
Distributed Semantic Analytics Using
the SANSA Stack

Jens Lehmann1,2(B), Gezim Sejdiu1, Lorenz Bühmann3, Patrick Westphal3,
Claus Stadler3, Ivan Ermilov3, Simon Bin3, Nilesh Chakraborty1,

Muhammad Saleem3, Axel-Cyrille Ngonga Ngomo3,4, and Hajira Jabeen1

1 University of Bonn, Bonn, Germany
{jens.lehmann,sejdiu,chakrabo,jabeen}@cs.uni-bonn.de,

jens.lehmann@iais.fraunhofer.de
2 Fraunhofer IAIS, Bonn, Germany

3 Institute for Applied Informatics (InfAI), University of Leipzig, Leipzig, Germany
{buehmann,patrick.westphal,cstadler,iermilov,sbin,

saleemm}@informatik.uni-leipzig.de
4 Data Science Group, Paderborn University, Paderborn, Germany

axel.ngonga@uni-paderborn.de

Abstract. A major research challenge is to perform scalable analysis
of large-scale knowledge graphs to facilitate applications like link pre-
diction, knowledge base completion and reasoning. Analytics methods
which exploit expressive structures usually do not scale well to very large
knowledge bases, and most analytics approaches which do scale horizon-
tally (i.e., can be executed in a distributed environment) work on sim-
ple feature-vector-based input. This software framework paper describes
the ongoing Semantic Analytics Stack (SANSA) project, which supports
expressive and scalable semantic analytics by providing functionality for
distributed computing on RDF data.

Resource type: Software Framework
Website: http://sansa-stack.net
Permanent URL: https://figshare.com/projects/SANSA/21410

1 Introduction

In this paper, we introduce SANSA1, an open-source2 structured data processing
engine for performing distributed computation over large-scale RDF datasets. It
provides data distribution, scalability, and fault tolerance for manipulating large
RDF datasets, and facilitates analytics on the data at scale by making use of
cluster-based big data processing engines. It comes with: (i) specialised serialisa-
tion mechanisms and partitioning schemata for RDF, using vertical partitioning

1 http://sansa-stack.net/.
2 https://github.com/SANSA-Stack.
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strategies, (ii) a scalable query engine for large RDF datasets and different dis-
tributed representation formats for RDF, namely graphs, tables and tensors,
(iii) an adaptive reasoning engine which derives an efficient execution and evalu-
ation plan from a given set of inference rules, (iv) several distributed structured
machine learning algorithms that can be applied on large-scale RDF data, and
(v) a framework with a unified API that aims to combine distributed in-memory
computation technology with semantic technologies.

To achieve the goal of storing and manipulating large RDF datasets, we
leverage existing big data frameworks like Apache Spark3 and Apache Flink4,
which have matured over the years and offer a proven and reliable method for
general-purpose processing of large-scale data.

The remainder of the paper is structured as follows: Sect. 2 depicts a new
vision of combining distributed computing frameworks with the semantic tech-
nology stack and an overview of the SANSA architecture. We present some of
the use cases demonstrating a variety of applications of the SANSA framework
in detail in Sect. 3. We discuss related work in Sect. 4 and conclude in Sect. 5
along with directions for future work.

2 Vision and Architecture

Research efforts in the areas of distributed analytics and semantic technologies
have so far been mostly isolated. As illustrated in Fig. 1, we see several core
aspects in which both areas have complementary strengths and weaknesses.

State-of-the-art distributed in-memory analytics frameworks, such as Apache
Spark and Apache Flink, provide graph-based analytics [1] but do not sup-
port semantic technology standards. The application of these approaches on
heterogeneous data sources faces many limitations, in particular due to non-
standardised input formats and the need for manual data integration. This can
lead to large amounts of time and effort being spent on pre-processing data
rather than performing the actual data analytics task. Semantic technologies
are W3C-standardised and have the potential to significantly alleviate the pre-
processing overhead: although the initial effort for modelling input data in RDF
may be higher, the repeated reuse of the datasets in various analytics tasks can
lead to a reduction of overall effort. Moreover, there are many connectors from
existing data sources to RDF (e.g. via the R2RML standard) and they provide
sophisticated data integration, e.g. via link discovery and fusion approaches for
RDF. We want to go a step further and use this modelling standard as a basis
for machine learning and data analytics. The layered architecture of SANSA is a
direct consequence of this vision and is depicted at the top of Fig. 1. We will now
discuss the different layers and currently implemented functionality in SANSA.

