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Abstract. Traffic three elements consisting of flow, speed and occupancy are
very important parameters representing the traffic information. Prediction of them
is a fundamental problem of Intelligent Transportation Systems (ITS). Convo-
lutional Neural Network (CNN) has been proved to be an effective deep learning
method for extracting hierarchical features from data with local correlations such
as image, video. In this paper, in consideration of the spatiotemporal correlations
of traffic data, we propose a CNN-based method to forecast flow, speed and
occupancy simultaneously by converting raw flow, speed and occupancy
(FSO) data to FSO color images. We evaluate the performance of this method
and compare it with other prevailing methods for traffic prediction. Experimental
results show that our method has superior performance.

Keywords: Deep learning � Convolutional Neural Network � Traffic
prediction � Intelligent Transportation System

1 Introduction

Currently, real time traffic information prediction has got more and more attention of
individual drivers, business sectors and governmental agencies with the increasing
numbers of vehicles and the development of ITS. Flow, speed and occupancy as three
elements of traffic describe the different characteristics of traffic and record the spa-
tiotemporal evolution over a period of time. Accurate prediction of them can facilitate
people’s travel and reduce traffic congestion and accidents. Meanwhile, it can help traffic
managers allocate traffic resources systematically and improve regulatory efficiency.

There exist the spatiotemporal correlations of traffic data due to the consecutive
evolution of traffic state on the time-space dimension. It’s necessary to retain and
leverage inherent spatiotemporal correlations when forecasting traffic information. In
addition, there are undoubtedly inner correlations between traffic parameters such as
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flow, speed and occupancy within a time unit, most of which have been explained
theoretically and mathematically. Intuitively, when traffic flow is high, speed usually
won’t be low. Therefore, it’s reasonable to take these important correlations into
account in the modeling to make the prediction more robust.

Existing traffic prediction methods can be mainly divided into three categories:
time-series methods, nonparametric methods and deep leaning methods.

Autoregressive moving average (ARIMA) [1] model is one of the representative
time-series models, which focuses on finding the patterns of the temporal evolution
formation by two steps: moving average (MA) and autoregressive (AR) considering the
essential traffic information characteristics. Many variants of this model, such as subset
ARIMA, seasonal ARIMA, KARIMA, ARIMAX, were proposed to improve predic-
tion accuracy. However, these models are inept at extracting spatiotemporal feature for
prediction because of ignoring spatiotemporal correlations.

Nonparametric methods were widely used because of its advantages, such as their
ability to deal with multi-dimensional data, implementation flexibility. In [2], a pre-
diction model was built by support vector regression (SVR) and optimized by particle
swarm algorithm. Chang et al. proposed a dynamic multi-interval traffic flow prediction
using k-nearest neighbors (KNN) [3]. In addition, various artificial neural network
(ANNs) [4, 5] were designed to predict traffic information. Unfortunately, these
shallow architectures failed to learn deep features.

Recently, deep learning models such as deep belief network (DBN) [6], recurrent
neural network (RNN) [7], and long short-term memory (LSTM) [8] have been used
for traffic prediction owe to their excellent capability of extracting complex features
and generalizability and strong forecasting performance. However, these models usu-
ally put the time and space into same dimension and they violate the two-dimensional
basis of spatiotemporal features. CNN has been demonstrated to have excellent per-
formance in large-scale image-processing tasks [9]. Ma et al. [10] first applied CNN to
traffic speed prediction by converting network traffic to gray images and achieved
significant improvement on average accuracy.

In this paper, we propose a CNN-based method to forecast traffic information from
a comprehensive perspective. We design a novel way in which quite complete spa-
tiotemporal features can be extracted from the data by converting raw flow, speed and
occupancy (FSO) data to FSO images. Furthermore, we use the features to forecast the
traffic flow, speed, occupancy simultaneously. Finally, we demonstrate the perfor-
mance of the proposed model and compare it with other prevailing methods.

The rest of the paper is organized as follows: In Sect. 2, converting raw FSO data to
FSO images and CNN model for traffic prediction are introduced. In Sect. 3, experi-
ments and results are detailed. Finally, conclusions are drawn in Sect. 4.

