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Abstract. An Augmented Reality System for Coronary Artery Diagnosis
Planning and Training (ARS-CADPT) is designed and realized in this paper. As
the characteristic of ARS-CADPT, the algorithms of static gesture recognition
and dynamic gesture spotting and recognition are presented to realize the
real-time and friendly Human-Computer Interaction (HCI). The experimental
results show that, with the use of ARS-CADPT, the HCI is natural and fluent,
which improves the user’s immersion and improves the diagnosis and training
effects.

Keywords: Gesture recognition * Augmented reality - Human Computer
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1 Introduction

Presently, 64 multi-slices computed tomographic coronary angiography technology has
been considered as an effective way to diagnose coronary heart disease [1]. In the
preoperative diagnosis planning process, the doctors are not accustomed to carry on the
interactive diagnosis with computer by using the mouse and keyboard. 3D recon-
struction based on Computed Tomography (CT) image sequence combined with
augmented reality (AR) technology can effectively solve the above problems.

AR is a new technology that strengthens the user’s perception of the real world by
superimposing the virtual 3D information generated by the computer system onto the
real scene. In fact, medicine is one of the earliest application fields of AR technology.
State Andrei et al. [2] can draw a virtual 3D fetus on its abdomen position by ultrasonic
scanning a pregnant woman. The doctor can understand the move and kick ability of

© IFIP International Federation for Information Processing 2017

Published by Springer International Publishing AG 2017. All Rights Reserved
Z. Shi et al. (Eds.): ICIS 2017, IFIP AICT 510, pp. 113-123, 2017.

DOI: 10.1007/978-3-319-68121-4_12



114 Q. Li et al.

the fetus through the Helmet-Mounted Displays (HMD) in 1994. AR technology can be
used as an auxiliary means of surgical visualization. The 3D data of patient can be
collected through Magnetic Resonance Imaging (MRI), CT or ultrasound images.
According to the data, the corresponding virtual information can be rendered in real
time. Combining with the actual situation of patient, the doctors can get more complete
information, and improve the operation finally [3]. Wu [4] implements a spine surgery
AR system, in which the surgeons can make use of 3D virtual model of preoperative
patients to carry out spinal surgery simulation practice. In minimally invasive surgery,
AR technology enables doctors to obtain the clairvoyant ability and improve the quality
of surgery [5]. AR can also be used for medical training. According to statistics, over
50% of the augmented virtual reality application system are used in medical training,
the most of which are realized based on virtual reality (VR) technology [6]. The
amount of application system based on AR is relatively less. The AR based aid medical
training system [7] is used to achieve medical training and examination through human
body modeling.

The natural and real-time HCI is one of the three important features of AR system
[8]. However, the traditional interaction mode such as using the mouse and keyboard
cannot meet the application requirements. People are eager to realize the HCI in a very
natural way. Gesture is just the most natural and intuitive way of interaction in human
communication except language. Therefore, HCI based on gesture recognition has
become a hot research topic. Gestures are usually defined as hand shapes and move-
ments produced by the combination of palms, fingers, and even arms. The task of HCI
based on gesture recognition is: firstly, recognize the meaning of the gesture correctly
according to the data captured in real time, then trigger the corresponding instruction,
and make the system feedback finally.

An AR system used for coronary artery diagnosis planning and training is designed
and realized in this paper, which is called ARS-CADPT in the following paragraph.
The system is very complicated, but the HCI based on gesture recognition is mainly
discussed in this paper. The operating user or the lecturer can interact with the 3D
model of the coronary arteries in a natural and intuitive manner with the defined
gestures, and can perform simulation measurement of radius of vessels, and thus
achieve a comprehensive and intuitive presentation and an accurate and detailed
explanation of the patient’s situation. The interns or students can understand and study
the patient’s coronary detail situation on a large tiled screen.

