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Abstract. The performance of triples stores is crucial for applications
driven by RDF. Several benchmarks have been proposed that assess
the performance of triple stores. However, no integrated benchmark-
independent execution framework for these benchmarks has yet been
provided. We propose a novel SPARQL benchmark execution framework
called Iguana. Our framework complements benchmarks by providing
an execution environment which can measure the performance of triple
stores during data loading, data updates as well as under different loads
and parallel requests. Moreover, it allows a uniform comparison of results
on different benchmarks. We execute the FEASIBLE and DBPSB bench-
marks using the Iguana framework and measure the performance of pop-
ular triple stores under updates and parallel user requests. We compare
our results (See https://doi.org/10.6084/m9.figshare.c.3767501.v1) with
state-of-the-art benchmarking results and show that our benchmark exe-
cution framework can unveil new insights pertaining to the performance
of triple stores.
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1 Introduction

The size of the Linked Open Data cloud has grown considerably over the last
decade. We are now faced with a compendium of more than 10,000 data sets
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and more than 150 billion triples.1 These data sets cover domains as diverse as
geography, media and life sciences. Many Linked Data applications that consume
and manipulate data rely on triple stores for persisting data, which hold one or
more of these data sets [7,10,11]. It is thus evident that the performance of
triple stores plays a vital role for the deployment and use of Linked-Data-driven
applications. This leads to the need for robust benchmarking, which is (1) able
to pinpoint the strengths and weaknesses of the triple store under test. This in
turn allows, (2) the evaluation of the suitability of a specific triple store to the
application under which it is to operate, and the proposal of the best candidate
triple stores for that application. In addition, benchmarking triple stores can
also help (3) identifying the best running conditions for each triple store (e.g.,
the best memory configuration) as well as (4) providing developers with insights
pertaining to how to improve their frameworks.

While many benchmarks (e.g., [1,2,5,7,11,14]) have resulted from these con-
siderations, the comparability of benchmarking results remains problematic as
each benchmark usually provides its own execution environment, thus making
the results across different evaluations difficult if not impossible to compare.
For example, while some of the benchmarks above provide dedicated execu-
tion scripts, these cannot always be ported easily to other benchmarks. In this
replication and benchmark paper, we address this gap by proposing a novel
SPARQL benchmark execution framework called Iguana (Integrated Suite for
Benchmarking SPARQL). Iguana is a benchmarking suite that takes a bench-
mark, a dataset and possible updates as input. The suite is able to test the
behavior of triple stores in a holistic manner, i.e., it can test for load times as
well as concurrent query execution and data updates with different user configu-
rations. The suite is thus complementary to benchmarks (which most commonly
provide data or queries) and can execute both synthetic benchmarks and bench-
marks based on real data and real queries to give more complete insights into the
behavior of a triple store. Note that thanks to its flexible configuration of bench-
mark execution, the suite allows the assessment of endpoints which serve multiple
agents (users, software systems, etc.) of different types (e.g., query and update)
concurrently (e.g., the DBpedia endpoint with approximately 860k queries per
day). The methodology implemented by Iguana follows the four key require-
ments for domain-specific benchmarks that are postulated in the Benchmark
Handbook [4], i.e., it is

1. relevant, as it allows the testing of typical operations within the specific
domain,

2. portable as it can be executed on different platforms and using different bench-
marks and datasets,

3. scalable as it is possible to run benchmarks on both small and large data sets
with variable rates of updates and concurrent users and

4. understandable as it returns results using standard measures that have been
used across literature for more than a decade.

1 http://lodstats.aksw.org.

http://lodstats.aksw.org
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Our contributions are as follows:

– We present the first (to the best of our knowledge) integrated and extensible
benchmarks execution suite for SPARQL that can uniformly execute state-
of-the-art triple store benchmarks under realistic loads such as concurrent
requests and updates.

– We provide the first (to the best of our knowledge) realistic evaluation of
triple stores with concurrent queries and updates. We evaluate commonly
used triple stores under real loads from DBpedia Live and Semantic Web
Dog Food (SWDF) and present novel insights pertaining to their behavior.