3 http://spark.apache.org/.
4 http://flink.apache.org/.
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Fig. 1. The SANSA framework combines distributed analytics (left) and semantic tech-
nologies (right) into a scalable semantic analytics stack (top). The colours encode what
part of the two original stacks influence which part of the SANSA stack. A main vision
of SANSA is the belief that the the characteristics of each technology stack (bottom)
can be combined and retain the respective advantages. (Color figure online)

Knowledge Distribution & Representation Layer.5,6 This is the lowest
layer on top of the existing distributed frameworks (Apache Spark or Apache
Flink). It provides APIs to load/store native RDF or OWL data from HDFS or
a local drive into the framework-specific data structures, and provides the func-
tionality to perform simple and distributed manipulations on the data. Moreover,
it allows the users to compute RDF statistics described in [7] in a distributed
manner. For the representation of OWL axioms, we are also investigating data
structures that allow an efficient, distributed computation of light-weight rea-
soning tasks like inferring the closure w.r.t. sub class relations.

Query Layer.7 Querying an RDF graph is the primary method for searching,
exploring, and extracting information from the underlying RDF data. SPARQL8

is the W3C standard for querying RDF graphs. Our aim is to have cross-
representational transformations and partitioning strategies for efficient query

5 https://github.com/SANSA-Stack/SANSA-RDF.
6 https://github.com/SANSA-Stack/SANSA-OWL.
7 https://github.com/SANSA-Stack/SANSA-Query.
8 https://www.w3.org/TR/rdf-sparql-query/.
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answering. We are investigating the performance of different data structures
(e.g., graphs, tables, tensors) in the context of different types of queries and
workflows. SANSA provides APIs for performing SPARQL queries directly in
Spark and Flink programs. It also features a W3C standard compliant HTTP
SPARQL endpoint server component for enabling externally querying the data
that has been loaded using its APIs. These queries are eventually transformed
into lower-level Spark/Flink programs executed on the Distribution & Repre-
sentation Layer. At present, SANSA implements flexible triple-based partition-
ing strategies on top of RDF (such as predicate tables with sub-partitioning
by datatypes), which will be complemented with sub-graph based partitioning
strategies. Based on the partitioning and the SQL dialects supported by Spark
and Flink, SANSA provides an infrastructure for the integration of existing
SPARQL-to-SQL rewriting tools. This bears the potential advantage of lever-
aging the optimizers of both the rewriters as well as those of the underlying
frameworks for SQL. Currently, the Sparqlify9 implementation serves as the
baseline. Query results can then be further processed by other modules in the
SANSA Framework.

Inference Layer.10 Both RDFS and OWL contain schema information in addi-
tion to assertions or facts. The core of the forward chaining inference process is
to iteratively apply inference rules on existing facts in a knowledge base to infer
new facts. This process is helpful for deriving new knowledge and for detecting
inconsistencies. Currently, SANSA supports efficient algorithms for the well-
known reasoning profiles RDFS (with different subsets) and OWL-Horst, future
releases will contain others like OWL-EL, OWL-RL and OWL-LD. In addition,
SANSA contains a preliminary version of an adaptive rule engine that can derive
an efficient execution plan from a given set of inference rules by generating,
analysing and transformation of a rule-dependency graph. By using SANSA,
applications will be able to fine tune the rules they require and – in case of
scalability problems – adjust them accordingly.

Machine Learning Layer.11 While the majority of machine learning algorithms
use feature vectors as input, the machine learning algorithms in SANSA exploit
the graph structure and semantics of the background knowledge specified using the
RDF and OWL standards. Similar to Markov Logic Networks [16], this enables the
algorithms to exploit the expressivity of semantic knowledge structures and poten-
tially attain better performance or more human-understandable results. At the
moment, the machine learning layer contains distributed implementations of link
prediction algorithms based on two knowledge graph embedding models, namely
Bilinear-Diag [24] and TransE [3], and scalable algorithms for RDF data clustering
and association rule mining. Effectively and efficiently distributing data structures
in potentially complex machine learning approaches is a major challenge in this
layer.

