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USING PERSONAL INFORMATION IN
TARGETED GRAMMAR-BASED
PROBABILISTIC PASSWORD ATTACKS

Shiva Houshmand and Sudhir Aggarwal

Abstract Passwords are the primary means of authentication and security for on-
line accounts and are commonly used to encrypt files and disks. This re-
search demonstrates how personal information about users can be added
systematically to enhance password cracking. Specifically, a dictionary-
based probabilistic context-free grammar approach is proposed that ef-
fectively incorporates personal information about a targeted user into
component grammars and dictionaries used for password cracking. The
component grammars model various types of personal information such
as family names and dates, previous password information and pos-
sible information about sequential passwords. A mathematical model
for merging multiple grammars that combines the characteristics of the
component grammars is presented. The resulting merged target gram-
mar, which is also merged with a standard grammar, is used along
with various dictionaries to generate guesses that quickly match target
passwords. The experimental results demonstrate that the approach
significantly improves password cracking performance.
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1. Introduction
The use of passwords for authentication is almost universal and the

quality of passwords continues to be important despite mechanisms such
as two-factor authentication and biometrics. A recent survey [15] reports
that a typical user has around 26 online accounts, but only five differ-
ent passwords. To ensure quality passwords, policies are used by many
websites to ensure that users employ strong passwords; however, there
are no clear indications about the efficacy of these policies.
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Research has demonstrated that many passwords from revealed data-
sets [13] can be broken via improved password cracking techniques. How-
ever, in a real-world situation, a substantial number of passwords are not
easily broken because users may employ different forms of passwords for
“high value” sites.

During forensic investigations of seized hard drives, law enforcement
professionals frequently encounter encrypted volumes or disks. Encryp-
tion techniques such as the one used by TrueCrypt are specifically de-
signed to take a long time to compute the hashes, rendering it imprac-
tical to try millions of guesses; in such situations, additional resources –
beyond more computing power – must be brought to bear.

A promising solution is to leverage personal information about users
in cracking their passwords. This research explores how knowledge about
a user (target) can be used to enhance the ability of law enforcement to
attack passwords belonging to the target. The attacker might leverage
specific information about the target such as names of family mem-
bers, important dates, addresses and numbers, as well as possibly some
of the target’s previous passwords for the same account or from sis-
ter accounts. The approach employs the dictionary-based probabilistic
context-free grammar (PCFG) approach to password cracking [6, 16,
17], which trains a grammar on revealed password sets and uses the
learned grammar – called the attack grammar – to generate guesses in
optimal probability order. Personal information about a target can be
incorporated in PCFG-based password cracking in a very straightfor-
ward manner. The experimental results demonstrate that the approach
augmented with information about a target significantly improves pass-
word cracking performance.

2. Background and Related Work
A probabilistic context-free grammar is derived via training on a large

set of revealed passwords. This grammar is then used to generate guesses
in probability order. If no other information is known, this is referred
to as an optimal off-line or on-line password attack. Interested readers
are referred to [6, 17] for details about PCFG-based password cracking.

PCFG-based password cracking has two major phases (and code com-
ponents):

Training: In this phase, first-level production rules of the gram-
mar are learned. These rules generate base structures from a start
symbol S. A base structure comprises grammar variables that ab-
stract the class and length of password components. For example,
class types can be L denoting alphabet strings, D denoting dig-
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its and S denoting special characters. Additionally, K is used for
keyboard patterns and M for multi-word patterns. Capitalization
is represented by the class type U/N (uppercase/lowercase), but
they are treated slightly differently. The length of a substring is
indicated as a part of a variable. For example, S → M8D4S2 is a
rule that derives a base structure of three variables of the indicated
lengths.

Second-level grammar rules derive terminal substrings from base
structure variables such as D4 → 2001 . For example, the deriva-
tion of the password iloveyou2001## is:

S ⇒ M8D4S2

⇒ iloveyouD4S2

⇒ iloveyou2001S2

⇒ iloveyou2001##

The probabilities of most of these secondary rules are also learned
from the training set. Probability smoothing can be used to give
appropriate probability values to rules that are not found in the
training set. To calculate the probability of a string derived from
the start symbol, the probabilities of the rules used in the vari-
ous steps are multiplied together. Additional information used for
cracking is incorporated in dictionaries, which contain words that
can replace the L and M structures when generating guesses.

