
CodeOntology: RDF-ization of Source Code

Mattia Atzeni and Maurizio Atzori(B)

Math/CS Department, University of Cagliari,
Via Ospedale 72, 09124 Cagliari (CA), Italy

ma.atzeni12@studenti.unica.it, atzori@unica.it

Abstract. In this paper, we leverage advances in the Semantic Web
area, including data modeling (RDF), data management and querying
(JENA and SPARQL), to develop CodeOntology, a community-shared
software framework supporting expressive queries over source code. The
project consists of two main contributions: an ontology that provides a
formal representation of object-oriented programming languages, and a
parser that is able to analyze Java source code and serialize it into RDF
triples. The parser has been successfully applied to the source code of
OpenJDK 8, gathering a structured dataset consisting of more than 2
million RDF triples. CodeOntology allows to generate Linked Data from
any Java project, thereby enabling the execution of highly expressive
queries over source code, by means of a powerful language like SPARQL.

Keywords: Ontology · SPARQL · RDF · OWL · Programming
languages

1 Introduction

Nowadays, the online availability of an increasingly large amount of source code
is dramatically changing the way programmers approach the development of
large software systems. The possibility of reusing existing code allows develop-
ers to focus on the added value of their products, speed up the development
process and easily explore new possibilities and solutions, while keeping high
quality components at the foundations of the system. Several studies have been
conducted to understand the general attitude of developers towards the compre-
hension of large code bases. For instance, in [1] questions asked by programmers
during software evolution tasks are analyzed and classified in 44 different cat-
egories. The study also highlights the lack of specific methods to answer these
questions. Hence, in this paper, we introduce CodeOntology, as a resource aimed
at supporting the adoption of Semantic Web technologies, in the domain of soft-
ware development and software engineering. The project has been conceived as
an approach to leverage the Semantic Web technology stack and the impressive
amount of code available online, to extract structured information from source
code, thereby allowing to publish it on the Web in the form of Linked Open
Data, as well as enabling the execution of highly expressive queries over source
code by means of a powerful language like SPARQL. Thus, CodeOntology is of

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part II, LNCS 10588, pp. 20–28, 2017.
DOI: 10.1007/978-3-319-68204-4 2



CodeOntology: RDF-ization of Source Code 21

particular interest not only to the Semantic Web community, but also to software
developers and engineers.

CodeOntology consists of two contributions: an ontology to represent the
domain of programming languages and a parser that allows to parse Java source
code or bytecode, to serialize it into RDF triples. The ontology is mainly focused
towards the Java programming language, but it has been designed with flexibility
in mind, thereby being suitable to be reused to represent more languages. On
the other hand, the parser is able to extract structural information common
to all object-oriented programming languages, like class hierarchy, methods and
constructors. Optionally, it can also serialize into RDF triples all the statements
and expressions, thereby providing a complete RDF-ization of source code. We
then apply semantic techniques like Named Entity Disambiguation, to analyze
the comments available within the code and link entities extracted from source
code to specific DBpedia [2] resources. This way, it is possible to take advantage
of SPARQL to run semantic queries over source code for different purposes,
including computer-aided programming, static code analysis, component search
and reuse, question answering over source code.

2 Related Work

Querying source code is a critical task in software engineering. Most of the
research in software engineering, indeed, is focused towards the development of
tools to enhance the maintenance and understanding of extremely large and
old software systems. This need has underpinned the development of several
source code querying systems, such as OMEGA [3] and CIA (The C Information
Abstraction System) [4], which are based on the relational model. More powerful
systems, such as Software Refinery [5] are based on graphs and abstract syntax
trees. These systems are more sophisticated than tools based on the relational
model, but they lack a well-defined query language.