– As an example showcase, we integrate FEASIBLE [11] and DBPSB [6] real
SPARQL benchmarks generators and evaluate state-of-the-art triple stores
on four datasets.

– Our results show that while the triple stores we evaluated seem to scale up
well to concurrent queries and updates, they are all affected significantly by
the size of the datasets.

This paper is organized as follows. We begin by presenting the core of
Iguana. We then present an evaluation of state-of-the-art triple stores on stan-
dard server hardware under different loads. Thereafter, we give an overview of
the state of the art in benchmarking triple store. Finally, we detail future work
and conclude. The code can be found at https://github.com/AKSW/IGUANA
Links to all information pertaining to Iguana (including its source code, GPLv3)
can be found at http://iguana-benchmark.eu. A guide on how to get started is
at http://iguana-benchmark.eu/gettingstarted.html.

2 The Iguana Framework

This section describes Iguana. We begin by presenting the components of the
framework. We then present the main necessary and optional parameters through
which it can be configured. Finally, we give an overview of the core functionality
of the framework.

2.1 Overview

Figure 1 shows the core components of the Iguana framework. The input for
the framework is a configuration file (short: config file), which contains (1) the
configuration parameters (see Sect. 2.2), (2) instructions that orchestrate how
queries are to be processed and issued as well as (3) a specification of the bench-
marking process and (4) the external data sources to be used during this process.
A representation of the parsed config file is stored internally in a configuration
object (short: config object). If the config object points to a query log, then the
analyzer processor analyzes this query log file and generates benchmark queries
(e.g., using the FEASIBLE [11] approach). Iguana also supports the benchmark
queries being directly provided to the framework. The dataset generator process
creates a fraction (e.g., 10% of DBpedia) of dataset, thus enabling it to test the

https://github.com/AKSW/IGUANA
http://iguana-benchmark.eu
http://iguana-benchmark.eu/gettingstarted.html
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scalability of the triple stores with varying sizes of the same dataset. Note that
this generator is an interface which can be used to integrate data generators
(e.g., the DBPSB [7] generator) that can create datasets of varying size. The
warmup processor allows the execution of a set of test queries before the start of
the actual stress testing. The testcase processor then performs the benchmarking
by means of stress tests according to the parameters specified in the config file.
Finally, the result processor generates the results which can be emailed by the
email processor. In the following, we describe the core components of Iguana in
more detail.

Fig. 1. Overview of the Iguana benchmarking components.

2.2 Input Parameters

The Iguana framework (see Fig. 1 for an overview) requires the following input
parameters:

1. An input dataset (necessary). This is the dataset upon which the SPARQL
queries are to be executed. The dataset is part of the input because the
framework also measures the time necessary for triple stores to load data.

2. A set of change sets (optional). The change sets are triples that are added or
deleted from the triple store at runtime. In real applications, it is common to
write and read from a triple store while queries are executed. This behavior is
emulated by means of the change sets contained in this portion of the input.

3. Benchmark queries to use (necessary). This is the set of queries that are to
be executed to assess the performance of the triple store to benchmark. Note
that we support both query templates (see [7]) and query sets (see, e.g., [11])
as provided by most of the existing benchmarks.

4. Number and type of workers (necessary). Iguana supports two main types
of workers: Update workers perform SPARQL INSERT queries to inject
new triples into a triple store. Query workers can perform SELECT, ASK,
DESCRIBE and CONSTRUCT queries to gather information from the triple
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store. The workers are parametrized by the frequency at which they carry out
queries. This frequency can either be static (e.g., every 500 ms) or abide by
a statistical distribution such as a Gaussian (e.g., mean = 500 ms, standard
deviation = 100 ms).

5. Amount of data to load into the triple store (optional). With this parame-
ter, benchmarks on a fraction of a dataset (e.g., 10% of DBpedia) are made
possible.

6. Warmup parameters (optional). An optional set of warm up queries, i.e.,
queries used by the systems that are to be benchmarked to fill the triple store
caches, as well as an optional warm up time can be set.