9 https://github.com/AKSW/Sparqlify.
10 https://github.com/SANSA-Stack/SANSA-Inference.
11 https://github.com/SANSA-Stack/SANSA-ML.
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3 Use Cases

The main goal of the SANSA framework is to build a generic stack which can
work with large amounts of linked data, offering algorithms for scalable, i.e. hor-
izontally distributed, semantic data analysis. To validate this, we are developing
use case implementations in several domains and projects.

Life Sciences – Open PHACTS. The Open Pharmacological Concepts Triple
Store (Open PHACTS)12 discovery platform provides open access to pharmaceu-
tical data which is gathered and structured through multiple efforts, e.g. Uniprot,
GOA, ChEMBL, OPS Chemical Registry, DisGeNET, OPS Identity Mappings,
WikiPathways, Drugbank, ConceptWiki and ChEBI, with 2.8 billion triples [18].
Even though this data can potentially fit into the memory of a server (efficient
compression techniques in triple stores can compress it to 100 GB), intermediate
results of query joins, inference and machine learning algorithms do not fit into
memory. For example, our initial experiments have shown that even light-weight
inference and analysis for a subset of the used data sources (specifically UniProt,
EggNOG, StringDB) cannot be efficiently performed on single machines even
with 1 TB of main memory. For this reason, distributed approaches are relevant
for Open PHACTS. Specifically, they have developed workflows for key ques-
tions on the platform [5] which are then used to elaborate API calls that need
to be executed. Open PHACTS is currently investigating SANSA as a scalable
alternative to perform these workflows over their continuously growing datasets.
For example, to answer Question(Q) 6 – “For a specific target family, retrieve all
compounds in specific assays” – the task is to look for a particular target fam-
ily (from the ChEMBL protein classification) and retrieve compounds acting on
members of that family (from ChEMBL). SANSA aims to optimise this and sim-
ilar queries by making use of efficient distributed indexing/querying techniques.
SANSA is also under consideration to help in answering complex questions for
Open PHACTS, which do not even have a workflow e.g. Q2- “For a given com-
pound, what is its predicted secondary pharmacology?”. Tasks like this can be
solved by using predictive machine learning models integrated with knowledge
graph models, i.e. to search for the primary pharmacology and predicting the
associated secondary pharmacologies.

Big Data Platform – BDE. Big Data Europe (BDE)13 [2] is a large Hori-
zon2020 funded EU project which offers an open source big data processing
platform allowing users to install numerous big data processing tools and frame-
works. The platform is being tested and used by the 17 different partners of
the project scattered across Europe and its 7 different use cases cover a variety
of societal challenges like climate, health, weather etc. As a specific example,
SANSA can be used for log analysis in the context of the BDE platform. The
mu.semte.ch micro service in BDE transforms docker events to RDF and stores
them in a triple store. Work is also being done in order to translate HTTP net-
work traffic to RDF. The data from these logs (events and HTTP traffic) can
12 https://www.openphacts.org.
13 https://github.com/big-data-europe.
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be then combined with the data for a particular micro service and its relevant
load (CPU/memory usage) on the server. SANSA can then build a predictive
cost model for the micro service calls. This can further be extended for efficient
resource allocation, monitoring and creation of common user profiles.

Publishing Sector – Elsevier. Semantic technologies are very useful in the
publishing industry. For example, with in-depth medical knowledge and more
than 400 000 scientific articles published per year, annotated with more than
8 million entities and mappings to the Elsevier Merged Medical Taxonomy
(EMMeT), Elsevier is building up and testing a large-scale knowledge graph.
Elsevier is currently applying (and approaching the limits of) state-of-the-art
matrix and tensor factorisation methods, which will be distributed and enhanced
in SANSA. There are at least three critical application areas for the methods
developed in SANSA: (1) entity resolution (of author profiles, organisation pro-
files, etc.), (2) semantic querying in complex databases (e.g. Clinical Key) and
(3) taxonomy construction. At present publishers, and Elsevier specifically, have
to resort to methods which are less accurate than the state of the art due to
scalability problems.

