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Abstract. In this paper, it is shown how a complete input equivalence
class testing strategy developed by the second author can be effectively
used for infinite-state model checking of system models with infinite
input domains but finitely many internal state values and finite out-
put domains. This class of systems occurs frequently in the safety-critical
domain, where controllers may input conceptually infinite analogue data,
but make a finite number of control decisions based on inputs and current
internal state. A variant of Kripke Structures is well-suited to provide a
behavioural model for this system class. It is shown how the known con-
struction of specific input equivalence classes can be used to abstract the
infinite input domain of the reference model into finitely many classes.
Then quick checks can be made on the implementation model showing
that the implementation is not I/O-equivalent to the reference model if
its abstraction to observable minimal finite state machines has a differ-
ent number of states or a different input partitioning as the reference
model. Only if these properties are consistent with the reference model,
a detailed equivalence check between the abstracted models needs to be
performed. The complete test suites obtained as a by-product of the
checking procedure can be used to establish counter examples showing
the non-conformity between implementation model and reference model.
Using various sample models, it is shown that this approach outper-
forms model checkers that do not possess this equivalence class genera-
tion capability.

Keywords: Input equivalence class partition testing · Infinite-state
model checking · Kripke Structures

1 Introduction

Motivation. Model checking of infinite-state systems is an important research
field. Notable examples are Timed Automata, where physical time represents a
model or meta variable with uncountable domain [3] and the more general Hybrid
Systems, where also real-valued observables are taken into account [8]. Other
approaches investigate model checking in presence of unbounded data structures,
we cite here [6] as a representative of many results achieved in this area.
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The close relationship between infinite state model checking and testing has
been observed, for example, in [18], where a complete testing method for verifying
real-time systems against Time Automata models has been presented.1

In this paper, we show how results from model-based testing of reactive
systems can inspire approaches to infinite-state model checking.

Main contribution. We present a new algorithm for checking I/O-equivalence
of systems with infinite input domains, but finite domains for internal state vari-
ables and outputs. It applies to both deterministic and nondeterministic systems,
whose behavioural semantics can be expressed by I/O-state transitions systems,
a specific variant of Kripke Structures. The algorithm exploits a new method for
calculating input equivalence classes, that has originally been developed for con-
structing complete test suites for systems of this type [10]. While an algorithm
for calculating these classes for deterministic models has been published in [9],
the algorithm presented in this paper can handle nondeterministic systems.

It is shown that for I/O-equivalence checking problems of reference and imple-
mentation models in this domain, the new algorithm clearly outperforms conven-
tional model checkers, because the latter need to operate on an explicit discreti-
sation of the input space, whereas the new algorithm presented here only needs
to check a significantly smaller number of input equivalence classes. Moreover,
the new method is very effective for constructing counter examples in case of
failing equivalence checks, since these examples are simply given by failing test
cases.

To our best knowledge, this approach to checking systems with infinite input
domains is new: other authors using equivalence partition techniques of the input
space used more general classes, at the cost of losing the completeness of the
method [19].

Overview. The equivalence calculation method and the resulting model check-
ing algorithm are described in Sect. 2. In Sect. 3, several model checking exper-
iments are described, comparing the implementation of the method presented
here against the well-established FDR3 model checker for the CSP process alge-
bra. Section 4 presents the conclusions.

2 Method

In this section we describe how to calculate the input equivalence class partition-
ing of a given model described in Sect. 3 and how we use this input equivalence
class partitioning to check two models for I/O-equivalence.

1 Recall that a test suite is called complete if it guarantees to accept every implemen-
tation conforming to a given reference model and to reject every non-conforming
implementation, provided that its true behaviour is represented by a model from a
well-defined fault domain.
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2.1 State Space Representation

Our approach is based on state transition systems (STS) described as triples
(S, s,R) where S is the possibly infinite state space, s ∈ S is the initial state
and R ⊆ S ×S the transition relation. Furthermore, we assume that all states in
S are reachable from the initial state via the transition relation and require that
the properties of I/O-state transition systems (IOSTS) apply which we specify
as follows:

– Every state s ∈ S is a valuation function s : V → D, mapping variables v
from a finite set of symbols v ∈ V to their values s(v) in the domain D.