2 System Architecture

2.1 The Hardware Architecture of ARS-CADPT

As shown in Fig. 1, ARS-CADPT is constructed based on cluster architecture. It
consists of several high-performance workstations, a parallel rendering and tiled dis-
play subsystem and a series of equipment for interaction data capture. Server 1 is used
for 3D reconstruction of coronary artery based on CT images and storage the 3D
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coronary artery model database of all the previous patients. Server 2 is the surveillance
and control center of the system. Server 3 is used for processing the lecturer’s inter-
action data which is captured by the equipment such as Leap Motion, magnetic tracker,
Microsoft Hololens, and so on. The display subsystem is consists of 5 parallel ren-
dering nodes and a tiled screen, which is used for study, view and emulate for the
student and intern users.
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Fig. 1. The hardware of ARS-CADPT

2.2 The Software Framework of ARS-CADPT

The ARS-CADPT is realized based on multi-thread technique. The main thread is used
for the diagnosis and training process, the HCI thread is used for the real-time inter-
action with the 3D coronary artery model, and the feedback is displayed to the users via
the display thread. Therefore, the system mainly includes three function modules. 3D
coronary artery reconstruction based on CT images, real-time HCI based on gesture
recognition and synchronous display based on parallel rendering. Here into, the HCI
module is the characteristic of the system. The interaction gestures used in the system
are defined firstly. Then the algorithms for static gesture recognition, dynamic gesture
spotting and recognition are proposed. The corresponding interaction operations are
triggered according to the gesture recognition results finally.

3 Real-Time HCI

As shown in Fig. 2, the HCI module serves the main process of diagnosis and training.
It is the bridge between the operating user and the system. The HCI in the system is
accomplished based on the coordination of static and dynamic gesture recognition. The
Leap Motion manufactured by Leap Company is used to capture the hand shape and
motion trajectory.
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Fig. 2. The workflow and functions of the ARS-CADPT

3.1 Gesture Definition

Gesture includes static gesture and dynamic gesture. Considering a right-hander, the
static gestures used in ARS-CADPT are defined in Table 1 and illustrated in Fig. 3.

Table 1. The static gestures and the corresponding HCI functions in ARS-CADPT

Legend Class | HCI function

Figure 3a |1 System Left mouse button down

Figure 3b |2 input Right mouse button down

Figure 3¢ |3 Capture the hand trajectory as the trajectory of cursor

Figure 3d |4 Model Control 3D model in full synchronous mode according to

control the hand trajectory captured in real time

Figure 3e |5 Control 3D model in fine adjustment mode according to
the recognition result of the real-time gesture trajectory

Figure 3f |6 Radius measurement of vessel stenosis

Figure 3g |7 In fine adjustment mode, control 3D model according to
scale I

Figure 3h |8 In fine adjustment mode, control 3D model according to
scale II

Figure 3i 9 In fine adjustment mode, control 3D model according to
scale III

Figure 3j 10 In fine adjustment mode, control 3D model according to

scale IV
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Fig. 3. The static gesture used in ARS-CADPT

The gestures can be divided into two categories: system input and model control.
The former is used to achieve all kinds of system input instructions by gestures instead
of mouse and keyboard, and the latter is used to manipulate and control the 3D models
directly. Here into, the static gestures of class 1-3 are used for system input, and the
static gestures of class 4-10 are used for model control.

In addition, the accurate measurement of vessel diameter, confirming the location
and extent of stenosis and the situation of collateral circulation formation are objective
gist for determining the diameter of stent during interventional treatment. However, in
clinical practice, the measurement of vessel stenosis is mainly based on visual esti-
mation, and its accuracy needs to be further improved. In ARS-CADPT, the operating
user can interactively scale the virtual model freely and measure the radius of the blood
vessel with the gesture shown in Fig. 3f.

