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Abstract. We report on our experience in ontology-based data access
to the Slegge database at Statoil and share the resources employed in this
use case: end-user information needs (in natural language), their trans-
lations into SPARQL, the Subsurface Exploration Ontology, the schema
of the Slegge database with integrity constraints, and the mappings con-
necting the ontology and the schema.

1 Introduction

We present the resources developed for ontology-based data access (OBDA) to
the Slegge database at the international oil and gas company Statoil using the
OBDA system Optique platform [7]. In the OBDA paradigm based on query
rewriting [9], the data remains stored in the original DBMS, while user queries
are formulated in terms of an OWL 2 QL ontology designed specifically for the
end-users—rather than directly over the database, which presupposes detailed
knowledge of the database schema and requires an assistance of an IT expert. The
OBDA system makes use of the mappings that relate the ontology vocabulary to
the database schema to transform the ontology-mediated queries into standard
SQL queries, which are then executed by the DBMS.

OBDA has been an active research area since the mid 2000s, with OBDA
systems used in a variety of projects within both academia and industry, e.g., [1–
4,6,11,13]. However, full details of an industrial use case have never been made
publicly available. The main aim of this paper is to fill this gap by publishing
the following complete set of OBDA specifications for the Slegge use case:

– the Subsurface Exploration OWL Ontology specifically designed to capture
the terms used by the geologists at Statoil when querying subsurface explo-
ration data;

– the typical information needs (in natural language) and respective SPARQL
queries;

– the SQL schema of the Slegge database;
– the R2RML mappings connecting the ontology vocabulary to the schema;
– statistics on the Slegge data (the data is private and cannot be made public).
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The Slegge schema demonstrates the intrinsic complexity of industrial data-
bases, which is reflected in the mappings that encode the semantics of the data
using, in particular, multiple joins. The large body of queries are collected from
domain experts at Statoil, totalling 73 natural language information needs and
96 corresponding SPARQL queries. The ontology captures the vocabulary of
the SPARQL queries and describes parts of the petroleum subsurface explo-
ration domain represented in Slegge. Since the resources we publish include all
the intricacies and peculiarities of a large industrial setup, we believe they will
be useful to the developers of OBDA technologies and to the wider semantic
technologies and information systems communities. In particular, the resources
could be used for benchmarking query rewriting and optimising engines and for
development of methods and tools for ontology and mapping construction and
analysis. The Slegge resources and an extended version of this paper are avail-
able at http://purl.org/slegge under the CC Attribution 4.0 International Public
License.

The main feature distinguishing the Slegge resources from other available
OBDA specifications is that Slegge straddles the long distance between two
industrial artefacts. Our starting points were the Statoil geologists’ information
needs (Sect. 3) and the large industrial database with hundreds of tables (Sect. 4).
We designed the ontology capturing the vocabulary of the needs in the context of
oil and gas exploration (Sect. 3) and the complex mappings bridging the substan-
tial conceptual gap between the ontology and the data (Sect. 5). Other publicly
available OBDA specifications for databases with real data include FishMark [2],
IMDb OBDA [11] and NPD FactPages [14]. Their ontologies, however, are quite
similar to their database schemas, and so the mappings are almost direct (with
very few joins). The NPD FactPages comes with simple queries generic for the
oil and gas domain, while FishMark and IMDb OBDA only contain queries
stemming from existing SQL queries or invented by the authors. The Texas
benchmark [12] and the OBDA extensions of the Berlin SPARQL Benchmark
(BSBM) [12] and LUBM [11] are all examples with synthetic data based on
existing non-OBDA benchmarks, where the mappings are also almost direct.

2 Data Gathering at Statoil

The task of the exploration department at Statoil is to find exploitable deposits
of oil and gas. Geoscientists model the subsurface geography by classifying rock
layers according to multiple stratigraphic hierarchies using information from
various sources. This model largely determines the location of new wellbores for
direct exploration and possible exploitation of the hydrocarbon resource. Since
wellbore drilling is a major expense, the quality of the model, which depends on
the availability of and the ease of accessing the relevant data, becomes a crucial
factor for efficiency of the exploration process.