Guess Generation: In this phase, the learned probabilistic con-
text-free grammar and a set of multiple (attack) dictionaries are
used to generate password guesses in decreasing probability order.
Probabilities are associated with each dictionary. A dictionary can
be generated by learning from the training set or via other means.
The probabilities of the actual words used during guess generation
depend on the dictionaries and their probabilities.

Little research has focused on using personal information, including
previous passwords, to improve password cracking. One reason is that
very few revealed password datasets with personal information were
available. A second reason is ethical concerns about using email and
personal information about users, even if they were leaked by hackers
and posted on public websites. For example, if one has a revealed email
and password, the ethical dilemma is whether it is appropriate to look
online to find additional personal information about the user even if the
new information is not made public. Several authors [1, 7, 14] have
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recently used leaked information to explore how users create passwords
using personal information and how this information may be used to
crack passwords.

Castelluccia et al. [1] have attempted to leverage personal information
to improve password cracking using a Markov model [10]. Their OMEN+
system integrates personal information with normal training based on
revealed passwords. The fundamental difficulty with the Markov ap-
proach [4, 10] is that it is computationally expensive to generate pass-
words in probability order because the training typically uses the learned
probabilities of n-grams to determine the probability of a password
string. Thus, it is first necessary to create various discretized proba-
bility levels assigned to buckets in which strings are placed based on the
3-gram probabilities of strings in the training set. The strings in the
buckets are attempted in the highest probability order of the buckets.

Castelluccia et al. [1] have also explored the use of personal informa-
tion such as email, birthdays and usernames, but did not use previous
passwords or cross-site passwords. Their OMEN+ system attempts to
determine if a password set containing personal information has any
overlap with a password with personal information. If an overlap ex-
ists, then the corresponding probabilities of the overlapping 3-grams are
increased based on a parameter. For some reason, instead of targeting
a specific individual, Castelluccia et al. modify the 3-gram probabili-
ties such that better results can be obtained for a complete test set.
In contrast, the proposed approach uses a highly efficient PCFG-based
training system without the problems of the Markov approach. More-
over, it does not require changes to the training or cracking components;
instead, only additional grammars and dictionaries have to be created.

Li et al. [7] have explored the use of personal information in pass-
word cracking using the 12306 dataset that was leaked from a Chinese
railway ticket website. The dataset contains approximately 130,000 Chi-
nese passwords as well as personal information such as email address,
username, cell phone number and the user’s Chinese name. Additional
information that can be extracted includes the birthday and gender of a
user. Li et al. extended the probabilistic context-free grammar approach
of Weir et al. [17] to develop the Personal-PCFG system. The extension
adds a new grammar variable for each type of personal information such
as B for birthday, N for name and E for email address; additionally,
as in other probabilistic context-free grammars, subscripts are used to
indicate lengths. During the preprocessing phase, a password such as
helloalice816! is converted to the structure helloN5B3! if the personal
information (name and birthday) match.
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The problem with this approach is that Li et al. do not appreciate
the grammar ambiguity that arises when several base structures yield
the same terminal string. Generating guesses in the order of highest
probability when using a context-free grammar relies on the grammar
being unambiguous. This ensures that there is a well-defined probability
for a guess that depends on a single unique derivation.

The ambiguity problem is discussed by Houshmand et al. [6], where
several new variables such as K for keyboard combinations and M for
multiword combinations are introduced to minimize or eliminate gram-
mar ambiguity. Note that the training and cracking components have
to be modified to accommodate the new variables. Furthermore, the
highest probability order of guesses generated cannot be maintained un-
less an effort is made during training to eliminate ambiguity. Otherwise,
the PCFG-based approach would still generate guesses for all the base
structures, but the probability order of guesses would not be preserved.