– The set V of variable symbols can be partitioned into disjoint sets of input
variables, internal state variables, and output variables. Let I ⊆ V be the set
of input variables. Then DI is the set of all input vectors which is the cross
product of the domains of all input variables in I. From now on, the set of
input variables is referred to as I, the set of internal state variables as M ,
and the set of output variables as O.

– The state space of an IOSTS can be partitioned into two sets of states SQ

and ST which are the sets of the so-called quiescent and transient states,
respectively. Transient and quiescent states are characterised as follows.

∀(sq, s) ∈ SQ × SQ : (sq, s) ∈ R ⇒ s|M∪O = sq|M∪O (1)
∀(st, s) ∈ ST × S : (st, s) ∈ R ⇒ s|I = st|I (2)
∀(sq, s) ∈ SQ × ST : (sq, s) ∈ R ⇒ ∃x ∈ I : s(x) �= sq(x) (3)

Here, s|X ,X ⊆ V denotes the restriction of the valuation function s to the
set of variables symbols v ∈ X. Thus, no internal state or output variable
may change over a transition from a quiescent state, no input variables may
change over a transition from a transient state, and every transient state
reached by a transition from a quiescent state needs to evaluate at least one
input variable differently. If the latter were not the case, SQ and ST would
not be disjoint.

– The initial state is contained in SQ.

An IOSTS describes the behaviour of a state-based system. From the outside view,
only input variables influence the state of the system and only output variables are
observable. States in partition SQ of the state space are stable states where the
system waits for new inputs. States in partition ST of the state space are transient
states.A systemperforming some sort of calculationwouldwait in a quiescent state
for the inputs to the calculation. If the inputs allow for the calculation to be per-
formed, the internal state variables and output variables are modified in a sequence
of transient states. The calculation is finished when a quiescent state is reached,
allowing for the outputs to be observed. Inputs are changed by modifying the input
variables. The possible modifications to the input variables are defined by the tran-
sition relation as follows: An input vector c can be applied to the system if for the
new state s′ = s⊕{x 
→ c} the condition (s, s′) ∈ R holds. The set of all input vec-
tors allowed in state s is defined as C(s) = {c ∈ DI | ∃x : (s, s ⊕ {x 
→ c}) ∈ R}.
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If the condition ∀s ∈ SQ : C(s) = DI holds for every state of SQ of an IOSTS,
that IOSTS is called completely specified. An IOSTS is free of livelocks if there is
no reachable infinite sequence of transitions between transient states linked by the
transition relation.

Let S = (S, s,R) be an IOSTS as defined above. Then, the partitioning of
SQ ⊆ S induced by the equivalence relation s ∼MO s′ ⇐⇒ ∀vmo ∈ M ∪
O : s(vmo) = s′(vmo) with s, s′ ∈ SQ is called the MO partitioning. All states
evaluating all internal state and output variables in the same way are members
of the same partition. Here, such a partitioning is named A = A0, . . . ,An and
it is finite, as the domains of all internal state and output variables are finite.
Every member of A is called a state class. The state class containing the initial
state of the IOSTS under consideration is called A0. For mapping a state to the
corresponding state class, the shorthand MO : S → A is introduced.

For any IOSTS free of livelocks, every quiescent state s of that IOSTS can be
mapped to a set of quiescent states that are reachable by a finite, possibly empty
sequence of only transient states for every input vector c ∈ C(s). Let s/c be
this mapping for state s and input vector c. The case where (s⊕{x 
→ c}) ∈ SQ

holds is trivial. If, however, (s ⊕ {x 
→ c}) ∈ ST holds, the set of quiescent
states the state s maps to under input vector c can be determined by unrolling
the transition relation. If, for any s and any c, |s/c| > 1, the IOSTS is called
nondeterministic.