More recently, the online availability of large amounts of open source code
has motivated the development of tools to enable programmers to take advan-
tage of this otherwise unstructured information. As an example, Sourcerer [6]
allows to collect source code from open repositories and automatically leverage
structural information extracted from arbitrary Java projects. The data used
by this system, however, are not published on the Web as Linked Open Data,
with obvious limitations. Such limitations are partially addressed in [7], where
a system to automatically generate an ontology from source code is introduced.
This system does not use a unique ontology to describe the entities belonging the
programming languages domain, but it generates a different ontology for each
input project.

An approach that is more similar to CodeOntology is represented by SCRO
(Source Code Representation Ontology) [8]. However, SCRO does not allow
to represent some features of modern object-oriented programming languages,
such as parameterized types and exceptions handling. Furthermore, the project
lacks a system to serialize source code into RDF triples. CodeOntology, unlike



22 M. Atzeni and M. Atzori

other state-of-the-art systems, makes full use of all the resources made available
by the Semantic Web technology stack. Data are extracted from source code
according to an appropriate ontology and are published using the RDF data
model. The collected information is then available to be queried by means of
a highly expressive language like SPARQL. Furthermore, CodeOntology allows
to analyze documentation comments and link entities extracted from source
code to appropriate DBpedia resources that are semantically associated with
these entities.

3 The Ontology

The ontology is written in OWL 2 and has been designed using the Protégé
tool [9], according to the design principles of clarity, coherence, extensibility,
minimum encoding bias and minimum ontological commitment, introduced in
[10]. It consists of 65 classes, 86 object properties and 11 data properties and
it has been checked for satisfiability, incoherence and inconsistencies using the
HermiT reasoner [11]. The modelling process underlying the creation of the
ontology has been guided by common competency questions that usually arise
during software process and has been inspired by a re-engineering of the Java
abstract syntax, as specified in [12]. However, the ontology is sufficiently general
to be extended in order to meet future requirements. For instance, it is possible
to reuse the ontology to better represent other programming languages, apart
from Java. The IRI associated with the ontology is http://rdf.webofcode.org/
woc/, abbreviated as woc. The ontology represents structural entities common to
all object-oriented programming languages, such as classes, methods, variables,
statements and expressions, in a hierarchy of disjoint classes. The root of this
hierarchy is the CodeElement class, that is the common superclass of all the
elements extracted from source code. Since the parser is also able to serialize
into RDF triples the structure of Java projects and to analyze libraries such as
JAR files, two other classes, namely Project and Library, have been defined to
represent these entities.

The design of the ontology has been conducted according to well-known
Ontology Design Patterns, best practices and naming conventions. As an exam-
ple, the domain of object-oriented programming languages involves large part-
whole relations. For instance, a statement may be part of a method, which in
turn is part of a class, that is contained in a specified package. In order to
represent this partitive relations, the ontology employs a common Content OP
and reuses the XKOS vocabulary [13], more precisely the terms xkos:hasPart
and xkos:isPartOf. According to the Transitive Reduction pattern, only the
most general property is transitive. Thus, transitivity is delegated to the XKOS
vocabulary, which in turn gets transitivity from SKOS1 and DCMI Metadata
Terms2. We make use of XKOS because it allows to represent both partitive

1 https://www.w3.org/TR/skos-reference/.
2 http://dublincore.org/documents/dcmi-terms/.

http://rdf.webofcode.org/woc/
http://rdf.webofcode.org/woc/
https://www.w3.org/TR/skos-reference/
http://dublincore.org/documents/dcmi-terms/


CodeOntology: RDF-ization of Source Code 23

(part-whole) and generic (generic-specific) relations. The domain of program-
ming languages, indeed, includes also generic relations between entities. For
instance, inheritance in object-oriented programming turns into generic-specific
relations between classes. CodeOntology also makes use of other common Ontol-
ogy Design Patterns and best practices, such as the N-ary relation pattern3 and
the SV (Specified Values) pattern4 originally introduced by the W3C SWBPD
(Semantic Web Best Practices and Deployment) Working Group. They are used
in the ontology to model both access modifiers and primitive data types.