Wang et al. [14] also extend probabilistic context-free grammars [17]
to accommodate personal information and explore the use of previous
passwords. They follow the approach of Li et al. [7], except that instead
of using a new variable B for personal information such as birthday
with the subscript indicating length, they incorporate a tagged variable
system where specific subscripted variables reflect different formats for
a birthday. Thus, for each type of personal information, they have to
predefine different formats for the particular variable; these become the
only formats that are learned during the training process.

The approach of Wang et al. has exactly the same, if not worse, am-
biguity problems as that of Li et al. when generating guesses because
many different base structures can yield identical passwords, leading to
incorrect assignments of probabilities to the guesses. For example, the
password string 120982 can be derived from various variables represented
as B1, B2, ... , B10 or even D6, which would then give incorrect prob-
abilities to terminal strings during guessing because all possible proba-
bilities of the string derivations have to be added. When using previous
password information, Wang et al. also introduce new variables to the
grammar that represent various transformations of passwords. But this
causes similar problems as discussed above. In contrast, the approach
for accommodating previous passwords presented in this chapter does
not require changes to probabilistic context-free grammar training or
guess generation.

Das et al. [3] have used publicly-available leaked password sets with
user identifiers and have analyzed the data to find passwords for the
users. In particular, they were able to find 6,077 unique users with at
most two passwords for each user; 43% were identical passwords and the
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remaining were non-identical. However, Das et al. do not consider the
changes that a user might make when using similar passwords for the
same or other accounts.

Zhang et al. [18] have conducted a large-scale study focusing on pass-
word changes necessitated by password expiration. They were able to
access a dataset of more than 7,700 accounts containing a known pass-
word and a subsequently changed password for each account. They
model a password change as a sequence of transforms (based on various
criteria) and organize the transforms as a tree with the old password
as the root. A path in the tree is a sequence of transforms that yields
the new password with common subsequences being the same from the
root. A search starts at the root with an input password and, upon
visiting each node in the tree, the corresponding transform is applied to
the output of the parent node. Then, each output is tested as a pass-
word guess against the target password hash. The primary limitation
of this algorithm is its time complexity; thus, the depth of the tree is
restricted to three levels. Furthermore, the algorithm does not incor-
porate information about a user. In contrast, the approach proposed
in this chapter derives a new grammar that precisely incorporates user
information to enhance PCFG-based password cracking. The approach
enables the use of specific information about a previous password instead
of generic transformations that a number of users may employ. Addition-
ally, the approach can simultaneously incorporate personal information
about the targeted user.

3. Building a Targeted Attack
This section discusses the proposed approach for creating a proba-

bilistic context-free grammar designed to crack a password for a targeted
user. It is assumed that there is a single target and that some personal
information about the target and the password hash are available. The
goal is to create an attack grammar that specifically generates guesses
for the target. Note that multiple hashes are not targeted simultane-
ously. This is not really a limitation because, if the hashes are salted,
attacks have to be re-executed for each hash. Also, this is a common
situation that holds true for online attacks on the target; this is because
there is no notion of trying multiple users simultaneously. If no personal
information is available, the same grammar would most likely be used
for all targets. Of course, some general information could guide the use
of different training datasets (e.g., Chinese vs. English targets). The
added complexity of the proposed approach is simply that a grammar
is developed for each target. As will be discussed later, grammars can
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be combined to handle a situation where the personal information was
used to create the password as well as a situation where it was not (e.g.,
the user simply created some other password).

The available personal information can be as simple as the username
or the first and last names of the user or it can be more detailed such
as the names of family members, their dates of birth and addresses.
Password policies often do not allow users to use their login ids or even
their real names when creating passwords. However, human beings tend
to use phrases, names and numbers that are familiar to them for easy
memorization. Thus, personal information gathered about a target can
be very useful in password cracking. The proposed approach can lever-
age any type of personal information about a target with only minor
categorization.

The next section discusses the combination of multiple grammars to
create a new grammar that models the use of the component grammars
in a precise way. Following this, the use of the combined grammar in
cracking passwords belonging to a specific target is described.

