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Abstract. This paper investigates refinement techniques for semantic
tableau calculi. The focus is on techniques to reduce branching in infer-
ence rules and thus allow more effective ways of carrying out deductions.
We introduce an easy to apply, general principle of atomic rule refine-
ment, which depends on a purely syntactic condition that can be easily
verified. The refinement has a wide scope, for example, it is immediately
applicable to inference rules associated with frame conditions of modal
logics, or declarations of role properties in description logics, and it allows
for routine development of hypertableau-like calculi for logics with dis-
junction and negation. The techniques are illustrated on Humberstone’s
modal logic Km(¬) with modal operators defined with respect to both
accessibility and inaccessibility, for which two refined calculi are given.

1 Introduction

The tableau method is a popular deduction method in automated reasoning.
Tableau methods in various forms are successfully used and applied for many
non-classical logics and are especially apt for new application domains to develop
new deduction systems. Of all the different forms, semantic tableau calculi in the
styles of Smullyan and Fitting [8,22] are widely used and widely taught in logic
courses, because the rules of inference are easily explained and understood, and
deductions are carried out in a completely goal-directed way. In explicit seman-
tic tableau approaches the application of the inference rules is order indepen-
dent (because these approaches are proof confluent), which avoids the overhead
and complication associated with handling don’t know non-determinism of non-
invertible rules in direct methods [1] (see also the discussion in [13]). Because
semantic tableau approaches construct and return models, they are suitable for
fault diagnosis and debugging, which is useful in areas such as ontology devel-
opment, theory creation and multi-agent systems.

We are interested in refinements of semantic tableau calculi that lead to
improvements in carrying out deductions. When carrying out deductions by
hand a natural inclination is to delay the application of branching rules as much
as possible because these are cumbersome. When it can no longer be delayed,
we tend to apply rules creating fewer branches earlier than those creating more
branches, unless looking ahead allows us to see that several branches created
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by an inference step can be closed quickly. In a prover, where everything is
automated, the overhead of branching is high as well, so that similar strategies
are useful and have been shown to give significant speed-ups, as we found for
example in the evaluations undertaken in [14,23]. Similar considerations and
better performance have motivated the development and use of hypertableau,
hyperresolution or selection-based resolution methods [3,4,7,16].

It is therefore natural to ask whether there are general principles, which
achieve these kinds of refinements in semantic tableau calculi. In [19] we
described a general condition for reducing the branching in inference rules with-
out loosing completeness of calculi devised in the tableau synthesis framework.
Because this condition is inductive, at present it needs to be checked manually
and it is open whether it can be checked automatically.

In this paper we extend the possibilities of refining inference rules, thereby
making progress toward the aim of automating rule refinement in the tableau
synthesis framework. We describe two new approaches to satisfy the general rule
refinement condition of the tableau synthesis framework. For the first approach
we introduce atomic rule refinement as a specialisation of the general rule refine-
ment technique with the advantage that it is syntactic and therefore automatic.
This guarantees that atomic rule refinement preserves constructive completeness
of a tableau calculus. In the second approach we show how to extend a set of
non-refinable rules by altering the semantic specification of the logic and obtain
a modified set of rules which can be refined. The approaches are illustrated on
first-order frame conditions of modal logics, and a tableau calculus for the modal
logic Km(¬) of ‘some’, ‘all’ and ‘only’ [12]. This logic is an extension of basic
multi-modal logic Km allowing negation on accessibility relations.

The paper is structured as follows. In the next two sections we sketch the
main ideas of the tableau synthesis framework [19] and two existing refinements:
general rule refinement and internalisation refinement. In Sect. 4 we introduce
and investigate atomic rule refinement, which we show preserves constructive
completeness and illustrate its usefulness in several examples. In Sect. 5 we show
how atomic rule refinement can be used to construct hypertableau-like calculi.
In the final section we apply the presented techniques to the extended modal
logic Km(¬). The proofs may be found in the long version [24].