Note that Iguana provides means to define pre- and post-shell scripts for
triple stores. This enables the suite to use bulk loading scripts provided by
some triple stores as these scripts are often significantly more time-efficient than
loading data via INSERT queries. However, the bulk loading strategies of triples
stores are not standardized and their execution thus had to be moved to pre-
processing scripts. The post-processing scripts allow to clear triple stores (e.g.,
to delete global indexes) as requested.

2.3 Anatomy of a Test Case

Once Iguana has been parametrized, the benchmarking can begin. Iguana’s
benchmarking approach is built around the concept of test cases, which are basi-
cally runs of benchmarks. In essence, the core simply implements the methods
and interfaces necessary to execute these test cases. First, the core pre-processes
all the data necessary to carry out a given test case. The pre-processing begins
with the gathering the endpoints which should be tested on particular datasets,
the details about the configuration of the benchmark data as well the properties
of the test case. Thereafter, a reference connection is created if necessary. This
connection is used during the configuration of query templates into queries for the
benchmark. The reference connection links the benchmark to an auxiliary data
source that contains the same data as the triple store to benchmark. Note that
this connection should not point to the triple store we aim to benchmark as the
queries sent through the auxiliary connection could falsify the results at runtime.
As an example, if we aim to benchmark a triple store containing DBpedia data,
we can set http://dbpedia.org/sparql as the auxiliary connection. Note that the
reference connection is only needed for the purpose of generating queries from
query templates. Consequently, if Iguana is provided with queries (not tem-
plates), it does not require this connection. Iguana completes this first step by
setting up all the data necessary to carry out the test case at hand. For example,
it converts query patterns into complete SPARQL queries with the help of the
auxiliary connection.

After the pre-processing stage, Iguana tests every given dataset described in
the config file. To this end, our framework runs the test cases in the order stated
in the config file. For example, if the user declares a pre-shell script, Iguana will
firstly execute this script, therewith enabling users to configure the triple store to

http://dbpedia.org/sparql
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benchmark at will before the beginning of the benchmark. Typically (and in our
evaluation as well), these scripts are used to stop and start the current triple store
as well as copy a dataset dump to triple store. Note that Iguana measures how
long the pre-shell script takes to be executed. Hence, our framework can measure
how long a framework needs for bulk loading data. For the sake of completeness,
Iguana provides the possibility to benchmark the upload via SPARQL INSERT
queries. While this test is not recommended when loading a large amount of
data, as most frameworks provide bulk loading scripts, IGUANA will check for
the existence of upload tests, the corresponding dataset and upload it to the
triple store that is currently being tested by means of INSERT queries.

Iguana then starts the warm-up phase (if the user defined one), during which
a set of user-defined SPARQL queries and updates are sent to the triple store
for a pre-defined period of time (default = 20 min). After the warm-up phase has
been completed, the stress test begins (see Sect. 3). The completion of the stress
test also marks the completion of the test case. The core gathers the results
and adds them to the results which were gathered in previous steps of the test
case (if any). If the user defined a post-shell script (e.g., to free resources on the
server, backup data, clean out a dump, send a message marking the end of the
stress test) the core will executes it and proceed to the next testcase. Once every
dataset has been tested with every triple store and every test case, Iguana saves
the final results and exits.

3 Anatomy of a Stress Test

The main objective of this strategy is to simulate the operation of a live triple
store which is updated continuously, while many users send queries at the same
time. Iguana’s default stress test aims to simulate such real workloads of triple
stores. Hence, it implements a situation in which several users belonging concur-
rently access the triple store. In general, there are two types of users querying the
triple store: The first type of user queries the triple store using SELECT, ASK,
DESCRIBE or CONSTRUCT queries while the second type updates the same
triple store by sending INSERT queries. Consequently, our default stress test
consists of two main components, namely the query component, and the update
component as shown in Fig. 2. The query component issues all queries from the
first type of users to the triple store while the update component inserts and
deletes triples from the test triple store.

3.1 Query Component

To initialize the query component, the stress test needs query templates or
queries that are to be posed to the system. Given that having static queries
is a special case of having query templates, we describe how the system deals
with query templates. Query templates are modelled as parameterized SPARQL
queries (i.e., ASK, SELECT, CONSTRUCT or DESCRIBE queries) which can
contain several template variables. Each template variable abides by the syntax
%%v[0–9]*%%. For example a template can look as follows:
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Fig. 2. Overview of the Iguana stress test

1 PREFIX dct:<http :// purl.org/dc/terms/>

2 SELECT ?s ?p FROM <http :// dbpedia.org>

3 WHERE

4 { ?s ?p %%v1%% .