The ontology is available at http://doi.org/10.5281/zenodo.577939, under
CC BY 4.0 license. Each entity in the ontology has been annotated by means of
the rdfs:comment and rdfs:label properties. A documentation of the ontology,
generated using Parrot [14], is available at http://codeontology.org.

4 The Parser

The RDF triple extraction process is managed by the parser, that is the module
of CodeOntology that analyzes and parses Java source code to serialize it into
RDF triples. As shown in Fig. 1, the RDF serialization of a Java project acts in
three steps: first the project is analyzed to download all of its dependencies and
load them in class path, then an abstract syntax tree of the source code and its
dependencies is built and processed to extract a set of RDF triples.

Fig. 1. The RDF serialization process.

CodeOntology currently supports both Maven and Gradle projects. When
analyzing a project, the parser first looks at its structure to recognize whether
it is built with Maven or Gradle and download the dependencies of the project.
JAR files downloaded in this step can optionally be processed and serialized into
RDF triples, as well.

Next, the parser builds the abstract syntax tree of the whole input project.
This step is handled by Spoon [15], an AST-based source code analysis and

3 https://www.w3.org/TR/swbp-n-aryRelations/.
4 https://www.w3.org/TR/swbp-specified-values/.

http://doi.org/10.5281/zenodo.577939
http://codeontology.org
https://www.w3.org/TR/swbp-n-aryRelations/
https://www.w3.org/TR/swbp-specified-values/


24 M. Atzeni and M. Atzori

transformation library, that provides a Java metamodel designed to be easy to
understand, query and manipulate. This library is used by CodeOntology to
build a model containing information about packages, classes, interfaces, meth-
ods, as well as statements, expressions, comments and so on. Spoon allows to
define processors to be launched over the abstract syntax tree. The RDF triple
extraction is managed by a Spoon processor invoked for every package in the
input project. From a particular package, the control flow moves to the types
contained in that package, such as classes and interfaces, up to the fields, con-
structors and methods declared within a specified class. CodeOntology looks
then inside the body of each method, to take note of all the referenced types,
fields, constructors, methods and variables. The RDF serialization process is han-
dled using Apache Jena5 and it can optionally involve also all the statements
and expressions. The parser also allows to keep track of unstructured informa-
tion such as comments. We then use TagMe [16] to analyze these comments
and automatically link entities extracted from source code to pertinent DBpedia
resources.

Beside the processor aimed at walking the abstract syntax tree created by
Spoon, CodeOntology actually has three more processors. One of these proces-
sors is used to analyze the structure of the input project and serialize it into
RDF triples. The second one is used to parse comments and detect Javadoc
tags, to extract useful information about parameters and method return values.
The last processor is used to analyze JAR files, thereby enabling CodeOntology
to run not only on Java source code, but also on bytecode. Given a JAR file,
this processor makes use of Java reflection to create an abstract syntax tree that
is compliant with the Java metamodel defined by Spoon. The resulting tree
is then processed as described above, by means of the main Spoon processor.
The parser, along with a tutorial on how to use it to extract a knowledge base
from any Java project, is available on GitHub under the GPLv3 license: https://
github.com/codeontology/parser.

5 Experiments

The parser has been successfully applied to extract a knowledge base from the
OpenJDK 8 source code6. These data can be queried through a remote SPARQL
endpoint at: http://codeontology.org/sparql. Moreover, the dataset is available
at https://doi.org/10.5281/zenodo.818116 and on figshare [17]. The analysis has
been conducted on about 1.5 million lines of code, retrieving a total of almost 2M
RDF triples falling into 4 categories: structural information on source code (1.9M
triples), DBpedia links (309k triples), actual source code as literals (134k triples)
and literal comments (105k triples). Quality assessments have been conducted
on a sample of methods and classes. Figure 2 shows a small subset of the triples
produced by the parser from a simple “hello world” class. This representation
allows to run expressive queries over source code, some of which are shown in
5 https://jena.apache.org/.
6 http://openjdk.java.net/.

https://github.com/codeontology/parser
https://github.com/codeontology/parser
http://codeontology.org/sparql
https://doi.org/10.5281/zenodo.818116
https://jena.apache.org/
http://openjdk.java.net/


CodeOntology: RDF-ization of Source Code 25

Fig. 2. An excerpt of the RDF serialization produced for a simple “hello world” code.