Education Sector – University of Bonn. While not an external use case,
the university labs 14 in which we use SANSA have also further progressed
and we now have 12 students divided into 7 groups using the framework and
implementing different scenarios using SANSA functionalities. There are also
at least seven students conducting their master thesis on top of the SANSA
framework.

Proprietary Data Analytics – Ten Force. Ten Force is using SANSA for
the clustering of the ESCO15, and their proprietary data to analyse the grouping
of skills and occupations. Tenforce is also in the process of using association rule
mining on their proprietary data to analyse the shopping baskets.

4 Related Work

We give a brief and incomplete account of existing work in distributed RDF
querying, inference and machine learning focusing on approaches available as
software frameworks.

Querying: SparkRDF [23] and H2RDF+ [15] use RDF dataset statistics to find
best merge-join orders for efficient querying. Huang et al. [12] present a hybrid
system using in-memory retrieval and map-reduce. TriAD [11] is a specialised
shared nothing system that was later [13] improved by using dynamic data
exchange for join evaluation. SPARQLGX [9] is an approach for a distributed
RDF querying which translates SPARQL to Spark operations. SANSA partially
includes the Spark-based S2RDF [17] querying engine which rewrites SPARQL

14 http://sda.cs.uni-bonn.de/teaching/sose2017dbda/.
15 https://ec.europa.eu/esco/portal/escopedia.
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queries to SQL. SANSA facilitates the integration of existing engines under a
uniform set of APIs and extends the state of the art in querying through new
distributed indexing and partitioning strategies.

Inference: Different distributed rule-based approaches, optimised for one of the
many language profiles for the semantic web, have been developed in the past. A
scalable distributed reasoning for RDFS entailment rules introduced by Urbani
et al. [20], uses optimal execution ordering of the rules to reduce computation
time. The WebPIE [19] forward chaining reasoner uses a MapReduce approach.
QueryPie [21], uses backward chaining and distributes the schema triples. Cich-
lid [10] is a distributed reasoning engine, using the Apache Spark framework.
The above systems only support (fragments of) the OWL RL language profile.
SANSA provides a general rule-based reasoning engine that optimises executions
plans for an arbitrary set of rules by taking into account the logical dependen-
cies between rules, the distribution of the data w.r.t. the rules, and the technical
features of the underlying distributed processing framework.

Machine Learning: There are numerous centralised machine learning frameworks
and algorithms for RDF data. DL Learner [4] is a framework for inductive learn-
ing for the Semantic Web. AMIE [8] learns association rules from RDF data.
ProPPR [22] and TensorLog [6] are recent frameworks for efficient probabilistic
inference in first order logic. Nickel et al. provide a review of statistical relational
learning techniques for knowledge graphs [14]. Scaling up structured machine
learning algorithms, which are mostly iterative convergent in nature, using Bulk
Synchronous Parallel frameworks (e.g. Spark, Flink) is a challenging task.

General: Previous approaches demonstrate specialised efforts related to specific
layers of the SANSA stack. In contrast to this, SANSA provides a unified plat-
form for distributed machine learning over large-scale knowledge graphs, com-
bined with querying and rule-based inference. This makes it easier for developers
to access its functionality, move between different implementations and assem-
ble existing functionality into larger workflows. To the best of our knowledge,
SANSA is the only holistic framework for distributed analytics on large-scale
RDF data.

5 Conclusions and Future Work

We presented the SANSA framework, which combines the advantages of distrib-
uted in-memory computing and semantic technologies. Its holistic layered app-
roach leverages data integration and modelling capabilities provided by semantic
technologies with machine learning functionality and improved horizontal scala-
bility provided by distributed in-memory frameworks. We believe that SANSA is
an important framework for the semantic technology community as well as those
parts of the distributed in-memory development community which require more
sophisticated data modelling capabilities. In the future, we will enrich SANSA
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with algorithms for inference-aware knowledge graph embeddings, distributed
approximate reasoning and further data partitioning strategies.

Acknowledgements. This work was partly supported by the grant from the Euro-
pean Union’s Horizon 2020 research Europe flag and innovation programme for the
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