2 The Tableau Synthesis Framework

The tableau synthesis framework provides a method for systematically deriving
a tableau calculus for a propositional logic L [19]. In the following we give a
minimal description of the main ingredients, the tableau language and tableau
formulae in the calculi obtained using the method.

As the generated calculi are designed to construct models, the formulae in
them are expressed in a meta-language FO(L) that extends the object language L
of the logic with extra symbols sufficient to define models and truth valuations
of formulas. Consider, for example, the basic modal logic Km with multiple
modalities. The object language is a two-sorted language in which the formulae
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νf(¬p, x)

¬νf(p, x)

¬νf(¬p, x)

νf(p, x)

νf(p ∨ q, x)

νf(p, x) | νf(q, x)

¬νf(p ∨ q, x)

¬νf(p, x), ¬νf(q, x)

νf([r]p, x)

¬νr(r, x, y) | νf(p, y)

¬νf([r]p, x)

νr(r, x, f(r, p, x)), ¬νf(p, f(r, p, x))

νf(p, x), ¬νf(p, x)

⊥
νr(r, x, y), ¬νr(r, x, y)

⊥

Fig. 1. Generated tableau calculus TKm for Km

are defined by the BNF φ
def= p | ¬φ | φ∨φ | [r]φ in sort f, where r is a variable or

constant over the second sort r. The meta-language extends the object language
with a domain sort D (for the domain of interpretation), and two designated
predicate symbols νf and νr (the holds predicates) plus the connectives of first-
order logic and the equality predicate ≈. The language is expressive enough to
define the semantics of basic modal logic Km as follows.

∀x (νf(¬p, x) ↔ ¬νf(p, x)) ∀x (νf(p ∨ q, x) ↔ νf(p, x) ∨ νf(q, x))
∀x (νf([r]p, x) ↔ ∀y (νr(r, x, y) → νf(p, y)))(1)

Intuitively, νf(p, x) can be read as ‘p is true in the world x’ (or formally x ∈ pI),
and νr(r, x, y) as ‘y is an r-successor of x’ (or (x, y) ∈ rI). Thus we can read (1)
as saying: [r]p is true in x iff for any r-successor y of x, p is true in y.

The stages in the tableau synthesis method are synthesis, refinement and
blocking. The synthesis stage will transform the semantic specification of a logic
such as the above into a tableau calculus TL. The tableau calculus TKm

produced
for modal logic Km is given in Fig. 1. This calculus allows reasoning in the
semantics of the logic and we can use it for testing the (un)satisfiability of Km-
formulae, and for model building.

The actual creation of the tableau calculus is not important for this paper,
only that we have a sound and complete semantic tableau calculus at hand. When
certain well-definedness conditions are true for the semantic definition of a logic
the generated tableau calculus TL is sound and constructively complete [19]. A
tableau calculus is sound when for a satisfiable set of tableau formulae any fully
expanded tableau derivation has an open branch. A tableau calculus is construc-
tively complete, if from every open fully expanded branch an interpretation can
be constructed that validates all formulae on the branch. This interpretation is
the canonical interpretation denoted by I(B).

Because the rule language and the initial calculus is heavily laden with meta-
language notation, a crucial second stage in the method is the refinement stage.
This is described in the next section. The paper is a contribution to this stage.

The third stage involves adding some form of blocking or loop checking mech-
anism to ensure termination or find models for finitely satisfiable input. For
different modal and description logics various standard blocking mechanisms
have been developed. In the tableau synthesis framework, blocking is realised
by the use of equality-based blocking, which can be incorporated through addi-
tional inference rules, and is independent of the tableau calculus or the logic.
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Refinements of equality reasoning and equality-based blocking in semantic
tableau-like approaches have been studied in [4,14,18,21].

3 Refinement Techniques

The refinement stage of the tableau synthesis method involves two refinements:
rule refinement and internalisation.