We illustrate the current workflow with a typical domain expert information
need, which is an informal natural language description of a user question:

http://purl.org/slegge
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(001) In my area of interest, return the wellbores penetrating a given chronos-
tratigraphic unit X and return information about the lithostratigraphy and
the hydrocarbon content in the wellbore interval that penetrates X. Also
return information about other wellbore intervals with hydrocarbon content
in the wellbores with hydrocarbon in X.

To find answers, the geologist will use pre-defined SQL queries covering parts
of the information need and then integrate their results, often with primitive
data management tools such as spreadsheets. This process is onerous and error-
prone: for example, the comparison of depths in a wellbore can easily go wrong
as there are multiple units, reference points and types of depth measurements.
An alternative solution would be to ask the IT department to construct a custom
SQL query. However, employing IT personnel for the task generally takes days
(or even weeks) because there are very few people with the rare combination of
intimate knowledge of the geological domain and database structure required to
translate the information needs into database queries.

The OBDA paradigm [9] offers a third alternative, where an ontology
describes the geologists’ vocabulary. For example, given an ontology in the
W3C standard language OWL 2 QL containing classes such as Wellbore,
StratigraphicUnit, MeasuredDepth, and properties such as name, hasUnit,
hasWellboreInterval, valueInStandardUnit, the geologist can recast infor-
mation need (001) more formally in the following way:

(001/02′) Give me the names of the available wellbores with the chronostrati-
graphic units and the top depths of the intervals they were found in; the
depths should be in the standard units and from standard reference points
(metres along the drill string). Also, return all lithostratigraphic units from
depths overlapping the depths at which the chronostratigraphic units were
found.

And, following the structure of the ontology, the geologist can easily formalise
such a query with, e.g., the visual query interface OptiqueVQS [15] of the
Optique platform:

The formalised query (001/02′) is automatically translated into a SPARQL
query, and an OBDA tool such as Ontop [5,11] will use the mappings to ‘rewrite’
the ontology-mediated query into an SQL query over the database, optimise and
execute it, returning

?wellbore ?chronostrat unit ?lithostrat unit ?top md m

"NO 1/2-1" "Jurassic" "Fisk" "1234.5"
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So, in the OBDA paradigm, the geologist does not need to know the structure
of the database to create new queries. And, instead of supporting geologists
directly (by translating their information needs into SQL), the IT expert has an
easier task of constructing and maintaining mappings that populate the ontology
classes and properties with data from the database. Thus, mappings explicate
the IT expert’s knowledge of the database. The reader can find the rewritten
SQL query in the full paper and appreciate the knowledge required from the IT
expert to produce an SQL query over Slegge by hand.

3 From Information Needs to Ontology and SPARQL
Queries

The starting point of the Slegge use case was a list of 73 information needs
collected from end-users at Statoil over a period of four years. It turned out that
39 information needs are beyond the scope of the Slegge database: they concern
user interface configuration, data entry processes or require data unavailable in
Slegge. The remaining 34 information needs provided the basic competency ques-
tions for creating the Subsurface Exploration Ontology, which gives the vocabu-
lary (ontology classes and properties) for translating the information needs into
SPARQL queries. We publish all 73 information needs as they can be useful for
the research in natural language processing and for the future work on other
data sources at Statoil.

The Subsurface Exploration Ontology describes parts of the petroleum
subsurface exploration domain and captures the classes and properties from the
user information needs. Class Wellbore represents a path drilled through the
Earth crust. Rock samples (class Core) are normally extracted from the wellbore
during drilling. Smaller samples (CoreSample) are drilled out of the core and
used for direct visual and experimental observations. A WellboreInterval is a
depth interval along a wellbore, defined by its top and bottom depths. It has
two natural subclasses: Reservoir and StratigraphicZone.

Numerous measurements taken from wellbores are modelled by the taxon-
omy under the class Measurement, with subclasses such as TrueVerticalDepth,
Permeability and FormationPressure. Each measurement provides a value in
the standard and in the original units because translation from a variety of units
in the database to the standard ones may mask suspicious values, e.g., depth
9999 ft. Since wellbores are not necessarily vertical, there are two types of depth
for relating points along them: MeasuredDepth refers to the length along the
wellbore or drill string, while TrueVerticalDepth is the length of the normal to
the reference surface, usually the mean sea level.