2.2 Input Equivalence Class Partitioning

When checking a pair of livelock free IOSTS for I/O-equivalence, we may have
to deal with a possibly infinite input domain. In our approach we partition the
input domain into a finite number of input equivalence classes as presented by
[10]. For every pair s1, s2 of states in the same state class of the MO parti-
tioning of an IOSTS, and for every input vector in every element Ii of such an
input equivalence class partitioning (IECP) I, the state classes of the reachable
quiescent states are identical: ∀s1, s2 ∈ S : ∀Ii ∈ I : ∀c ∈ Ii : MO(s1) =
MO(s2) =⇒ {MO(s′

1)|s′
1 ∈ s1/c} = {MO(s′

2)|s′
2 ∈ s2/c}. To obtain such an

IECP, first the input equivalence classes of every state class are calculated. An
algorithm to do so is given in Sect. 2.2.1, taking nondeterminism into account.
Given these IECPs for every state class, the final IECP is given as every non-
empty intersection of input equivalence classes containing exactly one element
from each of the calculated IECPs of every state class for which an algorithm is
given in Sect. 2.2.2.

For illustration purposes, the approach is applied to the system described
by the SysML state machine shown in Fig. 1. This model has one integer input
variable x and one output variable m. Initially, the output m is 0, meaning that
no alarm is active. If the input value x exceeds a threshold max, m is set to 2,
triggering an alarm which will only be ceded after x is equal to or drops below
another threshold max - delta. However, if the input value is equal to max,
the behaviour of the described system is non-deterministic: either, the alarm is
triggered and the system progresses as described before, or a state is entered



42 N. Krafczyk and J. Peleska

Fig. 1. SysML model of an alarm system reacting to input changes.

where there is no full alarm but maybe a message is sent to a security company
to check on the secured object (these possibilities are not shown in the model).
For this state to be left into the idle state where there is no alarm, the input may
simply drop by an arbitrary amount. However, if it rises further, a full alarm is
triggered.

2.2.1 Input Equivalence Classes for State Classes
Let gi,j be the condition on the input variables describing all input vectors for
which there is a possibly empty sequence of only transient states terminated
by a quiescent state for every state in state class Ai ending in state class Aj :
∀c ∈ DI : c |= gi,j ⇐⇒ ∀s ∈ Ai : ∃s′ ∈ Aj : s′ ∈ s/c. Furthermore, let G be
the set of all such conditions for the MO partitioning of an IOSTS, where the
set of satisfying input vectors is not empty, i.e. where there is at least one input
vector allowing the transition from one state class into another. Finally, let Gi

be a subset of G where gi,� ∈ Gi ⇐⇒ ∀s ∈ Ai : ∃c ∈ DI : s/c ∈ A�, that is, Gi

contains all conditions applicable to transitions emanating from state class Ai.
Then, for a given Gi, Algorithm 1 calculates a set Mi of tuples of conditions:

Mi = {(p, n) ∈ P(Gi) × P(Gi) |
(|=

∧

pk∈p

pk ∧
∧

nk∈n

¬nk)

∧ (∀g ∈ Gi :|=
∧

pk∈p

pk ∧ g ⇐⇒ g ∈ p ∪ n)}
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Every tuple in Mi describes an input equivalence class for state class Ai.
Transferring this to our example, we first derive the state classes A. In the

given model, every SysML state corresponds to a state class as every state maps
to a separate state class in the MO partitioning. Thus, A0 corresponds to S0.
The other state class counterparts to the SysML states may be chosen arbitrarily.
We chose A1 to be equivalent to state S1 and A2 to state S2. Then, the formulas
in Fig. 2 are the elements of G.

Fig. 2. Expressions in G, representing all conditions on the input variables for transi-
tions from one state class to the other to occur.

For every state class, Gi is calculated, its elements are given by the ith line
of expressions in Fig. 2.

Algorithm 1 first calculates all satisfiable subsets of Gi for every state class Ai.
As the IOSTS under consideration can be nondeterministic, there may be subsets
with more than one member. The classes of a partitioning are disjoint, thus an
IECP cannot contain overlapping elements, i.e. multiple classes containing the
same input vector. Thus, for every satisfiable subset of Gi which is also a subset
of another satisfiable subset of Gi, the difference to all supersets is added as
negated terms to form an input equivalence class if the resulting conjunction is
satisfiable.