There are two ways of interacting with the 3D model in ARS-CADPT. The full
synchronization mode is to make the movement of 3D model completely consistent
with the hand of which the static gesture is class 4 (shown in Fig. 3d), while the fine
adjustment interaction mode is used for the slight, accurate and complex operations.
The fine adjustment interaction mode is mainly realized by recognizing a series of
dynamic gestures formed by the hand trajectory of which the static gesture is class 5
(shown in Fig. 3e). Therefore, the dynamic gestures needed in ARS-CADPT are
defined in Table 2, and some examples are illustrated in Fig. 4. Here into, the trans-
lation gestures can be used for both system input and model control. The rotation and
zoom gestures are used for model control only.

3.2 Static Gesture Recognition

The static gesture recognition algorithm based on rough sets theory was proposed. The
static gesture recognition is considered as a decision table, denoted as
DT = (U,CUD,V,f). Here into, U is a nonempty finite set of all the static gesture
instances, called universe. C and D are also nonempty finite sets, C is called
condition-attribute set, and D is called decision-attribute set. V = UaeCuD V., V, is the
range of attribute a. f: U X A — V is called the information function, which assigns a
value to each attribute. The data of static gestures are mainly captured by Leap Motion.
The distance between the fingertips and the distance between the fingertips and the
palms center are considered as the major factors influencing the static gestures, which
are belong to C. The distance is discretized into five values, so Vo = {1,2,3,4,5}.
There is only one decision attribute: the static gesture (denoted as d), i.e. D = {d}.
According to Table 1, there is V; = {1,2,3,4,5,6,7,8,9, 10, 11(undefined) }. To sum
up, the decision table of static gesture recognition can be modeled as shown in Table 3.
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Table 2. The dynamic gestures and the corresponding HCI functions in ARS-CADPT

Gesture Class HCI function

Translation | Left 11 Single-hand Next menu | record | item | page | etc.
Move the 3D model along the X axis
in the positive direction

Right 12 Previous menu | record | item | page |
etc. Move the 3D model along the X
axis in the negative direction

Up 13 Next menu | record | item | page | etc.
Move the 3D model along the Y axis
in the positive direction

Down 14 Previous menu | record | item | page |
etc. Move the 3D model along the Y
axis in the negative direction
Forward 15 Previous menu | record | item | page |
etc. Move the 3D model along the Z
axis in the negative direction
Backward | 16 Next menu | record | item | page | etc.
Move the 3D model along the Z axis
in the positive direction

Rotation Left 17 Double-hand | Rotate the 3D model clockwise in the
top view
Right 18 Rotate the 3D model anti-clockwise in
the top view
Up 19 Rotate the 3D model anti-clockwise in
the elevation view
Down 20 Rotate the 3D model clockwise in the
elevation view
Forward 21 Rotate the 3D model clockwise in the
left view
Backward |22 Rotate the 3D model anti-clockwise in
the left view
Zoom In 23 Enlarge the 3D model proportionally
along three axes
Out 24 Shrink the 3D model proportionally

along three axes

Fig. 4. Some examples of the dynamic gestures defined in ARS-CADPT: a. left translation (at
default scale), b. right translation at scale I, c. right rotation at scale II, d. zoom out at scale IV, e.
right translation by left hand (at default scale)
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Table 3. Decision table of static gesture recognition

Uu|cC D
1 2 .10 |i ii Y d
X1 |Vt | Vi2 | --- (VL0 | VL | Vi | oo [ Vi | Vid
X2 | Vo |va2 |- [ Va0 | Vai| Vaii| - | Vau | V2u
Xn vn,l vn,Z Vn,l() Vn,i Vn,ii Vn,v vn,d
Here into, x;(j = 1,2, ..., n) is the j-th static instance, U = {x;,x2, ..., X, } is the set

of static instance, and v; , is the value of attribute a(a € CUD) in the j-th static
instance.