[18]. As an example, since the output of the parser is a graph, we can easily apply
to software not only metrics specifically designed for software engineering tasks,
but also metrics borrowed from other fields, such as Social Network Analysis.
Suppose we want to rank classes in OpenJDK, to select only the most important
ones, according to a specified metric. For instance, we can select the three classes
that turn out to be the most referenced by the methods of the other classes. When
a method m references a specific class c, then the parser is able to serialize
this information into a triple of the form: m woc:references c. Thus, we can
rank the classes in OpenJDK according to this metric and retrieve the most
referenced ones, by means of a simple SPARQL query7. Unsurprisingly, the most
referenced class in OpenJDK is the java.lang.String class, followed by the
classes java.lang.Object and java.io.IOException. In order to compute such
a metric efficiently, a graph-based representation of software systems is needed.

Moreover, the extracted DBpedia links can be used to run highly expressive
semantic queries over source code. For instance, we can retrieve all the meth-
ods for computing the cube root of a real number, by selecting the resources
associated with the entity dbpedia:Cube root.

Besides OpenJDK, the system has also been tested on a sample of 20 Java
repositories randomly collected from GitHub. Table 1 shows the execution times
required to download the dependencies, in the form of JAR files, analyze the
source code and process the JAR files previously downloaded. All the times
are expressed in seconds. Table 1 also shows the total number of RDF triples
extracted from each project.

7 see http://codeontology.org/examples.

http://codeontology.org/examples


26 M. Atzeni and M. Atzori

Table 1. Execution times for processing a sample of 20 Java projects and number of
RDF triples extracted.

Download Source code JAR Total time RDF triples

18.5 3.0 0.1 21.6 4336

30.3 − 4.2 34.4 544744

20.2 − 2.5 22.7 344465

15.3 − 0.2 15.5 2496

129.3 21.8 6.0 157.2 626607

94.6 38.3 2.4 135.3 212258

18.2 − 0.1 18.3 2598

0.1 − 1.4 1.6 90071

78.4 − 0.1 78.4 2597

95.6 − 5.3 100.9 505262

258.1 9.9 162.9 430.9 9152328

2950.5 99.7 216.7 3267.1 17059138

171.8 − 0.2 172.0 2499

53.8 − 0.2 54.0 2496

47.0 − 6.9 54.0 561580

121.1 − 2.4 123.4 95376

140.8 93.9 3.5 238.1 171267

78.3 − 0.1 78.6 4992

34.2 − 10.9 45.2 1101273

26.4 − 1.2 27.6 26212

4382.5 266.6 427.3 5076.8 30512595

In some cases, it was not possible to analyze source code because Spoon
failed building the Abstract Syntax Tree for different reasons, such as missing
dependencies that were not automatically downloaded. However, the parser has
been able to extract a knowledge base consisting of more than 30.5 million RDF
triples, from only 20 repositories.

6 Conclusions and Future Work

CodeOntology is a project that consists of two contributions: an ontology describ-
ing structural entities common to all object-oriented programming languages and
a parser capable of serializing Java source code and bytecode into RDF triples. In
this paper, we have described the core ideas underlying the design of the ontology
and we have analyzed the architecture of the parser. Furthermore, CodeOntology
allows to analyze Java comments, in order to link entities extracted from source
code to DBpedia resources. This way, it is possible to precisely search specific



CodeOntology: RDF-ization of Source Code 27

software components using expressive semantic queries. In the future, we plan to
develop a Question Answering system to hide the complexity of SPARQL queries
and allow retrieving software components by means of questions in natural lan-
guage. Moreover, it will be possible to dereference and execute the source code
of the methods in the datasets, using the Web of Functions technology [19].