For G0 from our example, the sets

{g0,0}, {g0,1}, {g0,2}, {g0,0, g0,1}, {g0,0, g0,2}, {g0,1, g0,2}

and
{g0,0, g0,1, g0,2}

are tested for satisfiability. As neither g0,0 ∧ g0,1 nor g0,0 ∧ g0,2 is satisfiable,
supersets of {g0,0, g0,1} and {g0,0, g0,2} do not have to be checked for satisfiability,
as these will never be satisfiable either. The sets of expressions satisfiable under
conjunction are the singleton sets and {g0,1, g0,2}. The latter is introduced due
to the non-determinism of the described system in the case of x == max. In
this example, the satisfiable subset {g0,2} of G cannot be an input equivalence
class, since the set of input vectors described would not be disjoint from the set
described by {g0,1, g0,2}. However, g0,2 ∧ ¬g0,1 is satisfiable, allowing A2 to be
reached deterministically by a set of input vectors which now represent one input
equivalence class. As g0,1 ∧ ¬g0,2 is not satisfiable, neither g0,1 nor g0,1 ∧ ¬g0,2

represents an input equivalence class. Thus, the input equivalence classes of the
system are given as follows:
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Input: Set G of transition conditions.
Input: Set I of indexes of state classes: {n ∈ N | n < |A|}
Output: Set M of IECPs Mi.
M ← ∅;
for i ∈ I do

Gi ← {gi,j ∈ G | ∀s ∈ Ai : ∃c ∈ DI : c |= gi,j ∧ s/c ∈ Aj};
satset ← CalculateSatisfiableSubsets(Gi, ∅);
Mi ← ∅;
for p ∈ satset do

super ← {s ∈ satset | p � s};
n ← (

⋃

s∈super

s) \ p;

if |= ∧

mi∈p

mi ∧ ∧

ni∈n

¬ni then

Mi ← Mi ∪ {(p, n)};

M ← M ∪ {Mi};

return M ;
function CalculateSatisfiableSubsets(Gx, Ex)

if Gx = ∅ then
return {Ex};

Mx ← ∅;
U ← ∅;
for gx ∈ Gx do

U ← U ∪ {gx};
if |= ∧

e∈Ex

e ∧ gx then

Mx ← Mx∪ CalculateSatisfiableSubsets(Gx\U , Ex ∪ {gx});

return Mx;

Algorithm 1. Algorithm calculating every state class’ input equivalence
classes.

M0 = {({g0,0}, {}), ({g0,2}, {g0,1}), ({g0,1, g0,2}, {})}
M1 = {({g1,0}, {}), ({g1,1}, {}), ({g1,2}, {})}
M2 = {({g2,0}, {}), ({g2,2}, {})}

In previous implementations, |p|+|n| = |Gi| held for every element m ∈ Mi as
every element of Gi appeared in m in either identical or negated form. In contrast
to this, our approach possibly results in smaller descriptions of input equivalence
classes, where |p| + |n| ≤ |Gi|, which has practical ramifications: for large sizes
of |Gi|, instantiating and solving the resulting input equivalence classes using
an SMT solver shows significant speedups. Furthermore, our approach exploits
the fact that ∀p, q ∈ P(P ) : (p ⊆ q∧ �|= ∧

pi∈p
pi) =⇒ �|= ∧

qi∈q
qi holds for arbitrary

sets P of first order logic formulae and may thus show significant speedups in
contrast to checking every subset of Gi for satisfiability.
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2.2.2 Input Equivalence Classes for IOSTS
Given the IECP for every state class, we can calculate the IECP over all state
classes by calculating all non-empty intersections φ of input equivalence classes
containing exactly one input equivalence class from every state class. In other
words, the IECP is a non-empty subset M of M0 × . . . × M|A|−1, where every
element describes a set of first order logic expressions whose conjunction is
satisfiable:

∀φ ∈ M :|=
∧

(p,n)∈φ

⎛

⎝

⎛

⎝
∧

pj∈p

pj

⎞

⎠ ∧
(

∧

nk∈n

¬nk

)⎞

⎠ (4)

To calculate all φ efficiently, Algorithm 2 is used. Similar to Algorithm1, every
satisfiable φ has to be found. Otherwise, the partitioning would be incomplete,
as parts of the input domain were not covered by the result. Again, parts of the
search space M = M0 × . . . × M|A|−1 not containing a solution can be left out.
If for a set P the fact could be established that the conjunction of its elements
is not satisfiable, conjunctions with further expressions will not be satisfiable as
well. The number of elements in M of which P is a subset is

∏

i=|P |
|A| − 1|Mi| (5)