3.1 Merging Context-Free Grammars
Generating a probabilistic context-free grammar from a training set

of disclosed user passwords can be time consuming depending on the size
of the training set. Merging two or more grammars gives the advantage
of combining two training sets without having to repeat the training
phase.

Suppose it is desired to concatenate two training sets to create a
grammar. One way is to merge the training sets and produce a context-
free grammar from the entire set. On the other hand, assume that two
grammars have been generated, each using a different training set. Then,
the two grammars can be merged to create a new grammar that is the
result of training using both the sets. This technique also permits the
specification of a weight for each grammar to control how much it is
affected by each training set.

A probabilistic context free grammar has a set of production rules Rj

(j = 1..n) where n is the number of rules. Each rule has a single variable
(or non-terminal) on the left-hand side with a sequence of variables or
terminals on the right-hand side. Each rule Rj has an associated proba-
bility pj with the requirement that the probabilities of all the rules with
the same left-hand side must sum to one.

Definition: Let G1 and G2 be two probabilistic context-free grammars
with base structures and component structures as defined in [6, 17].
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Then, the new grammar G, which is called the “merge” of G1 and G2,
is given by:

G = αG1 + (1 − α)G2 where 0 ≤ α ≤ 1

Note that this is only representational because grammars are actually
complex abstract tuples. It is assumed that the variables and terminals
in the two grammars are chosen from the same possible sets. The pa-
rameter α is used to give an appropriate weight to grammar G1 versus
grammar G2.

Next, it is necessary to define the new set of rules and their probabil-
ities for the merged grammar G.

Definition: Let R be a grammar rule that is in G1 or G2. Let the
probability of R in G1 be p1 and the probability of R in G2 be p2 (if R
is not in a grammar, then its probability is zero). Then, the probability
p of R in the merged grammar G is given by:

p = αp1 + (1 − α)p2

It is easily shown that G is a well-defined probabilistic context-free
grammar. This is because the probability values of all rules with the
same left-hand side variable in the merged grammar sum to one. Fur-
thermore, the combination of the two grammars can be viewed as an
affine transformation with the points being grammars in an abstract
space. Intuitively, it is possible to combine any number of grammars by
simply ensuring that the sum of their component weights is equal to one
and the resulting grammar is the same regardless of the ordering of the
combinations.

Table 1 shows a simple example involving the merging of two gram-
mars. The following sections discuss how merged grammars can be used
to crack passwords belonging to a target.

3.2 Integrating Personal Information
The approach enables a user to input almost any available personal

information about a target. Law enforcement personnel often encounter
cases in which they have to break the passwords of suspects about whom
they have significant personal information. Examples include the names
of family members and friends, usernames, relevant numbers (social se-
curity and phone numbers), addresses (street name, city, state and zip
code), important dates, favorite sports teams and players. Personal in-
formation is entered in a structured way such that the entries can be
massaged as needed.
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Table 1. Merging grammars G1 and G2 with α = 0.8.

Grammar G1

Rule Probability

S → L5D3 | L5S1 0.6 | 0.4
D3 → 999 | 124 0.8 | 0.2
S1 → ! | @ 0.63 | 0.37

Grammar G2

Rule Probability

S → L5S1 | L4S1 0.7 | 0.3
D3 → 123 | 124 0.6 | 0.4
S1 → # | & 0.72 | 0.28

Merged Grammar
Rule Probability

S → L5D3 | L5S1 | L4S1 0.48 | 0.46 | 0.06
D3 → 999 | 124 | 123 0.64 | 0.24 | 0.12
S1 → ! | @ | # | & 0.504 | 0.296 | 0.144 | 0.056

Based on the personal information (PI), a PI-grammar and PI-diction-
ary are constructed for password cracking. Numbers are added to the
digit variables of the PI-grammar. Names, words and alphabet charac-
ter strings are added directly to the PI-dictionary. Multiple dictionaries
can be used during the attack phase (guess generation). For example,
a basic dictionary would be a fairly large standard dictionary of words;
these words are not learned via the training process because the training
set would be too sparse to accurately account for or reflect word us-
age. Additional specialized dictionaries could be used; examples include
a “top words” dictionary that contains the most frequently-occurring
words in the training set and the PI-dictionary that contains words
based on personal information for use in a targeted attack. The use
of the PI-dictionary during guess generation ensures that the strings in
the dictionary will be used with higher probabilities in the guesses.