To represent geographical objects and connect Slegge to other Statoil
data sources, we imported class SpatialObject (with its subclasses) from
GeoSPARQL 1.1.

The resulting Subsurface Exploration Ontology has 71 classes, 46 object
properties and 34 data properties. The depth of the class hierarchy (without
SpatialObject) is 5, and the depth of the property hierarchy is 4. The exis-
tential depth, which measures the length of chains of labelled nulls (caused by
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existential quantifiers in the ontology), is 5: for instance, every Permeability
must be related by the inverse of property hasPermeability to some
CoreSample, which in turn is related by the inverse of hasCoreSample to a Core;
every Core is extractedFrom some WellboreInterval linked by the inverse of
hasWellboreInterval to a Wellbore and then to a Well via the inverse of
hasWellbore. Note, however, that the structure of the mappings and database
integrity constraints make sure that wherever there is a Permeability, the data
itself contains the required chain of length 5 as above, and so the corresponding
labelled nulls in the chase are not needed. This fact substantially simplifies query
rewriting.

We incorporated some background knowledge in the ontology even if
it required constructs unavailable in OWL 2 QL such as functionality of
properties and local range constraints of the form DrillingOperation �
∀hasActivityPart.WellboreDrilling. Fortunately, the structure of the map-
pings and database imply most of the non-OWL 2 QL axioms, while the remain-
ing ones are not relevant for the mappings. The smallest standard description
logic capable of representing the ontology is Horn-ALCHIQ(D).

Each of the 34 information needs in the scope of Slegge was recast in
SPARQL. The resulting 96 SPARQL queries (some information needs are
vague and can be interpreted in SPARQL in different ways) were constructed
manually, either by hand or using OptiqueVQS. These queries have an aver-
age of 13 triple patterns, ranging from 3 to 30; 16 queries use optional and
3 use filter not exists. Most queries capture only part of the corresponding
information need, often because some data is not available in Slegge. There is
also a considerable overlap among the SPARQL queries because the information
needs overlap too; these mainly include different features of wellbores and their
surroundings. Many information needs, e.g., (001), contain the expression ‘for
my area of interest’, which could be interpreted as ‘restrict the query to the geo-
graphical area I am interested in’. There is no general translation of such needs
into SPARQL, but many queries such as (001/02′) in the query catalogue use
concrete geographical areas in the North Sea identified by coordinates (in the
example in Sect. 2, we omitted the coordinates for simplicity).

4 Slegge Database

Slegge is an Oracle database with about 700 GB of data. Its schema was initially
constructed in the late 1990s on the basis of Epicentre v2.2. The Epicentre data
model had been developed by the Petrotechnical Open Standards Consortium
(POSC) since the early 1990s, and its latest v3.0 is maintained by Energis-
tics [10]. It defines the object-oriented logical database model and its standard
projection to the physical model in an Oracle database. The main features of
Epicentre and its implementation in Slegge are:

– extensive inheritance hierarchies are projected by two methods: (a) a table
per subtype and (b) a single table for all subtypes with a discriminating
column;
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– denormalisation: many columns are duplicated to avoid joins when querying;
– lack of foreign keys: many relationships involve multiple tables for subtypes,

and so foreign keys would have to be conditional, which is not supported by
the DBMS.

Entities well and wellbore are subtypes of facility. Abstract entities such
as facility have no database tables, but each of the non-abstract entities is
represented by a table: e.g., WELL for entity well. These tables contain columns
for the normal attributes of the entity: WELLBORE has a COMPLETION DATE column
for the date when the wellbore was available for service. Tables for subtypes
‘inherit’ columns from supertypes: e.g., tables for all sorts of facilities inherit
column R EXISTENCE KD NM to specify whether the facility is actual, planned,
etc. Instances of entities (objects) are identified by their unique IDs, which are
surrogate primary keys in the tables: e.g., column WELL S in table WELL. On
the other hand, the (user-friendly) well identifiers (attribute identifier of the
supertype entity facility) are represented in column WELL ID.