5 %%v1%% dct:creator %%v2%% }

6 LIMIT 10

The template variables serve as slots to be replaced by resources, literals or
blank nodes that lead to a query that can be executed on the data contained
in the triple store to benchmark. The large number of valid queries that can
be generated from such a template attenuates, if not circumvents, the effect of
näıve caching in the triple stores to evaluate. The maximum number of instances
of each template generated out of the data is set by the user. Note here that it
can happen that the user requires more instances than query solutions available
in the triple store, in which case Iguana selects all solutions to generate query
instances. Instead of querying the triple store to benchmark for relevant replace-
ments of the variables, the query component uses the reference connection (see
Sect. 2.3) provided by the user to obtain valid replacements for the variables. In
the example, it will try to get instances for %%v1%% and %%v2%%. To achieve
this goal, the query generator transforms the input query to the following:
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1 PREFIX dct:<http :// purl.org/dc/terms/>

2 SELECT ?v1 ?v2 FROM <http :// dbpedia.org>

3 WHERE

4 {?s ?p ?v1 .

5 ?v1 dct:creator ?v2}

6 LIMIT K

where K is the number of queries per template set by the user.
This query is now sent to the reference connection. The results are stored in

a table of key-value pairs for each of the query templates. With this approach,
we ensure that the instantiations of the template that we generate return (non-
empty) results. In a final step, the variables in the query templates are replaced
with all key-value pairs in the table and the results are stored in one reference
file per query. This whole process is carried out once during the complete test
case. The approach ensures that all triple stores that are to be compared are
confronted with exactly the same queries.

Now that the queries to be sent to the triple store are available, a pool of
query workers is created. For the given test case, the workers are assigned a seed
number. This number is used to seed a pseudo-random number generator. This
generator then computes the index of the query template as well as the index
of the instantiation of the said query template that is to be used. Note that as
the seeds are generated for each stress test, all triple stores are confronted with
the same query load. Each worker sends the query that the generator selected,
waits for results and sends the next query after a preset delay according to a
delay strategy (constant delay, Gaussian delay, etc.) specified by the user. Each
of the workers sends queries to the endpoint until the benchmark runtime (which
is shared across all workers) has elapsed.

3.2 Update Component

The update component relies on a predefined set of triple additions and deletions
that are to be carried out during the stress test. The update component relies on
a pool of a pre-defined number of update workers and an overall update strategy.
The update strategy defines whether the update workers are to (1) first carry out
every insert and then every deletion, (2) execute first every deletion and then
every insert, (3) insert then delete in an alternating fashion or (4) alternatively
first delete then insert. Each worker of the update component is also assigned a
worker strategy, which defines whether it is only to carry out additions, deletions
or both. Moreover, a delay model is assigned to each worker, which determines
how long the worker is to wait between two update queries. The user can set a
fixed time or assign a variable time with the seed value s. In case of a variable
time, a pool of numbers between s − √

s and s +
√
s is created. Every time a

new update is needed the corresponding worker will draw a random time out of
the interval to wait until it generates the next update. Again, all random values
are pseudo-random and thus the same across all experiments.
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Once the stress test has been completed, the results are saved. Through the
whole stress test, the runtime of each query as well as the number of failed
and successful queries for each and every template is saved for every user. The
framework also computes (1) the number of queries per time, (2) the number of
queries per second for every user and (3) the mean and sums over all users for
all measurements.

4 Evaluation

The motivation behind our evaluation was to check whether the Iguana app-
roach reveals new insights across several benchmarks. In this section, we describe
how we went about addressing this question. We begin by presenting our exper-
imental setup and subsequently present the results of our evaluation in detail.