Dates are broken down into month, day and year components, and
most variations of dates are similarly added to the PI-grammar. For
example, when 02/10/2016 is entered, the following numbers are added
to the digit components of the PI-grammar: 02, 10, 2016, 16, 02102016,
021016, 10022016, 100216, 0210, 1002, etc. The name of the month and
its variations are also added to the PI-dictionary (e.g., February and
Feb). Note that the PI-grammar alone is not very useful in password
cracking because it has very few base structures and components. The
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proposed approach merges this grammar with a general grammar in
order to generate guesses.

3.3 Using Old Password Information
As the number of accounts per user increases, users are more likely to

reuse their passwords or change their passwords slightly to avoid mem-
orizing new passwords. This is particularly true when a security policy
forces users to change their passwords frequently. A survey by Shay et
al. [12] conducted on 470 university students, staff and faculty revealed
that 60% of the individuals used one password with slight changes for
different accounts. Moreover, a study of leaked password sets by Dur-
muth et al. [4] demonstrated that users often apply simple tricks to make
slight changes to their old passwords.

Old passwords contain vital information such as important numbers,
dates and names of family members. The goal is to specify a gram-
mar that can generate guesses similar to an old password. Since users
often change their passwords with slight modifications, the AMP edit
distance [5] is used to define a metric for similar passwords and to de-
termine a grammar that can generate such passwords. AMP uses a dis-
tance function to create strengthened passwords within an edit distance
of one of a user-chosen password based on the Damerau-Levenshtein edit
distance [2]. The Damerau-Levenshtein edit distance measures the mini-
mum number of operations needed to transform one string into another.
The AMP version of this distance function includes insertion, deletion,
substitution and transposition of components of the base structure as
well as similar operations within a component. The AMP distance func-
tion is improved by adding operations on keyboard patterns and mul-
tiword patterns. These patterns were originally incorporated in proba-
bilistic context-free grammars by Houshmand et al. [6]. For multiwords,
the revised AMP edit distance has the unit operations:

Insertion: Insert a D1 or S1 in between two words in a multiword.
For example, for a password containing starwars (M8), star5wars
or star!wars are created.

Transposition of Components: Transpose two adjacent words
as well as the first and last word in a multiword. For example,
mysweetbaby can be changed to sweetmybaby, mybabysweet and
babysweetmy.

Deletion: Delete a word from a multiword, which results in a
new base structure as well as a new multiword in the grammar.
For example, given the password mysweetbaby12 with base struc-
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ture M11D2, it is possible to create other base structures such as
M9D2, M6D2, M7D2 as well as mysweet, mybaby and sweetbaby as
multiwords in the grammar.

This approach produces an ED-grammar (edit distance grammar)
that, by itself, generates all the guesses within a revised AMP edit dis-
tance of one from an old password. Note that every possible change is
considered to be equally probable.

3.4 Predicting New Passwords
This section assumes that the attacker has even more information

about the target. The focus is on the knowledge about the target’s
password habits and it is assumed that the attacker has access to at
least two similar subsequent old passwords. The first approach can be
leveraged to use the passwords to generate an ED-grammar. However,
it is also possible to gather information about the changes made to the
previous passwords of the target and use this information to predict
the new password. In the following paragraphs, an algorithm for deter-
mining changes between two subsequent known passwords is presented.
Following this, a new password based on the information is predicted.