2 Methodologies

Raw FSO data with space and time dimensions can be integrated and converted to FSO
color images as shown in Fig. 1. Then a CNN model based on LeNet-5 architecture is
designed to learn the mapping relationship between spatiotemporal features and FSO
images. Finally, we compute predictive performance indicators by mapping the learned
features back to original FSO data space.
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2.1 Data Conversion

Traffic data such as flow, speed, occupancy collected by sensors such as inductive loop
detectors at a certain time interval, which is usually not more than 5 min, record the
evolution of traffic conditions in a particular region.

For the width of the image, time sequences are fitted linearly into the width-axis
chronologically. Thus, the length of time interval determines the width of the image.
For a 5-min interval, there will be 288 data sequences on the time dimension corre-
sponding to the image width of 288 pixels. In general, short intervals like 5 s are
meaningless for traffic prediction. Therefore, in most cases data sequences need to be
aggregated to generate available data by dealing with several adjacent time intervals.

For the height of the image, we simply fit the number of sensors ordered spatially
into the height-axis. We can also make height-axis compact and informative, in the
same way as width dimension, by aggregating data from serval adjacent sensors.
Notably, different traffic data may use different aggregation methods. For example,
flow use accumulation while speed and occupancy use mean.

Finally, three time-space matrix generated by the method mentioned above are
directly merged into FSO color images for flow as green channel, speed as red channel
and occupancy as blue channel. A FSO image can be denoted as:

P ¼
p11 p12 � � � p1N
p21 p22 � � � p2N
..
. ..

. . .
. ..

.

pM1 pM2 � � � pMN

2
6664

3
7775 ð1Þ

where M is the number of sensors, N is the length of time units and pixel pij is a triple
consisting of flow, speed and occupancy.

2.2 CNN Architecture

Figure 2 illustrates the proposed three-channel convolutional neural network model. In
this case, traffic data of flow, speed and occupancy are respectively encoded into three
channels corresponding to the red, green and blue color channels. These three traffic
parameters are then learned by different convolutional kernels to generate feature maps
which represent the fusion of traffic information. After the consecutive processing of
convolution and pooling, the fully-connected layer maps the extracted traffic features
back to the original space for final prediction as the output of the model.

Fig. 1. FSO image converted from FSO data of a day. The area containing purple blocks
corresponds to the period when the traffic volume is large i.e. day time whereas the green area
corresponds to the opposite side (Color figure online).
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2.2.1 Input Layer and Output Layer
First, raw FSO data are converted to FSO images. However, different from CNN
models for classification, for an FSO image as input, the output of the model is also a
FSO image right next to it. This means that the network not only learns hierarchical
features but also learns to map the extracted features back to original space, which is
similar to the mechanism of the autoencoder (AE).

Given the lengths of input and output time units as s and e, respectively and
prediction interval between input and output as p, which is set to 1 in this paper, the
input of the model can be written as:

xi ¼
p1;i p1;i þ 1 � � � p1;i þ s� 1

p2;i p2;i þ 1 � � � p2;i þ s� 1

..

. ..
. . .

. ..
.

pM;i pM;i þ 1 � � � pM;i þ s� 1

2
6664

3
7775 ð2Þ

where i is the sample index in the range of 1;N � s� p� eþ 2½ �, and M is defined as
in formula (1), pi;j is a triple consisting of flow, speed and occupancy. Accordingly, the
predicted FSO image can be written as:

yi ¼

p1;i þ s þ p� 1 p1;i þ s þ p � � � p1;i þ s þ p þ e� 2

p2;i þ s þ p� 1 p2;i þ s þ p � � � p2;i þ s þ p þ e� 2

..

. ..
. . .