4.1 Experimental Setup

All experiments were performed on a desktop machine with an Intel i7-3770
CPU with 3.4 GHz, 32 GB RAM, 4 TB HDD running Ubuntu 14.04 and Java
1.7. The benchmark program and the test triple stores were executed on the
same machine to avoid any network delay. We used the following criteria to
select triple stores for the benchmark: (1) The triple store had to be able to
load and process the DBpedia dataset which currently has 391,020,690 triples.2

(2) The triple store had to be able deal with the characteristics of DBpedia,
e.g., its high number of properties (this rules out stores such as 4Store, which
is optimised for a low number of properties). (3) The triple store had to have
no benchmarking restrictions or the maintainers had to approve the inclusion
of their system in the benchmark, and the publication of the results to the
public. After selecting the candidate systems and contacting the maintainers for
approval when required, the following systems were included in the benchmark:
OpenLink Virtuoso,3 Blazegraph R©,4 and Apache Jena TDB.5

For all stores, we selected the standard configuration except for an adjustment
of their memory limits. We chose this configuration because it is the configuration
most commonly used by lay users. Still, we are aware that the configurations
can be tuned and that the results we present are thus to be taken with the
corresponding grain of salt.

The configuration of each triple store was as follows:

1. Virtuoso Open-Source Edition version 7.0.0: We set the following memory-
related parameters: NumberOfBuffers = 1360000, MaxDirtyBuffers =
1000000.

2 The W3C wiki at http://www.w3.org/wiki/LargeTripleStores lists triple stores that
are used commonly and the number of triples they can store.

3 http://virtuoso.openlinksw.com.
4 http://www.blazegraph.com.
5 http://jena.apache.org/documentation/tdb.

http://www.w3.org/wiki/LargeTripleStores
http://virtuoso.openlinksw.com
http://www.blazegraph.com
http://jena.apache.org/documentation/tdb
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2. Blazegraph Version 1.5.3, with Jetty as HTTP interface: We set the Java heap
size to 16 GB.

3. Jena TDB Version 2.3.0 with Fuseki2 as HTTP interface: We also set the
Java heap size to 16 GB.

We used the DBpedia Live dataset for the experiments on DBpedia.6 For
Semantic Web Dog Food7 we computed the difference between the provided
dump8 and a dump generated by the SPARQL endpoint9 from March 1st, 2016.
This difference was separated into three files which contained (1) the triples in
both the dump and the endpoint, (2) the triples available only in the dump and
(3) the triples present only in the endpoint. The triples in (2) were split into 5
files, which were used to delete data from the triple store. File (3) was split into
140 files, which were used to add data to the triple store. An overview of the
data sets can be found in Table 1.

We configured Iguana as follows: The warm-up phase was set to 20 min. The
hot run phase was set to 60 min. The number of workers that update the system
was varied between 0 and 1, while the number of workers that query the system
was set to 1, 4, or 16. As queries, we used 250 real queries benchmark generated
by FEASIBLE [11] and the 20 query templates of DBPSBv2 [7]. We selected
these benchmark generation frameworks because they generate benchmarks from
the real query logs, thus allowing us to test the triple stores under a more realistic
evaluation environment.

Table 1. Overview of the data sets used in our experiments

SWDF DBpedia 10% DBpedia 50% DBpedia 100%

No. of triples 307, 787 40, 234, 659 197, 951, 941 391, 020, 690

No. of classes 149 715 752 778

No. of properties 301 27, 337 47, 310 61, 707

No. of subjects 32, 111 2, 100, 802 12, 637, 791 26, 557, 064

4.2 Results and Discussion

The aim of our evaluation was to show how Iguana can be used to address the
following research questions:

Q1: Baseline: How do triple stores scale for static data sets of different sizes?
Q2: How do triple stores scale under parallel load?
Q3: How do triple stores scale under updates?
Q4: How do triple stores scale under parallel load and updates?
Q5: Are some benchmarks more demanding than others?
6 The dump can be found here https://doi.org/10.6084/m9.figshare.4954598.v1.
7 http://semanticweb.org/.
8 http://data.semanticweb.org/dumps/.
9 http://data.semanticweb.org/sparql.

https://doi.org/10.6084/m9.figshare.4954598.v1
http://semanticweb.org/
http://data.semanticweb.org/dumps/
http://data.semanticweb.org/sparql
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The configuration as well as the complete results are available for download.10

To test the scalability of the selected triple stores on static data sets of different
sizes, we created two additional subsets of DBpedia, namely DBpedia 10% and
DBpedia 50% (see Table 1). The partitioning was carried out by truncating the
dump. Note Iguana also support the dataset slicing introduced in DBPSB and
DAW [12]. The goal of the partitioning was to check how the triple stores perform
with the increasing size of the datasets.