In order to determine the changes between two passwords, a function
is implemented that finds the minimum edit distance by creating a dis-
tance matrix. The function also incorporates a backtracking algorithm
that determines the operations made between the two strings. The edit
distance function is based on the Damerau-Levenshtein algorithm. The
algorithm starts by filling a (distance) matrix D of size n1 × n2, where
n1 is the length of the first string s and n2 is the length of the second
string t. The D[i,j] value measures the distance between the initial sub-
string of s of length i and the initial substring of t of length j. At the
time of creating the matrix, the operations associated with each step are
captured and stored in another matrix O (using i: insertion, d: deletion,
t: transposition). This is used to create the transformation algorithm
that backtracks using the matrix and finds the exact operations made
when transforming one string to another.

Hierarchical Transformation Algorithm. Note that the AMP edit
distance function [5] is different from the regular Damerau-Levenshtein
edit distance. The main difference is in the transposition operation.
The Damerau-Levenshtein edit distance considers a transposition of two
adjacent characters as one edit distance. While this can be useful to
model string similarities, it is not appropriate for password changes.
For example, when two passwords such as iloveyou123 and 123iloveyou
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are compared, the Damerau-Levenshtein edit distance between the two
strings is computed as 6 (the algorithm finds that there are three in-
sertions in the beginning and three deletions at the end of the string).
However, when considering these two strings as passwords with different
components, it is clear that the target has only made one change by
transposing the multiword component M8 with the digit component D3.

This is modeled using a hierarchical transformation algorithm that
first finds the edit distance between the simple base structures. A simple
base structure is the base structure of the password without considering
the length of each component. For example, the simple base structure
of love456! is LSD.

Given two old subsequent passwords, in the first level, both passwords
are parsed to their simple base structures. Then, the edit distance algo-
rithm is invoked for these two simple base structures to determine the
differences in the base structures. Using the backtracking algorithm,
the operations that caused the change in the simple base structure are
determined.

The backtracking algorithm starts from the bottom-right corner of the
matrix and travels back to the upper-left corner of the matrix and, in
each step, determines the operation that was performed to calculate the
edit distance. It then creates a string of the operations along the path
that shows how one string has been transformed to the other. If a trans-
position has been made within the simple base structure, the algorithm
checks the values of each component and then reverses the transposition
such that it neutralizes the initial transposition effect and recreates one
of the passwords similar to the other by applying the transposition.

The second level of the hierarchical algorithm proceeds to find the
edit distance between the changed password along with the second pass-
word to identify the edit distance and the operations between the two
strings. For example, the backtracking function returns nndnnnnnt (n:
no change, d: deletion, t: transposition) given 123alice!$ and 12alice$!.
This hierarchical transformation algorithm is used in the next section to
predict the changes that the target has made to create the new password.

Creating the Grammar. The transformations between two old pass-
words can be used to generate guesses of the most recent password of
the target. Some of the most common and important changes based on
the available data and the results of other studies [3, 18] are used to cre-
ate the PM-grammar (password modifications grammar). The following
functions add appropriate structures to the PM-grammar:

Increment/Decrement the Digit Component: An increment
or decrement of one in the digit component in the old passwords is
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identified. Upon finding such a change, the next predictable change
is added to the grammar. For example, if the old passwords are
bluemoon22 and bluemoon23, the number 24 is added to the D2

component of the grammar. The same base structure L8D2 also
has to be added to the grammar to increase the likelihood of using
the same structure again.

Insertion of the Same Digit: Algorithms have been developed
to recognize if a digit has been inserted into a password and if it
has been added repeatedly. Examples are bluemoon → bluemoon5
→ bluemoon55 → bluemoon555. In this case, if the old passwords
are bluemoon3 and bluemoon33, 333 is added to D3 in the grammar
as well as L8D3 to the base structures of the grammar.

Capitalization of Alpha Strings: If the old passwords both
have the same alpha sequence with different capitalizations, both
the capitalizations are added to the grammar because the chances
of using the masks are higher.

3.5 Merging Grammars and Generating Guesses
After the PI-grammar, ED-grammar and PM-grammar have been con-

structed based on the kind of information available, the grammars are
merged with a more comprehensive general grammar that is used for
password cracking when no personal information is known. By assign-
ing appropriate weights to the grammars, the generated guesses can be
balanced such that guesses with personal information are typically gen-
erated earlier with higher probability values and guesses that are more
general are typically generated later in the guessing process.

