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Abstract. Electronic medical records contain multi-format electronic
medical data that consist of an abundance of medical knowledge. Facing
with patient’s symptoms, experienced caregivers make right medical deci-
sions based on their professional knowledge that accurately grasps rela-
tionships between symptoms, diagnosis, and corresponding treatments.
In this paper, we aim to capture these relationships by constructing a
large and high-quality heterogeneous graph linking patients, diseases,
and drugs (PDD) in EMRs. Specifically, we propose a novel framework
to extract important medical entities from MIMIC-III (Medical Infor-
mation Mart for Intensive Care III) and automatically link them with
the existing biomedical knowledge graphs, including ICD-9 ontology and
DrugBank. The PDD graph presented in this paper is accessible on the
Web via the SPARQL endpoint, and provides a pathway for medical dis-
covery and applications, such as effective treatment recommendations.
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1 Introduction

Big data vendors collect and store large number of electronic medical records
(EMRs) in hospital, with the goal of instantly accessing to comprehensive med-
ical patient histories for caregivers at a lower cost. Public availability of EMRs
collections has attracted much attention for different research purposes, includ-
ing clinical research [14], mortality risk prediction [7], disease diagnosis [15],
etc. An EMR database is normally a rich source of multi-format electronic
data but remains limitations in scope and content. For example, MIMIC-III
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part II, LNCS 10588, pp. 219–227, 2017.
DOI: 10.1007/978-3-319-68204-4 23

http://kmap.xjtudlc.com/pdd


220 M. Wang et al.

Fig. 1. Left part is the Linked Data Cloud1, which contains interlinked biomedical
knowledge graphs. Right part is the MIMIC-III database.

(Medical Information Mart for Intensive Care III) [8] collected bedside monitor
trends, electronic medical notes, laboratory test results and waveforms from the
ICUs (Intensive Care Units) of Beth Israel Deaconess Medical Center between
2001 and 2012. Abundant medical entities (symptoms, drugs and diseases) can
be extracted from EMRs (clinical notes, prescriptions, and disease diagnoses).
Most of the existing studies only focus on a specific entity, ignoring the relation-
ship between entities. Given clinical data in MIMIC-III, discovering relationship
between extracted entities (e.g. sepsis symptoms, pneumonia diagnosis, glucocor-
ticoid drug and aspirin medicine) in wider scope can empower caregivers to make
better decisions. Obviously, only focusing on EMR data is far from adequate to
fully unveil entity relationships due to the limited scope of EMRs.

Meanwhile, many biomedical knowledge graphs (KGs) are published as Linked
Data [1] on the Web using the Resource Description Framework (RDF) [4], such
as DrugBank [9] and ICD-9 ontology [13]. Linked Data is about using the Web
to set RDF links between entities in different KGs, thereby forming a large het-
erogeneous graph1, where the nodes are entities (drugs, diseases, protein targets,
side effects, pathways, etc.), and the edges (or links) represent various relations
between entities such as drug-drug interactions. Unfortunately, such biomedical
KGs only cover the basic medical facts, and contain little information about clin-
ical outcomes. For instance, there is a relationship “adverse interaction” between
glucocorticoid and aspirin in DrugBank, but no further information about how the
adverse interaction affect the treatment of the patient who took both of the drugs
in the same period. Clinical data can practically offer an opportunity to provide
the missing relationship between KGs and clinical outcomes.

As mentioned above, biomedical KGs focus on the medical facts, whereas
MIMIC-III only provides clinical data and physiological waveforms. There exists
a gap between clinical data and biomedical KGs prohibiting further exploring
medical entity relationship on ether side (see Fig. 1). To solve this problem, we

1 Linking Open Data cloud diagram 2017. http://lod-cloud.net/.

http://lod-cloud.net/
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proposed a novel framework to construct a patient-drug-disease graph dataset
(called PDD) in this paper. We summarize contributions of this paper as follows:

– To our best knowledge, we are the first to bridge EMRs and biomedical KGs
together. The result is a big and high-quality PDD graph dataset, which
provides a salient opportunity to uncover associations of biomedical interest
in wider scope.

– We propose a novel framework to construct the PDD graph. The process
starts by extracting medical entities from prescriptions, clinical notes and
diagnoses respectively. RDF links are then set between the extracted medical
entities and the corresponding entities in DrugBank and ICD-9 ontology.

– We publish the PDD graph as an open resource2, and provide a SPARQL
query endpoint using Apache Jena Fuseki3. Researchers can retrieve data
distributed over biomedical KGs and MIMIC-III, ranging from drug-drug
interactions, to the outcomes of drugs in clinical trials.

It is necessary to mention that MIMIC-III contains clinical information
of patients. Although the protected health information was de-identified,
researchers who seek to use more clinical data should complete an on-line training
course and then apply for the permission to download the complete MIMIC-III
dataset4.

The rest of this paper is organized as follows. Section 2 describes the pro-
posed framework and details. The statistics and evaluation is reported in Sect. 3.
Section 4 describes related work and finally, Sect. 5 concludes the paper and iden-
tifies topics for further work.