Epicentre also follows an alternative approach to hierarchies, where all sub-
types of an entity are projected to the same table, and a discriminating column
specifies the object’s subtype: e.g., the four subtypes of stratigraphic marker
are mapped to the same table, STRAT MRK, with column ENTITY TYPE NM con-
taining the subtype name.

For composite attributes (such as quantities with units of measure), Epi-
centre uses properties, which, like entities, have instances and are arranged in
an extensive hierarchy. Properties are normally projected to tables. However,
many attributes in Slegge are denormalised : e.g., table WELL SURFACE PT for
the well surface point entity has columns WATER DEPTH and WATER DEPTH U
to store the value and the unit of measure of the water depth prop-
erty pty water depth. So, values are stored directly in the ‘entity’ table rather
than in the property table P WATER DEPTH, which is empty in the database.
Only 20 (out of 543) property tables are non-empty in Slegge: e.g., coordi-
nates of wells’ surface points are stored in the table P LOCATION 2D for prop-
erty pty location 2d.

Reference entities collect standard values: e.g., ref unit of measure is pro-
jected to table R UOM with information about 974 units of measure (others are
much smaller). The primary key in such a table is often referenced by foreign
keys of entity and property tables: e.g., WATER DEPTH U is one of 814 columns
referencing ACRONYM in R UOM.

In the Epicentre data model, relationships are in fact attributes of entities:
both end-points of a relationship have an attribute—one for the relationship,
the other for its inverse. One-to-many relationships are normally projected as
columns in the tables. For example, column WELL S in WELLBORE specifies the
identifier of the well containing this wellbore. In this exceptional case, the data-
base contains a foreign key : WELL S of WELLBORE references WELL S of WELL.
However, most of such foreign keys are missing because the subtypes are distrib-
uted over tables. For example, the relationship between activity and facility
is represented by column FACILITY S in ACTIVITY. Since facilities are covered
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in a number of tables, there is no foreign key. Instead, ACTIVITY has another
column, FACILITY T, to specify the facility subtype it refers to (‘WELLBORE’ or
‘WELL’), and so the pair FACILITY T/ S identifies the referenced table and the
row in it.

Denormalised attributes are quite common in Slegge—they reduce the num-
ber of joins in queries: e.g., table WELLBORE, along with the reference to the
primary key WELL S of WELL, contains a column duplicating WELL ID from WELL.

Many-to-many relationships in Epicentre use association entities, which
are then projected to tables: e.g., topological relationships such as ‘inside’
between instances of topological object (and its subtypes field, core and
facility) are modelled by the topological relationship association entity
in the table TOPOLOGICAL REL.

The Slegge Oracle database has 6 schemas. The SLEGGE EPI schema is a
dated implementation of the Epicentre data model and consists of 1545 tables
with 19 719 columns: 1141 tables are empty because large portions of the data
model are not used by the tools; 221 tables contain only 1–100 rows (mostly for
reference entities), but 9 tables have more than a million rows each. Schemas
SLEGGE SNP, MDS COORD and SIS CATALOG are much smaller (21, 14 and 1 table,
respectively) and related to other applications; ENTITLED has two tables mod-
elling user privileges. The main SLEGGE schema integrates the other five schemas
and defines 1722 views to their tables. However, most of them (1632) contain no
joins and no where clauses—they simply rename tables and columns; two views
additionally limit access in accordance with the user privileges from ENTITLED.
The remaining 88 views vary from two-table joins to 31-way joins with addi-
tional where and group by clauses; many also contain order by clauses,
which suggests their primary use for reporting and user interfaces. In addition,
SLEGGE contains 102 tables for various purposes. Finally, there are five materi-
alised views, two of which are joins of 12 and 15 tables, respectively, while the
other three use calls to stored procedures (with more queries and even Java code
inside).

