

Even if Odyssey ’s OT can be higher in comparison to existing approaches,
Odyssey produces better plans composed of fewer subqueries and fewer selected
sources per triple pattern without compromising result completeness. Benefits
of these features have been evidenced with significantly faster ETs and less
transferred data from endpoints to the federated query engine.

5 Conclusion

In this paper, we have presented Odyssey , an approach for optimizing feder-
ated SPARQL queries based on statistics. These statistics detail information
about the data provided by remote endpoints as well as the links between them.
This enables more accurate cost estimations, query optimization, and selection
of relevant sources. Our extensive experimental evaluation shows that Odyssey
produces query execution plans that are better in terms of data transfer and
execution time than state-of-the-art optimizers. In our future work, we plan to
further improve Odyssey by considering in which situations exactly it is worth-
while to use additional aspects of other optimizers, such as ASK queries and
associated statistics. Another interesting direction of future work is to further
reduce the computation time and sizes of the entity descriptions and provide
efficient strategies to update the descriptions and statistics.

Acknowledgments. This research was partially funded by the Danish Council for
Independent Research (DFF) under grant agreement no. DFF-4093-00301.

488 G. Montoya et al.

References

1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25073-6 2

2. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: LDOW 2009 (2009)

3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC
2013. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41338-4 18

4. Basca, C., Bernstein, A.: Querying a messy web of data with avalanche. J. Web
Semant. 26, 1–28 (2014)

5. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: optimizing
federated SPARQL queries. In: SEMANTICS 2015, pp. 121–128 (2015)

6. Du, F., Chen, Y., Du, X.: Partitioned indexes for entity search over RDF knowledge
bases. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.)
DASFAA 2012. LNCS, vol. 7238, pp. 141–155. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29038-1 12

7. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: COLD 2011 (2011)

8. Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join order-
ing in SPARQL queries. In: EDBT 2014, pp. 439–450 (2014)

9. Hagedorn, S., Hose, K., Sattler, K., Umbrich, J.: Resource planning for SPARQL
query execution on data sharing platforms. In: COLD, pp. 49–60 (2014)

10. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: WWW 2010, pp. 411–420
(2010)

11. Meimaris, M., Papastefanatos, G., Mamoulis, N., Anagnostopoulos, I.: Extended
characteristic sets: graph indexing for SPARQL query optimization. In: ICDE 2017
(2017)

12. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation
for RDF queries with multiple joins. In: ICDE 2011, pp. 984–994 (2011)

13. Prasser, F., Kemper, A., Kuhn, K.A.: Efficient distributed query processing for
autonomous RDF databases. In: EDBT 2012, pp. 372–383 (2012)

14. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL.
In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC
2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68234-9 39

15. Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selec-
tion for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon,
F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp.
176–191. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6 13

16. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
a benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25073-6 37

http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://dx.doi.org/10.1007/978-3-642-29038-1_12
http://dx.doi.org/10.1007/978-3-642-29038-1_12
http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-642-25073-6_37

The Odyssey Approach for Optimizing Federated SPARQL Queries 489

17. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25073-6 38

18. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–
604 (2008)

19. Wang, X., Tiropanis, T., Davis, H.C.: LHD: optimising linked data query process-
ing using parallelisation. In: LDOW (2013)

http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38

	The Odyssey Approach for Optimizing Federated SPARQL Queries
	1 Introduction
	2 Related Work
	3 The Odyssey Approach
	3.1 Dataset Statistics on Individual Datasets
	3.2 Federated Statistics
	3.3 Reducing the Sizes of Entity Descriptions
	3.4 Optimizing Federated Queries

	4 Evaluation
	4.1 Experimental Results
	4.2 Combining Odyssey with Existing Optimizers

	5 Conclusion
	References