Input: Set M = {M0, . . . , M|A|−1} of IECPs of all state classes
Output: IECP of the IOSTS under consideration
function CalculateSatisfiableSubsets(Mx, Ex)

if Mx = ∅ then
return {Ex};

Φx ← ∅;
Mi ← argmin

mx∈Mx

(|mx|);
for (p, n) ∈ Mi do

exp ←
(
∧

pi∈p

pi

)

∧
(
∧

nj∈n

¬nj

)

;

if |= exp ∧ ∧

e∈Ex

e then

Φx ← Φx∪ CalculateSatisfiableSubsets(Mx\Mi, Ex ∪ {exp});
return Φx;

return CalculateSatisfiableSubsets(M , ∅);
Algorithm 2. Algorithm calculating the IECP.

assuming the elements of P were picked by ascending index of the elements of
M . This number is maximal if |P | is as small and all Mi as large as possible, or
if the following condition holds ∀0 ≤ j < |P | : ∀|P | ≤ k < |A| : |Mj | ≤ |Mk|.
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To be able to ignore as large parts of the search space as possible, sorting the
elements of M by cardinality, picking a P of size � out of the first � elements of
M and checking it for satisfiability is beneficial. If P is satisfiable, then � should
be increased and a new P picked until either � = |A| or a conjunction of the
elements of P is not satisfiable. In the former case, P describes an input equiv-
alence class, in the latter a different P shall be picked. Algorithm 2 describes a
possible implementation. In our example, first an order for the Mi is determined,
beginning with the smallest set, which is M2. For each of its elements, every ele-
ment of the next Mi in order, e.g. M0, is picked and the conjunction checked for
satisfiability. If that is satisfiable, every conjunction with every element of M1

would be checked. This way, all IECP are found, which are listed in Fig. 3.

Fig. 3. Input equivalence classes of the alarm system example.

2.3 Checking for Input/Output Equivalence

Two IOSTS are I/O-equivalent, if they produce the same language of
input/output traces. To check two IOSTS for I/O-equivalence, we first calcu-
late the IECP for both. In [10] the authors show how to derive FSMs or, more
precisely, transductors from these IECP which are I/O-equivalent iff the same
holds for the corresponding IOSTS. In short, these transductors are constructed
as follows: Let S1, S2 be a pair of IOSTS to be checked for I/O-equivalence with
a known bijective mapping for their input and output variables, i.e. for every
input and output variable of S1 there is a corresponding variable in S2. Fur-
thermore, let AS1 ,AS2 be the MO partitionings and IS1 , IS2 be the IECPs for
both IOSTS. Then, T1 = (Q1, q1, ΣI,1, ΣO,1, R1), T2 = (Q2, q2, ΣI,2, ΣO,2, R2)
are the corresponding transductors, where every state in the state space Q1 has
a corresponding state class in AS1 , and every input symbol in the input alphabet
ΣI,1 has a corresponding input space partition in IS1 . The initial state q

1
∈ Q1

maps to the state class containing the initial state of S1. T1’s output alphabet
ΣO,1 results from the output vectors in the state classes AS1 where every dis-
tinct output vector is assigned an output symbol in ΣO,1. The transition relation
R1 is constructed according to the transition relation of S1. T2 is constructed
accordingly.

For a word composed of symbols from the input alphabet, each transductor
produces a set of output traces. Only for non-deterministic IOSTS, this set may
contain more than one trace. Every element of that set represents a possible
response of the system for the applied input trace.
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Minimising the transductor allows the input alphabet to be partitioned.
Two input symbols x1, x2 are equivalent and thus elements of the same par-
tition element iff for every transition (q, x1, y, q′) ∈ Rm there is a transition
(q, x2, y, q′) ∈ Rm, where Rm is the transition relation of the minimised trans-
ductor. Merging all input space partitions corresponding to an element of a set
of equivalent input symbols results in the coarsest IECP for the corresponding
IOSTS.