Acknowledgments. This work was supported in part by a 2015 Google Faculty
Research Award and Sardegna Ricerche (project OKgraph, CRP 120). The authors
wish to thank the anonymous reviewers for their insightful comments.

References

1. Sillito, J., Murphy, G.C., De Volder, K.: Questions programmers ask during soft-
ware evolution tasks. In: Proceedings of the 14th ACM SIGSOFT 2006/FSE-14,
pp. 23–34. ACM, New York (2006)

2. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2),
167–195 (2015)

3. Linton, M.A.: Implementing relational views of programs. SIGSOFT Softw. Eng.
Notes 9(3), 132–140 (1984)

4. Chen, Y.F., Nishimoto, M.Y., Ramamoorthy, C.V.: The C information abstraction
system. IEEE Trans. Softw. Eng. 16(3), 325–334 (1990)

5. Reasoning Systems: Refine user’s guide (1992)
6. Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: an infrastructure for large-scale

collection and analysis of open-source code. Sci. Comput. Program. 79, 241–259
(2014)

7. Ganapathy, G., Sagayaraj, S.: To generate the ontology from Java source code
OWL creation. Int. J. Adv. Comput. Sci. Appl. 2(2), 111–116 (2011)

8. Alnusair, A., Zhao, T.: Component search and reuse: an ontology-based approach.
In: IRI, IEEE Systems, Man, and Cybernetics Society, pp. 258–261 (2010)

9. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015)

10. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud. 43(5–6), 907–928 (1995)

11. Shearer, R., Motik, B., Horrocks, I.: Hermit: a highly-efficient OWL reasoner. In:
OWLED, CEUR Workshop Proceedings, vol. 432, CEUR-WS.org (2008)

12. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification, Java SE 8 edn. Oracle (2015)

13. Gillman, D., Cotton, F., Jaques, Y.: XKOS: extending SKOS for describing statis-
tical classifications. In: The 12th International Semantic Web Conference (2013)

14. Tejo-Alonso, C., Berrueta, D., Polo, L., Fernández, S.: Metadata for web ontologies
and rules: current practices and perspectives. In: Garćıa-Barriocanal, E., Cebeci,
Z., Okur, M.C., Öztürk, A. (eds.) MTSR 2011. CCIS, vol. 240, pp. 56–67. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24731-6 6

15. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: SPOON:
a library for implementing analyses and transformations of Java source
code. Softw.: Pract. Exp. 46, 1155–1179 (2016). http://onlinelibrary.wiley.com/
doi/10.1002/spe.2346/full

http://dx.doi.org/10.1007/978-3-642-24731-6_6
http://onlinelibrary.wiley.com/doi/10.1002/spe.2346/full
http://onlinelibrary.wiley.com/doi/10.1002/spe.2346/full


28 M. Atzeni and M. Atzori

16. Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with
Wikipedia pages. IEEE Softw. 29(1), 70–75 (2012)

17. Atzeni, M., Atzori, M.: CodeOntology OpenJDK8 dataset. figshare (2017). https://
doi.org/10.6084/m9.figshare.5234878

18. Atzeni, M., Atzori, M.: CodeOntology: querying source code in a semantic frame-
work. In: Proceedings of the ISWC 2017 Posters & Demonstrations Track co-
located with 16th International Semantic Web Conference (ISWC 2017)

19. Atzori, M.: Toward the web of functions: interoperable higher-order functions in
SPARQL. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 406–421.
Springer, Cham (2014). doi:10.1007/978-3-319-11915-1 26

https://doi.org/10.6084/m9.figshare.5234878
https://doi.org/10.6084/m9.figshare.5234878
http://dx.doi.org/10.1007/978-3-319-11915-1_26

	CodeOntology: RDF-ization of Source Code
	1 Introduction
	2 Related Work
	3 The Ontology
	4 The Parser
	5 Experiments
	6 Conclusions and Future Work
	References