The decision table is constructed according to the selected sample set. Then, the
attribute reduction algorithm based on Skowron discernibility matrix and discernibility
function is adopted: Firstly, construct the discernibility matrix; Secondly, construct the
discernibility function; Thirdly, simplify the discernibility function using the absorp-
tion law; Finally, the conjunctive normal forms in the minimal disjunctive normal form
of the discernibility function are all the D-reduct of C.

The classical reduction algorithm of attribute values is based on the value core
concept. At first, calculate the value core of every instance in the decision table after
attribute reduction; then get the minimal reduct from the value core table; finally, obtain
the decision rules.

At last, the rules can be used to recognize the user’s static gesture in real time.

3.3 Dynamic Gesture Spotting

Pavlovic et al. [9] divide the movements of the hand into two categories. One is the
gesture that conveys the user’s intention, and the other is meaningless action. There-
fore, the starting point and termination point of each dynamic gesture must be located
in the acquired continuous gesture data stream. It is the premise and foundation of
dynamic gesture recognition. However, the existing dynamic gesture recognition
methods usually assume either known spatial spotting or known temporal spotting, or
both [10], which is unrealistic in the practical applications.

According to the data captured by Leap Motion, a segment of right hand motion
trajectory is drawn in Fig. 5a. It can be seen the intervals of points are different. That
means the speed is changing during the gestures. The curve shown in Fig. 5b is the
speed variation during the gestures in Fig. 5a. It is clearly illustrated that the speed
climbs up and then declines for several times. Each speed jump corresponds to a wave
crest on the speed curve. There are five obvious wave crests which exactly correspond
to five gestures. So, a simple method is to set a threshold. If speed is above the
threshold, a gesture is detected. But this method would arouse some problems. One is
that some noise points exist. Another is that the speed of dynamic gestures varies from
person to person, and setting a threshold is not-so-flexible. In fact, the dynamic gestures
defined in our system are all completed in a speed jump. Therefore, we could think that
a dynamic gesture is generated only by judging an upward tendency of speed. Thirty
data points are enough to represent the tendency from the experiment. We define the
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Fig. 5. A segment of dynamic gesture: a. Trajectory, b. Speed curve

upward tendency, which is the speed at any moment is higher than before. The fuzzy
set of the standard upward tendency is denoted as A, and a new fuzzy set B is obtained
every time, and compute the close degree between A and B using Hamming close
degree. The equation is:

Nu(A,B) = 1 — d(A,B)/n = 1 — 5(4,B). (1)

n 1 y; > Max i i > Maxori=1
where d(4.8) = 3 [ny(s) = gt ) = { ) o= { e

0 yi<Max’ Max vi <Max *

The lower the close degree is, the greater likelihood it is an upward tendency. If the
close degree is less than 0.3, we believe the set B represents the upward tendency.

3.4 Dynamic Gesture Recognition

After the gesture spotting, a series of independent dynamic gesture trajectories can be
obtained in real time.

1. Single-hand gesture

Let C = {c1,¢2, . .., ¢, } be the set composed of the n classes dynamic gestures, and
A={aj,ay,...,ay} be the set composed of the m attributes influencing dynamic
gestures. s; is the k-th gesture sample to be recognized. After s; was recognized by all
the attribute classifiers, a decision matrix is obtained and denoted as:

— ko ok k \T ok ck k\T k gk kT
DM (s) = ((fll7f217"'7fm1) » V12 227"‘7fm2) v Ui 2n7"'7fmn) ) (2)
Here into, the row vector f; = (fk,f%, ..., iﬁ)(i =1,2,...,m) is the recognition
results of s, by attribute classifier a; with respect to the m classes, while the column

T
vector f; = (f{‘j,fz’}, . £]> (j = 1,2,...,n) is the recognition results of s; by all the

attribute classifiers with respect to the ¢;-th class. then the intersection of the function f;:
A — [0, 1] (if the output of classifier is not in the interval [0, 1], it can be satisfied
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according to normalization) and the vector f;, j‘,'; indicates the degree of certainty that s;
is recognized as the c¢;-th class by the attribute classifier a;.