After calculating the coarsest IECP using T1 and T2 described above, two
further transductors T̄1, T̄2 can be derived as described above, now using the
coarsest IECPs to construct the input alphabets. These are I/O-equivalent, i.e.
their languages are equal, iff S1 and S2 are I/O-equivalent. Using a test method
which is complete regarding I/O-equivalence, a test suite can be calculated, con-
sisting of a set of input words. T̄1 and T̄2 are I/O-equivalent if and only if they
produce the same set of output words for every input word of the test suite.
However, if for one input word the sets of output words differ, a counterexample
has been found. The counterexample consists of the input word and the sym-
metric difference of the sets of output words produced by T̄1 and T̄2. Naturally,
the shortest counterexample can be found effectively by executing the test suite
sorted by the length of the input words in ascending order. As a prerequisite
for the calculation and execution of a common test suite, a bijective mapping
between the input symbols of T̄1’s and T̄2’s input alphabets has to be known.
This requires that the input alphabets are of the same size and that for every
input equivalence class partition of the coarsest IECP of S1 there is a congruent
input equivalence class partition in the coarsest IECP of S2. If this is not the
case, S1 and S2 are known to not be I/O-equivalent as shown in [16]. To calculate
a common test suite nonetheless, the intersection of both coarsest IECPs can be
used as the coarsest common IECP, allowing T̄1 and T̄2 to be constructed with
the same IECP. This is necessary if a counterexample has to be calculated.

3 Case Study and Quantitative Evaluation

3.1 General Evaluation Approach

To evaluate the described approach, a case study involving models with varying
complexity and state space size has been performed. Each model was represented
as a SysML state machine [14]. Its behavioural semantics was specified by asso-
ciating an IOSTS transition relation with the state machine, as described in [9].
Errors were injected into each model M by applying mutation operators, this
resulted in mutant models M1,M2, . . . . Each pair (M,Mi) has been checked
by means of the I/O-equivalence checking approach described in the previous
section. Additionally, each model M and each mutant Mi has been represented
using the CSP process algebra [17], so that the FDR3 model checker [7] could
be used to check I/O-equivalence by means of CSP trace equivalence. For each
equivalence check, the performance of our equivalence checker was compared to
that of FDR3.
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3.2 Models Used

For our case study, five models have been selected, two of these were already
described in previous publications [11].

3.2.1 Airbag Controller
The most complex model used for our case study describes the behaviour of an
airbag controller and is described in the following section as an example of the
complexity our approach can handle. This model has two floating point inputs
s1 and s2, describing the acceleration measured by the acceleration sensors the
airbag controller is evaluating, and two Boolean output values, fire and defect,
which are set to true iff the airbag should be triggered or the sensors are regarded
as defect, respectively. Furthermore, there is a Boolean input variable clk that
toggles iff there is a new pair of input values to be processed.

If the system is not defect, and if the airbag has not been triggered, the con-
troller waits for a new pair of input values. Such a pair will be checked for plau-
sibility first. A difference of more than 5% is considered to be implausible. For a
pair of plausible input values the following relation holds: s1 ∈ [s2 · 0.95, s2 · 1.05].
An internal integer counter variable plausibleCtr is set to zero if this is not the
case. Also, another internal integer counter variable errCtr is incremented. If
afterwards the relation errCtr ≥ 3 holds, the system is regarded as defect, thus
defect is set to true and the controller halts, otherwise, the next pair of input
values is awaited. However, if the sensor values are plausible, plausibleCtr is
incremented and the relation plausibleCtr ≥ 3 checked. If it holds, errCnt is
reset to zero. In any case of plausible sensor values, the sensor values are com-
pared to a threshold, in our model this is the floating point value 3.0. If one of the
values does not exceed the threshold, another internal integer counter variable
crashCnt is reset to zero, and the next pair of values awaited. However, if both
exceed the threshold, crashCnt is incremented. If this counter equals 3 after the
increment, this is considered as a trustworthy crash indication; thus the output
fire is set to true, and the system halts. Figure 4 shows a SysML state machine
describing this behaviour.

3.2.2 Further Models
Table 1 summarises the properties of all models used for the case study. Apart
from the number of input variables, output variables and size of state space after
applying our approach, it lists an approximation of the input domain size.

For SysML models, the size calculation |DI | of the input domain is based on
the lower and upper bounds of each input variable type and the number of dis-
tinct representable values between these bounds. As CSP only admits data types
based on integral numbers, all variables representing floating point numbers had
to be approximated as integer variables using one of two methods:

1. Two integers modelling one floating point number, where one models the
integral part, and the other the fractional part.