. ..
.

pM;i þ s þ p� 1 pM;i þ s þ p � � � pM;i þ s þ p þ e� 2

2
6664

3
7775 ð3Þ

Fig. 2. Proposed CNN model for extracting traffic spatiotemporal features. C, MP and FC
represent convolution, max pooling and fully-connected layer, respectively (Color figure online).
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2.2.2 Convolutional Layer and Pooling Layer
Convolutional layer plays a major role in extracting the spatiotemporal features. The
previous layer’s features are convolved with learnable kernels and put through the
activation function to form more complex features. Generally, a convolutional layer is
usually followed by a pooling layer to reduce parameters of the model and make the
learned features more robust. Rectified linear unit (ReLU) activation function and max
pooling procedure are used in our model because of their respective superior perfor-
mance. The output of convolutional and pooling layers can be written as:

xlj ¼ mp u
Xcl� 1

i¼ 1

xl� 1
i � klij þ blj

 ! !
ð4Þ

where l is the index of layers and j is the index of feature maps in the lth layer, xl� 1
i , xlj,

klij and b
l
j denote the input, output, kernels and bias of the layer, respectively. � indicates

convolution operation and mp denotes max pooling procedure. u is ReLU activation
function defined as:

u xð Þ ¼ max 0; xð Þ: ð5Þ

2.2.3 Fully-Connection Layer
Fully-connection layer provides an effective way to map the spatiotemporal features
back to original FSO image space. The output of this layer as predictive value of the
model can be written as:

ŷ ¼ r wlxl� 1 þ bl
� � ð6Þ

where wl and bl are the weights and bias of the layer, respectively. ŷ are predicted
values, that is, the output of the model. r is sigmoid activation function defined as:

r xð Þ ¼ 1
1þ e�x

ð7Þ

Finally, Mean squared errors (MSEs) are employed as loss function to measure the
distance between predictions and ground-truth, which are optimized by mini-batch
gradient descent (mini-batch GD) algorithm. MSE can be defined as:

MSE ¼ 1
N

XN
i¼ 1

ŷi � yi
� �2 ð8Þ

where ŷi and yi are predicted values and true values of the ith sample, respectively, and
N is the number of samples.
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3 Experiments and Results

In this section, we first detail the generation of samples. Then we display the trained
model from different aspects. Finally, we give the experimental results.

3.1 Data Description

The proposed method is evaluated on the data of West Yan’an Road in Shanghai,
which were collected every 5 min from 35 individual inductive loops during the whole
year of 2012. In fact, there are a total of 361 days of data because of the absence of data
from March 20 to March 23. For practical reasons, there are inevitably some missing
pieces in the data. Therefore, a proper mending method is applied to the data with
spatiotemporal adjacent records. As shown in Fig. 1, the green area from 21:00 pm of
previous day to 7:00 am of next day corresponds to the traffic state that there are few
vehicles on the road. It is incompatible with the characteristics of CNN model and
almost impossible to extract spatiotemporal features because of lacking representational
and differentiable patterns when using image patches to train the network. Therefore,
the data with obvious traffic patterns from 7:00 am to 21:00 pm of a day are chosen to
generate samples.

For the time interval of 5 min as a time unit, there are 168 time sequences from
7:00 am to 21:00 pm. Accordingly, when converting these sequences to FSO images,
the width of the images will be 168. As a result, there are 361 FSO images of
35 � 168 � 3 available for intercepting image patches as samples. When the lengths
of input and output are set to s and e, respectively, which means using 5s-min FSO data
to forecast next 5e-min FSO data, the number of the image patches of a day will be
168� s� eþ 1. In total, there are 361 � 168� s� eþ 1ð Þ samples. First 90% of them
are used as training data and the rest are used as test data.

3.2 Model Display

The model is designed based on LeNet-5 architecture. The parameters of the model as
listed in Table 1 are set based on the principle that the network converges to a better
solution and that the train time of the network is acceptable (Fig. 3).

Table 1. Parameters of the model.

Layer Parameter dim Feature dim Parameter num

Input – (3, 35, 35) –

C1 Kernel (8, 3, 5, 5) (8, 31, 31) 608
MP1 Pooling (2, 2) (8, 16, 16) –

C2 Kernel (16, 8, 3, 3) (16, 14, 14) 1168
MP2 Pooling (2, 2) (16, 7, 7) –

C3 Kernel (32, 16, 3, 3) (32, 5, 5) 4640
MP3 Pooling (2, 2) (32, 3, 3) –

FC4 Weight (288, 105) 105 147968
Output – 105 –
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3.3 Results and Comparison