This approach, unlike other methods [7, 14], does not require chang-
ing the training code or the cracking code of the probabilistic context-
free grammar that implements training and guessing. In fact, it can
be viewed as an add-on intermediate step that requires no changes to
training and guessing.

After training on a large password set (general grammar), the PI-
grammar, ED-grammar and PM-grammar are created based on the avail-
able personal information. These grammars are merged with the general
grammar. The resulting final target grammar can be used as before in
offline or online attacks and can generate a wide variety of guesses (in
highest probability order) while giving higher probabilities to passwords
similar to those used by the target.

The advantage is that no matter which version of a probabilistic
context-free grammar is used, the approach still holds. Note that the
attacker uses personal information in the hope that the target has used
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personal information to create the password. Clearly, the merging of
grammars is a powerful mechanism.

A key aspect of the merging technique is that, if the target has not
used personal information in passwords, the password cracking system
will still work appropriately. For example, merging a general grammar
and a special targeted grammar based on a seed password can be used to
generate passwords that favor the seed password, but it is not stuck with
a limited number of guesses and generates guesses based on the general
grammar as well. Furthermore, by adjusting the weights when merging
the grammars, it is possible to favor one approach (general) versus the
other (seed).

4. Experiments
This section discusses the experimental results on the effectiveness of

targeted password attacks. It can be proven that, if personal informa-
tion (excluding previous passwords) was used in a password such as a
name or date, the password cracking approach would automatically use
such passwords earlier in guess generation because the probabilities of
these passwords are higher due to the grammar merging operation. Un-
fortunately, obtaining a validated personal information password set or
simulating one through user studies is problematic. Therefore, no tests
were performed on the PI-grammar. Instead, the experiments focused
on a situation where previous passwords are available.

The first experiment compared attacks with and without the ED-
grammar. These attacks are referred to as targeted and general at-
tacks, respectively. The (extended) probabilistic context-free grammar
of Houshmand et al. [6] was used for training. In the general attack,
training was performed using a large dataset of real user passwords and
the (general) grammar was used to generate guesses. In the targeted at-
tack, the old password was used to create the ED-grammar, which was
then combined with the same general grammar produced for the general
attack while also using the same dictionary.

A total of 300,000 passwords were randomly selected from the Yahoo!
set of real user passwords that was leaked in 2012 [9]. This training
set was used to produce the general grammar. The training approach
requires a training dictionary to determine multiwords [6]. EOWL [8]
augmented with common proper names and top words from movie scripts
was used as in [5]. Additionally, dict-0294 [11] was used as the primary
attack dictionary. The test set contained 56 pairs of old and new pass-
words obtained through a survey of how users change passwords. The
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survey study was approved by the Florida State University Institutional
Review Board (IRB).

4.1 Password Survey
About 2,000 randomly-selected students from Florida State University

were invited to participate in the password survey. The participants were
asked to create an account with a password on the survey website. The
only password policy requirement was to use at least eight characters.
The participants were asked to log in once a day for a total of four times
during a period of one week. At each login, the participants were asked
a few survey questions. On the third website visit, the participants were
asked to change their passwords. On the fourth visit, the participants
logged in with their changed passwords and completed the survey.

Multiple logins enabled the participants to gain familiarity and be-
come comfortable with the passwords they had created before they were
asked to change their passwords. A total of 144 participants created
accounts and 56 of them proceeded to change their passwords; 53% of
the participants were female and 47% male. About 40% said that they
did not create new passwords for the survey, but simply used their old
passwords. Only 14% said that they created new passwords for each ac-
count. When creating their passwords, 30% of the participants said they
modified their existing passwords, about 24% reused their old passwords
and only 14% created new passwords. These percentages are consistent
with other studies.