2. Scaling all floating point numbers in a model by the same factor sufficiently
large to allow for discarding the fractional part.



Model Checking by Input Equivalence Class Partitioning 49

Fig. 4. SysML state machine describing the behaviour of an airbag controller.

Due to these changes, all models using floating point numbers show different
input space sizes for SysML and CSP models. The size of the CSP model input
space is denoted by |DI,CSP|.

Table 1. Model input and state space size for the original models used for the case
study.

Model |VI | |VO| |DI | |DI,CSP|
alarm1 1 1 2 × 102 2 × 102

alarm2 1 1 1.1 × 109 2 × 102

csm 2 3 1.4 × 1018 3.3 × 1012

turn ind 4 3 8.8 × 109 103

airbag 3 2 2.4 × 1018 2.5 × 105

Model alarm1 is the simple alarm system used in the examples above, alarm2
is a more complex variant of alarm1. Model csm specifies a ceiling speed monitor
for a train control system; it is described in [4]. Model turn ind describes a turn
indication controller for cars, taking left/right flashing and emergency flashing
into account; it is a simplified version of the complete model described in [15].
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3.2.3 Mutation Operators
For every model used in our case study – from now on called reference model – a
set of mutated implementation models has been created. At least one implemen-
tation was chosen to be syntactically different, but semantically equivalent, and
at least one mutation differed in its behaviour. To this end, we applied exactly
one mutation operator out of a set of commonly used syntax mutation opera-
tors [1,2,13] to the SysML reference model, guaranteeing syntactically different
implementations with the same input and output variables. Thirteen mutation
operators described in Table 2 were selected and used for error injection into the
reference models, as far as applicable.

Table 2. Mutation operators.

3.2.4 CSP Models
The CSP models were manually created by translating SysML reference models
and implementations into CSP, taking into account the discretisation of floating
point input variables as described above.

3.3 Results

Every SysML reference model and each associated implementation were checked
for I/O-equivalence using the method described in this paper. The test suites
used to check the transductors for I/O-equivalence as described in Sect. 2 were
calculated using the W-Method [5,20]. The corresponding CSP reference and
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implementation models were checked for trace equivalence using the FDR3 model
checker. Each check was limited to 40 GBytes of RAM and 2 h execution time
(wallclock time).

Regarding the correctness of the checks, both our model checking method and
the FDR3 tool detected the same I/O-equivalence violations, as was expected.

For the alarm1 model, the FDR3 tool was approximately 70 times slower than
our checker and needed approximately 11 times more memory. These factors are
calculated as the averages of all 10 checks performed for the alarm1 model and
its 10 mutated implementations.

For the alarm2 model, the FDR3 tool was approximately 22 times slower
and needed 7 times more memory. This value was calculated from 11 mutations
checked against the reference model.

For all model pairs derived from the models csm, turn ind and airbag, the
CSP model checker was not able to complete the calculation within the resource
limits set, while our checker completed these checks with durations from 27 s to
1217 s. The average checking time needed by our checker was 365 s.

All performance measurements described here included the time for abstract-
ing the original model to its finite state machine and the time for creating a
counter example in case of failures. A detailed tabular view documenting all
checks and comparisons performed is given in [12].

4 Conclusion

We have presented a new algorithm for I/O-equivalence checking of models with
infinite input domains but finite domains for internal state and outputs. The
underlying method has been based on a new complete input equivalence class
testing strategy previously developed by the second author and his research
group.

Our approach clearly outperforms the FDR3 model checker. The cause is
easy to understand, since FDR3 does not implement the equivalence class con-
struction techniques that were available for our checker. As a consequence, FDR3
needed to explore the models by explicitly checking a very large number of input
values instead of restricting the investigation to small numbers of input classes.
This comparison shows that the input equivalence class construction method
advocated in this paper can be a valuable extension to other model checking
tools as well. Additionally, the results presented here are another example of the
closeness between testing and model checking methods.

The algorithms needed for abstracting a nondeterministic I/O-state transi-
tion system to its finite state machine have exponential worst case complexity.
Future work will focus on mitigating this problem by means of further distrib-
uting the algorithms involved on multiple threads and CPU cores.
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