5 Mapping Ontology to Slegge Database

One of the main challenges in the project was to map the classes and properties
of the ontology to database objects, which required detailed knowledge of both
components. Unfortunately, the Slegge implementation does not fully comply
with any version of Epicentre, and the documentation on Slegge has become
either unavailable or hard to obtain at Statoil. The lack of integrity constraints
(foreign keys)1 and abundance of denormalisation made any initial attempts
at automated schema analysis inefficient. The sheer size of the database (1727
views and 1685 tables) only exacerbated the problem. Our main source of infor-
mation about the schema was the 2996 queries found in the configuration files of
1 Even though SLEGGE EPI has 3112 foreign keys, 2727 of them refer to just 18 reference
tables such as R UOM; in fact, most of the remaining 385 foreign keys refer to ‘single-
purpose’ reference tables such as R OBJECT NTRS listing topological relations.
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ProSource, a proprietary tool developed in-house and the de facto way of access-
ing Slegge. It turned out, however, that a significant number of these queries, in
particular, the most useful ones for mappings were quite large (up to 91 joins).
The distribution of the number of tables and views per query is illustrated below:

# tables/views 1 2 3 4–10 11–20 21–30 31–40 41–50 51–92

# ProSource queries 1801 545 327 228 51 18 7 10 9

Such large queries are necessary to provide the geologist users with all the infor-
mation about complex domain objects such as wellbores and their litho- and
chronostratigraphic columns. However, the ontology ‘decomposes’ such objects
into a number of classes linked by object properties, with data properties pro-
viding ‘scalar’ attributes such as names, measured values, etc. The user will then
be able, in a SPARQL query, to assemble triple patterns featuring classes and
properties into required complex objects.

We used the query catalogue and ontology vocabulary to identify relevant
ProSource queries. These were carefully analysed and split into subqueries that
match classes and properties of the ontology. The integrity constraints (both
declared in the database and implied by the Epicentre model) were used to
validate and simplify joins in the queries.

As a result, we obtained an R2RML specification with 62 logical tables and
180 mapping assertions (combinations of subject, predicate and object maps);
the ontology-saturated mappings have 324 assertions. The logical tables vary
from base tables to 6-way joins with up to 5 additional filter expression in the
where clause:

# tables/views 1 2 3 4 5 6

# mappings 32 8 13 2 2 5

# filters 0 1 2 3 4 5

# mappings 10 24 15 8 3 2

Also, two SQL queries have group by and 8 contain stored procedure calls.
For testing the OBDA specification outside Statoil, we identified a small frag-

ment of the database schema that supports the mappings. It consists of tables,
views and materialised views occurring in the mappings and/or relevant integrity
constraints (with only necessary columns). The result consists of schemas SLEGGE
and SLEGGE EPI and contains 66 tables with 379 columns, 55 views, 5 materi-
alised views and 4 stored procedures (functions). It also has 47 foreign keys, with
only three referring to entity tables.

6 Conclusions and Future Work

The application of OBDA technologies at Statoil dramatically reduces the
amount of time for information gathering by allowing the geologists to express
their needs as ontology-mediated queries and efficiently execute them over the
database [8]. This paper presents the complete OBDA specification of the Statoil
use case and includes the geologists’ queries, the Subsurface Exploration Ontol-
ogy, the schema of the Slegge database, and the mappings between the ontology
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and the database. We are planning to develop a synthetic data generator for the
OBDA specification, where the main challenge will be the faithful modelling of
implicit domain constraints.

Our work on the mappings revealed a lack of tools to support the following
tasks (taking account of the database integrity constraints):

– checking whether a mapping assertion is implied by the ontology and other
mapping assertions (e.g., as the property :overlapsWellboreInterval is
symmetric, the mapping assertions obtained by swapping the object and sub-
ject are redundant);

– checking whether a mapping assertion for a property generates all the triples
of the assertions for the subclasses of its domain/range; a negative answer
(even though is not an error) may indicate incorrect modelling if similar SQL
queries are used.

Routine tasks such as checking whether IRI templates of classes/properties
match could also be automated: for example, a Protégé plugin could list all
IRI templates for the currently selected class or property (with ontology infer-
ences taken into account). Developing tool support for such reasoning tasks is
an important direction of future work.
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