4.2 Testing and Cracking Results
After the participants had changed their passwords, they were asked

how they changed their passwords and whether they changed them by
modifying their previous passwords. This question was important be-
cause it revealed which passwords were changed intentionally by mod-
ifying the old passwords. Otherwise, it would not have been possible
to divine the intentions of the user although the passwords appeared to
be similar. Of the 56 passwords, 23 were claimed to be created based
on the previous password. Therefore, the analysis only focused on these
passwords to check if the passwords could be guessed effectively.

During each cracking session, the old password was used as input to
generate the ED-grammar. This grammar was then combined with the
general grammar. Guesses were generated for the targeted and general
attacks. Table 2 shows the old password used as input, the new password
that was attacked and the number of guesses required to find the new
password using the targeted and general attacks.
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Table 2. Test Result of Targeted Attack.

Old Password New Password Guesses in the Guesses in the
Targeted Attack General Attack

tharaborithor thorborithara – –
Simba144! @Simba2523 734,505,973 –
$unGl@$$220 $unGl@$$110 4,070 –
research! Research! 554 5,059,949,503
starWars@123 star#Ecit@123 2,227,558 –
thebigblackdogjumps blackdogmoretime – –
Ahk@1453 Ahk#1453 12,026 –
qpalzm73 qpalzm73* 1,810 –
pluto1995 boonepluto – –
caramba10 caramba12 14 11,424,542
Elvis1993! Professional1993!2 – –
pepper88 peppergator88 128,197,109 2,563,504,751
ganxiedajiA1!! 1ganxiedajiA 7,794 –
88dolphins! 55dolphins! 38,503 –
kannj2013! Kannj2013 97 –
!FSU$qr335 !FSU$qr335mcddt – –
vballgrl77 schatzimae – –
nickc1007 corkn1007 – –
sunflower12 sunflower13 202 119,336,969
meg51899 Meg51899* 5,381 –
Research1 research11 206 23,728,452
Gleek1993 Gleek1985 9,661 1,994,709,669
Oaklea0441 Oaklea0112 91,014 –

Since this work seeks to demonstrate that passwords are cracked faster
using personal information (e.g., old passwords), the number of guesses
was limited to 10 billion in the password cracking session. The idea was
to verify that passwords can be cracked in much shorter sessions than
in a regular offline password cracking session.

The results in Table 2 reveal that it was possible to guess most of
the passwords that were changed slightly. However, a few of the pass-
words could not be guessed (shown as –) primarily because there were
no relevant alpha strings in the dictionaries. For example, the pass-
word tharaborithor is not in English and the password vballgrl77 was not
actually modified, although the user claimed it was. The results show
that only a few of the passwords were broken during a general password
cracking attack and it took much longer for the others compared with
the targeted attack. Indeed, the targeted attack was more efficient when
information about the old passwords of users was incorporated.

To explore the proposed approach further, a small list of 30 sets of
previous passwords from a private entity was used. This list contained
no other information. All but two of the passwords were pairs and only
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two comprised three sequential passwords. The PM-grammar could be
used on the two sequential sets and the third password in the sequence
could be cracked on the first guess. Furthermore, 78% of the passwords
in the list could be cracked, with 66% of the passwords cracked in less
than 20 guesses.

5. Conclusions
This research has demonstrated that personal information belong-

ing to targeted users can be systematically incorporated in probabilistic
context-free grammars to efficiently generate password guesses. Three
grammars, PI-grammar, ED-grammar and PM-grammar, are created
based on various pieces of information such as names, dates, numbers
and previous passwords. Multiple grammars are merged using a pa-
rameter that appropriately weights each grammar and the new merged
grammar maintains its probabilistic properties. The proposed approach
is an add-on intermediate step between the training and cracking phases
of probabilistic context-free grammars, enabling it to be used very easily
with all the probabilistic context-free grammar variations.

Experimental results demonstrate that many of the passwords can be
guessed using a targeted grammar; however, a general grammar is not as
successful. Passwords are also guessed at a much faster rate (many fewer
guesses) using a targeted grammar compared with a general grammar.
Future research will attempt to evaluate and refine the proposed research
by conducting surveys with much larger numbers of participants and,
therefore, more password pairs.
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