2 PDD Construction

We first follow the RDF model [4] and introduce the PDD definition.

PDD Definition: PDD is an RDF graph consisting of PDD facts, where a PDD
fact is represented by an RDF triple to indicate that a patient takes a drug or a
patient is diagnosed with a disease. For instance,

〈pdd5:274671, pdd :diagnosed, sepsis〉.
Figure 2 illustrates the general process of the PDD dataset generation, mainly

includes two steps: PDD facts generation (described in Sect. 2.1), and linking
PDD to biomedical KGs (described in Sect. 2.2).

2 See figshare [16] and http://kmap.xjtudlc.com/pdd.
3 https://jena.apache.org/documentation/fuseki2/index.html.
4 https://mimic.physionet.org/.
5 pdd is the IRI prefix http://kmap.xjtudlc.com/pdd data/.

http://kmap.xjtudlc.com/pdd
https://jena.apache.org/documentation/fuseki2/index.html
https://mimic.physionet.org/
http://kmap.xjtudlc.com/pdd_data/
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Fig. 2. Overview of PDD bridging MIMIC-III and biomedical knowledge graphs.

2.1 PDD Facts Generation

According to the PDD definition, we need to extract three types of entities
from MIMIC-III (patients, drugs, and diseases), and generate RDF triples of the
prescription/diagnosis facts.

Patients IRI Creation: MIMIC-III contains 46,520 distinct patients, and each
patient is attached with a unique ID. We add IRI prefix to each patient ID to
form a patient entity in PDD.

Prescription Triple Generation: In MIMIC-III, the prescriptions table con-
tains all the prescribed drugs for the treatments of patients. Each prescription
record contains the patient’s unique ID, the drug’s name, the duration, and the
dosage. We extracted all distinct drug names as the drug entities in PDD. Then
we added a prescription triple in to PDD. An example is

〈pdd :18740, pdd :prescribed, aspirin〉,
where pdd :18740 is a patient entity, and aspirin is the drug’s name.

Diagnosis Triple Generation: MIMIC-III provides a diagnosed table that
contains ICD-9 diagnosis codes for patients. There is an average of 13.9 ICD-
9 codes per patient, but with a highly skewed distribution, as shown in Fig. 3.
Beyond that, each patient has a set of clinical notes. These notes contain the diag-
nosis information. We use the named entity recognition (NER) tool C-TAKES
[12] to extract diseases from clinical notes. C-TAKES is the most commonly used
NER tool in the clinical domain. Then we use the model [15] (our previous work)
to assign ICD-9 codes for extracted diseases. We extracted all ICD-9 diagnosis
codes as the disease entities in PDD. Then we added a diagnosis triple into PDD.
An example is

〈pdd :18740, pdd :diagnosed, icd99592〉,
where pdd :18740 is a patient entity, and icd99592 is the ICD-9 code of sepsis.
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Fig. 3. The distribution of assigned ICD-9 codes per patient.

2.2 Linking PDD to Biomedical Knowledge Graphs

After extracting entities, we need to tackle the task of finding sameAs links [5]
between the entities in PDD and other biomedical KGs. For drugs, we focused
on linking drugs of PDD to the DrugBank of Bio2RDF [6] version, as the project
Bio2RDF provides a gateway to other biomedical KGs. Following the analogous
reason, we interlinked diseases of PDD with the ICD-9 ontology in Bio2RDF.

Drug Entity Linking: In MIMIC-III, drug names are various and often contain
some insignificant words (10%, 200 mg, glass bottle, etc.), which challenges the
drug entity linking if the label matching method is directly used. In order to
overcome this problem, we proposed an entity name model (ENM) based on
[2] to link MIMIC-III drugs to DrugBank. The ENM is a statistical translation
model which can capture the variations of a drug’s name.

Fig. 4. The translation from Glucose to Dextrose 5%.

Given a drug’s name m in MIMIC-III, the ENM model assumes that it is a
translation of the drug’s name d in DrugBank, and each word of the drug name
could be translated through three ways:

(1) Retained (translated into itself);
(2) Omitted (translated into the word NULL);
(3) Converted (translated into its alias).
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Figure 4 shows how the drug name Glucose in DrugBank translated into Dextrose
5% in MIMIC-III.

Based on the above three ways of translations, we define the probability of
drug name d being translated to m as follows:

P (m|d) =
ε

(1d + 1)lm

lm∏

j=1

ld∑

i=0

t(mi|dj) (1)

where ε is a normalization factor, lm is the length of m, ld is the length of
d, mi is the ith word of m, dj is the jth word of d, and t(mi|dj) is the lexical
translation probability which indicates the probability of a word dj in DrugBank
being written as mi in MIMIC-III. DrugBank contains a large amount of drug
aliases information, which can be used as training sets to compute the translation
probability t(mi|dj). After training the ENM from sample data, a drug name in
MIMIC-III will be more likely to be translated to itself or aliases in DrugBank,
whereas the insignificant words tend to be translated to NULL. Hence, our ENM
can reduce the effects of insignificant words for drugs entity linking.