Let g be the fuzzy measure defined over P(A), the power set of A. The fuzzy
measure on the single-point set, i.e. fuzzy density g; = g({a;})(i = 1,2,...,m) rep-
resents the degree of credibility that the attribute classifier a; makes decision. If
X € P(A), g(X) represents the degree of credibility that the attribute classifier X makes
decision. However, as the single attribute classifiers are designed for a certain attribute
feature of dynamic gestures, they should have different degrees of credibility for dif-
ferent gestures, namely, the single attribute classifiers should have different fuzzy
densities. Let g; = (g1j,82,--- 8- - -»&mj) be the fuzzy density vector of class c;,
where g;; represents the degree of credibility of the attribute classifier a; with respect to
class ¢;. Then the fuzzy integral over A of the function ﬂ‘ with respect to the fuzzy
measure g; is the overall objective estimate for s; belonging to class c;. In the way, for a
certain gesture sample s;, the system gives an integral value for every class, and the
class that the greatest integral value corresponds with will be adopted as the recognition
result.

2. Two-handed gesture

As for the two-handed dynamic gestures, the positions of the palm center at the
beginning and end of the gesture are captured. Let B! = (bl bf bl) ,B" = (b’ b’ b’),

X7y Yz X Ty Tz
y? Tz xX? Ty Tz

ning and end of the gesture respectively, then the lengths of line segment B'B” and line
segment E'E” (denoted as dj, and d, respectively)and the angle between them (denoted
as @) can be calculated. By projecting ¢ to plane YOZ, XOZ and XOY respectively,
the three direction angles (denoted as «, f§ and y) can be calculated. At last, the current
gesture can be recognized by the following rules:

IF ¢ < 0, AND (d, — d;) > 0 (< 6), THEN class(g) = zoom in (out)

IF ¢ > 0, AND max(a, 5, 7) = o | B | 7, THEN class(g) = Rotate around the X|Y|Z
axis

Where 0, 6,and ¢ are thresholds predefined.

E' = (ei,el e! ) and E" = (e’ e’ e’) be the coordinates of both hands at the begin-

4 Experimental Results

The related experiments are carried out based on the system platform. Here into, the
recognition rate for static gesture achieves an average performance of 97.3%. After the
dynamic gesture spotting, the continuous dynamic gesture stream is divided into a set
of isolated dynamic gestures. The system achieves an average performance of 92.4%
for the dynamic gestures according to the algorithm proposed in Sect. 3.4.

The system is used for coronary artery diagnosis planning and teaching. As shown
in Fig. 6, the lecturer is controlling the 3D coronary artery model in a natural and
intuitive manner with the defined gestures, and thus achieves a comprehensive and
intuitive presentation and an accurate and detailed explanation of the patient’s situation.
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At the same time, the student users or interns can study and understand the patient’s
coronary detail situation on a large tiled screen.

Fig. 6. System running instance: the lecturer is interacting with the 3D coronary artery model.

5 Conclusion and the Future Work

This paper presented an augmented reality system for coronary artery diagnosis
planning and training. One of its advantages is to realize the real-time and friendly HCI
by using the algorithms of static gesture recognition and dynamic gesture spotting and
recognition. It can be concluded that the proposed solutions make the HCI more natural
and convenient, make the explanation clearer and more intuitive, and finally achieve a
better effect for the preoperative diagnosis planning and training.

It also can be concluded that the AR technology has great potential to apply to the
computer-aided medical system. Some examples of AR-based surgical applications
have been presented in the literatures [11, 12]. Meanwhile, there are still some technical
challenges for further research and exploration. For example, the gesture set defined in
ARS-CADPT is just a little subset of the human gesture set, and the gestures people
used in daily life are much more complicated. This puts forward higher requirements to
the gesture recognition algorithms. Moreover, there is still a lot of work to do before
ARS-CADPT can be applied to real-time surgery.
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