Figure 3 shows the performance of the selected triple stores in terms of the
number of queries executed per hour for the different sizes of the DBpedia and
SWDF benchmarks generated by FEASIBLE framework (Q1). As expected, the
performance of Virtuoso decreases by 80.62% while going from DBpedia 10% to
DBpedia 50% and decreases further by 53.26% while going from DBpedia 50%
to DBpedia 100%. Similarly, the performance of Blazegraph decreases by 30.91%
while going from 10% to 50% and decreases by 73.68% while going from 50% to
100%. Surprisingly, the performance of Fuseki is not greatly affected by the size
of the data set, which seems to suggest that the store scales better. However in
reality, the reason for this behavior is seen in the absolute number of queries that
Fuseki can answer per hour. The triple store is unable to complete one query mix
(i.e., 250 queries) within the time set, while Virtuoso achieves more than 40 and
is thus more than 100 times faster. Fuseki’s behavior is however superior to that
of BlazeGraph, which has the same performance issues with DBpedia 10% and
whose performance decreases further with the dataset size. The performance of
the triple stores being greatly influenced by the dataset size is further confirmed
by the results on the small control dataset SWDF, where Blazegraph performs
as well as Virtuoso. This clearly answers Q1: while triple stores can work well
with small datasets, their performance is significantly affected when it comes
to dealing with large datasets. Devising scalable triple stores is an important
research direction to be considered in the future.

Figure 4 shows the effect of parallel query users on the performance of the
selected triple stores on the FEASIBLE queries (Q2). As an overall performance
evaluation, the number of queries executed per hour increases with the number
of simultaneous querying users. This is simply due to all triple stores making
use of parallel answer threads. When transitioning from 1 to 4 parallel query
workers on DBpedia 10%, the performance of Virtuoso increases by 222.75%.
Blazegraph is 69.09% better and Fuseki is 3.2 times faster. The transition from
4 to 16 parallel users leads to a further improvement of Virtuoso by 220.5%
while Blazegraph improves by 527.27% and Fuseki by 1480.85%.

On DBpedia 50%, we also see an increase of performance when comparing
the behavior of the systems with 1 and 4 users. Only Blazegraph’s performance
decreases by 35.29% when it is confronted with 16 users. The other systems
keep on improving. On DBpedia 100%, the performance of Virtuoso increases
by 157.02%, Blazegraph improves by 170% and Fuseki is 1.1 times faster with

10 See https://doi.org/10.6084/m9.figshare.c.3767501.v1. Note that due to space
restrictions, we cannot present all results in detail. Instead, we focus on the highlights
of our findings.

https://doi.org/10.6084/m9.figshare.c.3767501.v1
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Fig. 3. Scalability test of triple stores based on single querying user and no updates
using FEASIBLE. The y-axis is in logarithmic scale.

Fig. 4. Effect of parallel requests using the FEASIBLE queries. The x-axis shows the
number of simultaneous querying users

4 parallel users. The improvements are even larger when moving from 4 to 16
users, where Virtuoso is 784.19% faster while Blazegraph and Fuseki improve
by 440% resp. 460%.
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Fig. 5. Scalability test of triple stores based on a single querying user and a single
update user for FEASIBLE. The y-axis is in logarithmic scale.

Our control dataset SWDF confirms the increase in performance of all sys-
tems with more users but also points to an upper bound for the performance of
the systems. For example, Virtuoso can answer 92.39% more queries when tran-
sitioning from 1 to 4 users. However, Blazegraph’s performance remains quasi
constant (−1.23% ) while Fuseki improves by 33.54%. Virtuoso improves further
when comparing its behavior with 4 and 16 users (309.37% ) while Blazegraph
increases only moderately (55.62% ). Fuseki profits the most of the 16 parallel
users on a relative scale (+424.56% ). This clearly answers Q2.