In addition, we propose two constraint rules when selecting candidate drugs
for m, and discard those at odds with the rules.

Rule 1: One of the drug indications in DrugBank must be in accordance with one
of the diagnoses of the patients who took the corresponding drug in MIMIC-III
at least.

Rule 2: The dosage of a drug that patients took in MIMIC-III must be in
accordance with one of the standard dosages listed in DrugBank.

Finally, we will choose the drug name d in DrugBank for the given drug m
in MIMIC-III with maximal P (m|d), and d satisfies the two constraint rules.

Disease IRI Resolution: In our previous work [15], we have assigned ICD-9
disease codes for extracted disease entities. Since the ICD-9 code is the inter-
national standard classification of diseases, and each code is unique. We can
directly link the ICD-9 codes of PDD to ICD-9 ontology by string matching.

3 Statistics and Evaluation

In this section, we report the statistics of PDD and make the evaluation on its
accuracy. At present PDD includes 58,030 entities and 2.3 million RDF triples.

Table 1 shows the result of entities linked to the DrugBank and ICD-9 ontol-
ogy. For drugs in PDD, 3,449 drugs are linked to 972 distinct drugs in Drug-
Bank. For diseases in PDD, 6,983 diseases are connected to ICD-9 ontology.
The only two failures of matching ICD-9 codes in MIMIC-III are ‘71970’ and
‘NULL’, which are not included in ICD-9 ontology. Table 2 shows the result of
RDF triples in PDD. In particular, 1,259,702 RDF triples contain drugs that
have sameAs links to DrugBank, and 650,939 RDF triples have ICD-9 diseases
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Table 1. Statistics of entities

#Overall #Drug/disease
linked to KG

Patient 46,520

Drug 4,525 3,449

Disease 6,985 6,983

Table 2. Statistics of RDF triples

#Overall #Drug/disease
linked to KG

Demographics 165,526

Patients-drugs 1,517,702 1,259,702

Patients-diseases 650,987 650,939

codes. It indicates 83.4% drug-taken records in MIMIC-III can find correspond-
ing entity in DrugBank, and 99.9% diagnosed information can link to ICD-9
ontology. A subgraph of PDD is illustrated in Fig. 5 to better understand the
PDD graph.

Fig. 5. An annotated subgraph of PDD.

To evaluate the ENM model, 500 samples are randomly selected, manually
verified and adjusted. The ratio of positive samples to negative samples is 4:1,
where positive means the entity can be linked to DrugBank. The precision is
94% and the recall is 85%. For linked entities in PDD we randomly chose 200
of them and manually evaluated the correctness of them, and the precision of
entity links is 93% which is in an accordance with the result of our examples.
The overall accuracy of entity linking will be affected by the performance of
the entity recognition tool. No entity recognition tools so far can achieve 100%
accuracy. The average accuracy of C-TAKES (we used in this paper) is 94%.
Therefore, the overall precision and recall may be lower.

In order to find out why those 1,076 drugs have not been linked to DrugBank
yet, we extract 100 of them that hold the highest usage frequency. The observa-
tion shows that most of them are not just contained in DrugBank. For instance,
DrugBank does not consider NS (normal saline) as a drug, but PDD contains
several expressions of NS (NS, 1/2 NS, NS (Mini Bag Plus), NS (Glass Bottle),
etc.). For drugs wrongly linked to DrugBank, the names of those drugs are too
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short, e.g. ‘N’ i.e. nitrogen. These short names provide little information and
affect the performance of ENM directly. Also, the training data from DrugBank
does not include the usage frequency of each drug name. That might lead to
some inconsistence with applications in MIMIC-III and cause linking errors.

4 Related Work

In order to bring the advantages of Semantic Web to the life science community,
a number of biomedical KGs have been constructed over the last years, such as
Bio2RDF [6] and Chem2Bio2RDF [3]. These datasets make the interconnection
and exploration of different biomedical data sources possible. However, there is
little patients clinical information within these biomedical KGs. STRIDE2RDF
[10] and MCLSS2RDF [11] apply Linked Data Principles to represent patient’s
electronic health records, but the interlinks from clinical data to existing bio-
medical KGs are still very limited. Hence, none of the existing linked datasets
are bridging the gap between clinical and biomedical data.

5 Conclusion and Future Work

This paper presents the process to construct a high-quality patient-drug-disease
(PDD) graph linking entities in MIMIC-III to Linked Data Cloud, which satis-
fies the demand to provide information of clinical outcomes in biomedical KGs,
when previous no relationship exists between the medical entities in MIMIC-
III. With abundant clinical data of over forty thousand patients linked to open
datasets, our work provides more convenient data access for further researches
based on clinical outcomes, such as personalized medication and disease cor-
relation analysis. The PDD dataset is currently accessible on the Web via the
SPARQL endpoint. In future work, our plan is to improve the linking accuracy
of ENM model by feeding more data into its training system.
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