We first evaluate the proposed method for short-term traffic prediction with the lengths of
input and output are set to 35 and 1, respectively. This means we use 175-min FSO data to
forecast next 5-min data. As mentioned in Sect. 3.1, 43211 training samples are used to
train the model and 4802 test samples are used to validate the model. We compare three
indexes: mean absolute errors (MAE), mean relative errors (MRE) and relative mean
square errors (RMSE) with other prevailing methods for short-term traffic prediction:
ANN, DBN and random work (RW). These methods are all optimized by mini-batch
SGD algorithmwith batch size set to 300 except RW. Results show that ourmodel has the
best average performance as shown in Table 2 (AVG indicates average value). Notably,
under the same index, three channels of flow, speed and occupancy differ due to their
different data fields ranging from 10 to 1017, 1.0 to 116.0 and 1.1 to 98.7, respectively.

As shown in Table 3, we further evaluate the performance of our model on fore-
casting longer time span when setting the input length to 35 i.e. 175 min. From the
table we can see that, with the increase of time span, the prediction accuracy is
decreasing but within the acceptable range. This is due to the fusion of three-channel
information which can effectively filter out influences of the outliers in channels.

(a) (b)

(e) (c) (d)

Fig. 3. (a): FSO input image. (b): Feature map of the first convolutional layer. (c): Feature map of
the second convolutional layer. (d): Feature map of the third convolutional layer. Hierarchical
spatiotemporal features of FSO data from simple to complex and concrete to abstract are extracted
automatically through the model. (e): Kernels of the first convolutional layer. The model has learnt
homogeneous kernels through training, which is consistent with the characteristics of traffic data.

Table 2. Prediction performance of CNN and other models on test data.

TYPE CNN ANN DBN RW

MAE RMSE MRE (%) MAE RMSE MRE (%) MAE RMSE MRE MAE RMSE MRE (%)

F 23.8 31.7 8.3 24.1 32.0 8.6 24.3 32.9 8.4 27.5 39.1 8.2

S 3.0 4.4 5.6 3.3 4.6 6.0 3.0 4.4 5.7 3.8 6.2 8.7

O 1.7 2.9 14.3 1.8 2.9 14.9 1.8 2.9 15.4 2.4 4.4 14.3

AVG 9.5 18.6 9.4 9.7 18.7 9.8 9.7 19.2 9.8 11.2 23.0 10.4
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Table 3. Prediction performance of CNN on different time span.

TYPE 5-min prediction 15-min prediction 30-min prediction
MAE RMSE MRE (%) MAE RMSE MRE (%) MAE RMSE MRE (%)

F 23.8 31.7 8.3 26.1 34.9 9.0 25.8 33.9 9.2
S 3.0 4.4 5.6 3.3 4.9 6.2 3.2 4.6 6.1
O 1.7 2.9 14.3 1.8 3.0 14.4 2.1 3.2 18.1
AVG 9.5 18.6 9.4 10.4 20.4 9.9 10.4 19.8 11.2

(a) 343th day (b) 357th day

(c) 343th day (d) 357th day

(e) 343th day (f) 357th day 

Fig. 4. (a), (c) and (e) are the flow, speed and occupancy predictions of the 343th day at the 26th
loop, respectively. (b), (d) and (f) are the flow, speed and occupancy predictions of the 357th day
at the 22th loop, respectively.
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Finally, we present the prediction curves of the 343th day at the 26th loop and the
357th day at the 22th loop from 10:00 am to 21:00 pm as shown in Fig. 4.

4 Conclusion

In this paper, we proposed a CNN-based method to forecast traffic information. Unlike
most single prediction models, traffic flow, speed and occupancy are simultaneously
predicted by the model to provide more complete traffic information. Spatiotemporal
traffic features of traffic data can be learned automatically by converting flow, speed,
and occupancy data to color images as the input of the model.

We evaluated the proposed method on the data of West Yan’an road in Shanghai
and compared it with ANN, DBN and RW methods. And results show that the pro-
posed method is superior to others. In addition, we explored the prediction performance
on different tasks of 5-min prediction, 15-min prediction and 30-min prediction and
results show that proposed model has certain robustness as the prediction accuracy
descends but within an acceptable range.
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