Figures 5 shows some of the most interesting results of this work as they
display (to the best of knowledge) the first results of systems with parallel queries
and updates (1 query user, 1 update user). For FEASIBLE, the triple stores are
barely affected by the update workers in most cases (Q3). On DBpedia 10%, the
performance of Virtuoso decreases by 0.24 %, Fuseki’s increases by 29.79%, and
Blazegraph’s remains constant. On DBpedia 50%, the performance of Virtuoso
increases by 2.59 %, Fuseki’s remains constant, and Blazegraph’s improves by
7.89 % with single worker updates. On DBpedia 100%, small losses (Virtuoso =
−6.98 %, Fuseki = −16%, Blazegraph = −10 % ) can be monitored. A similar
picture can be derived from the results on SWDF (Virtuoso = −4.02% ), Fuseki
= −16.6%, Blazegraph = −1.14 % ). The results suggest that a single query and
update worker duo does not significantly affect the overall performance of triple
stores when faced with FEASIBLE queries.

We were hence interested to know how triple stores scale under parallel load
and updates (Q4). Figure 6 shows that the performance of all triple stores only
decreases slightly on DBpedia 10% with parallel loads and updates, as compared
to only parallel loads and no updates (ref. Fig. 4). Here, no system has more than
20% performance loss (Virtuoso = −2.32%, Blazegraph = constant, Fuseki =
3.03% with 4 parallel users; Virtuoso = −0.42%, Blazegraph = −16.23%, Fuseki
= −6.59% with 16 parallel users; a similar picture). On DBpedia 50%, more
drastic performance changes occur, with Blazegraph’s performance decreasing
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Fig. 6. Effect of parallel requests with and without updates, X-axis shows the number
of simultaneous querying users

by 61.18% with 4 parallel users and decreasing further by 20% with 16 parallel
users. In combination with Fig. 7, Iguana allows for the first unified comparison
of benchmark results (FEASIBLE vs. DBPSBv2). The clear decrease in per-
formance of Fuseki on DBPSBv2 (more than 1 order of magnitude, see Fig. 7)
demonstrates that (1) FEASIBLE pushes most of the systems closer to the edge
than DBPSBv2, leading to the systems not being able to carry out a lot of
queries (Q5) and (2) Virtuoso clearly scales up to heavy load better than the
other solutions.

Overall, these results suggest that all systems can deal well with parallel
updates and queries. However, their performance is significantly affected by the
dataset sizes. Virtuoso is clearly the fastest system in all experiments while
Fuseki is most commonly faster than Blazegraph. The systems all implement
efficient parallel query handling and can thus be used for multiple concurrent
requests. While Fuseki seems to scale up well with the number of concurrent
users, its performance with 16 users still remains significantly poorer than Vir-
tuoso’s.
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Fig. 7. Queries per Hour and Query Mixes Per Hour with 16 querying workers for
the DBPSBv2 benchmark on DBpedia 100%. The x-axis shows the number of update
users. The y-axis is in logarithmic scale.

5 Related Work

Several RDF benchmarks were developed over recent years. The Lehigh Uni-
versity Benchmark (LUBM) [5] is a synthetic benchmark that aims to test the
triple stores and reasoner for their reasoning capabilities. The synthetic data
is about universities, their departments, the professors, etc. SP2Bench [14] is a
synthetic benchmark for testing the query processing capabilities of triple stores.
The synthetic data is based on the DBLP 11 bibliographic database. The Berlin
SPARQL Benchmark (BSBM) [2] is a synthetic triple stores benchmark based
on an e-commerce use case in which a set of products is provided by a set of
vendors and consumers post reviews regarding those products. Since v3.1 it uses
synthetic updates. It tries to mimic a real user operation, i.e., it orders the queries
in a sequence to resemble the real operation sequence performed by a human
user. The SRBench [16] is a RDF benchmark designed for the benchmarking of
streaming RDF/SPARQL engines. The streaming data arrives as a continuous
stream at a high rate. It uses real RDF data sets and 17 synthetic queries. The
main advantage of that benchmark is that it addresses the various features of
SPARQL 1.1 and reasoning. In [8], the authors propose a synthetic benchmark
based on Last.fm, which can benchmark systems w.r.t. various SPARQL 1.1,
e.g., property paths, and subqueries. [15] proposes a SPARQL benchmark based
on electronic publishing scenario. It uses 8 different data set sizes, and 19 queries
covering various SPARQL constructs. Although the data used is real, the queries
are still synthetic. The Waterloo SPARQL Diversity Test Suite (WatDiv) [1] pro-
vides synthetic data and query generator to generate large numbers of queries
from a total of 125 queries templates. The queries cover both simple and complex
categories with a varying number of features such as result set sizes, total number

11 http://www.informatik.uni-trier.de/∼ley/db/.

http://www.informatik.uni-trier.de/~ley/db/
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of query triple patterns, join vertices and mean join vertices degree. However,
this benchmark is restricted to conjunctive SELECT queries (single BGPs).

The DBpedia SPARQL Benchmark (DBPSB) [7] is a SPARQL benchmark
that uses both real data, i.e., DBpedia, and real queries, i.e., the query log
of the DBpedia endpoint, for benchmarking. An important feature of DBPSB
is that it selects the queries based on their frequency, i.e., it does not only
selects the queries that cover certain SPARQL features, but it also picks the
query with the highest frequency among those queries of the query log. How-
ever, this benchmark does not consider key query features (i.e., number of join
vertices, mean join vertices degree, mean triple pattern selectivities, the query
result size and overall query runtimes) while selecting query templates. Previous
works [1,3] have however pointed out that these query features greatly affect
the triple stores performance and thus should be considered while designing
SPARQL benchmarks. Some of the drawbacks of DBPSB are addressed by the
FEASIBLE benchmark [11], a real benchmark generation framework which can
generate customized benchmarks out of query logs. The approach underlying the
benchmark takes SPARQL features as well as SPARQL query types into con-
sideration while deriving prototypical queries and can easily be ported to any
query log. Finally FedBench [13] and LargeRDFBench [9] are benchmarks for
federated SPARQL query processing. To the best of our knowledge, Iguana is
the first unified benchmark execution platform for SPARQL queries. This frame-
work is orthogonal to the current state of art as it allows the execution of all
of the benchmarks above and the comparison of their results with and without
data updates and parallel requests. In addition, Iguana is also able to execute
federated SPARQL queries benchmarks.

6 Conclusions and Future Work

We presented Iguana, an execution framework for SPARQL query benchmarks.
We evaluated 3 triples stores on 4 datasets under 6 different settings using FEA-
SIBLE and DBPSBv2. Our results unveiled that the triple stores perform well
on small amounts of data and scale well with the number of reading users. More-
over, they are also able to deal well with 1 update user. However, systems such
as Blazegraph struggle with large datasets such as DBpedia 100%. For the first
time, we were able to compare two benchmarks within an identical environment
and revealed that the FEASIBLE queries stress triple stores significantly more
than the DBPSBv2 queries. Overall, we showed that Iguana can be used for
benchmarking triple stores in a variety of settings and that this flexibility gives
new insights into the behavior of triple stores. In future works, we will extend
of our framework to streaming RDF data. The sustainability of the framework
will be ensured by making it one of the key assets of the HOBBIT association,
which will emerge from the EU-funded project HOBBIT (http://project-hobbit.
eu) and already has 9 funding members.

http://project-hobbit.eu
http://project-hobbit.eu
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2012. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35176-1 40

http://dx.doi.org/10.1007/978-3-642-41242-4_2
http://dx.doi.org/10.1007/978-3-642-41242-4_2
http://dx.doi.org/10.1007/978-3-642-35176-1_40
http://dx.doi.org/10.1007/978-3-642-35176-1_40

	IGUANA: A Generic Framework for Benchmarking the Read-Write Performance of Triple Stores
	1 Introduction
	2 The Iguana Framework
	2.1 Overview
	2.2 Input Parameters
	2.3 Anatomy of a Test Case

	3 Anatomy of a Stress Test
	3.1 Query Component
	3.2 Update Component

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References