Rule refinement addresses the problem of reducing branching in inference
rules by turning conclusions into premises [19]. Suppose TL is a sound and con-
structively complete tableau calculus for a logic L and suppose ρ is a tableau
rule in TL. Suppose ρ has the form ρ

def= X0/X1 | · · · | Xm, where each Xi is a
set {ψ1, . . . , ψk} of formulae. For simplicity and without loss of generality, we
assume the aim is to refine away the first denominator X1.

Let the rules ρj with j = 1, . . . , k be defined by

ρj
def=

X0 ∪ {∼ψj}
X2 | · · · | Xm

,

where ∼ denotes complementation, i.e., ∼φ = ψ, if φ = ¬ψ, and ∼φ = ¬ψ,
otherwise. Each rule ρj is obtained from the rule ρ by removing the first denom-
inator X1 and adding the complement of one of the formulae in X1 as a premise.
Intuitively, we may think of the refined rules as incorporating a look-ahead and
branch closure, since when ∼ψj is on the branch then the branch X1 can be
immediately closed. Note that there is however no guarantee that the formu-
lae ∼ψj are actually on the branch, even though there may be enough informa-
tion so that I(B) 
|= ψj and thus I(B) 
|= X1 for particular instances, where I(B)
is the canonical interpretation associated with the current (partial) branch B.
We say a branch B is reflected in the canonical interpretation I(B), if I(B)
validates all formulae occurring on the branch B.

Let Ref(ρ, TL) denote the refined tableau calculus obtained from TL by replac-
ing the rule ρ with the rules ρ1, . . . , ρk. We say that Ref(ρ, TL) is the ( ρ-)rule
refinement of TL. One can show that each rule ρj is derivable [10] in TL and
this implies that the calculus Ref(ρ, TL) is sound. In general, Ref(ρ, TL) is nei-
ther constructively complete nor complete. Nevertheless, the following theorem
holds [19].

Theorem 1. Let TL be a tableau calculus which is sound and constructively
complete for the logic L. Let ρ be the rule X0/X1 | · · · | Xm in TL and suppose
Ref(ρ, TL) is the rule refinement of TL. Further, suppose B is an open branch
in a Ref(ρ, TL)-tableau derivation and for every set Y of L-formulae from B the
following holds. Then, B is reflected in the interpretation I(B) induced by B.

General Rule Refinement Condition: If all formulae in Y are reflected in
I(B) then for any E1, . . . , El ∈ Y and any domain terms t1, . . . , tn

if X0(E, t1, . . . , tn) ⊆ B and I(B) 
|= X1(E, ‖t1‖, . . . , ‖tn‖)

then Xi(E, t1, . . . , tn) ⊆ B for some i = 2, . . . , m.
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Xi(E, t1, . . . , tn) denotes the set of instances of the formulae in Xi under uniform
substitution of E1, . . . , El and t1, . . . , tn for p1, . . . , pl and x1, . . . , xn, respec-
tively, where p1, . . . , pl and x1, . . . , xn are respectively all the L-variables and
all the domain variables occurring in the rule ρ. The notation ‖ti‖ denotes the
equivalence classes of terms modulo the equational theory defined by the term
equalities encountered on the branch.

The general rule refinement condition states that if there is information in
the branch B to exclude X1(E, t1, . . . , tn) from holding in the model I(B) con-
structed from B then all the formulae of at least one of the other denominators
of the rule are on the branch B. In [19] a weaker condition for rule refinement is
given,1 but the condition of Theorem1 is sufficient for the results of this paper.
A consequence of the theorem is the following.

Corollary 1. If the general rule refinement condition of Theorem1 holds for
every open branch B of any fully expanded Ref(ρ, TL)-tableau then the refined
calculus Ref(ρ, TL) is constructively complete for the logic L.

The generalisation of this refinement which turns more than one denominator
of a rule into premises is not difficult.

As an example of rule refinement let us consider the (box) rule obtained
from (1) in the tableau synthesis framework. Rule refinement gives (something
close to) the usual box rule (�).

(box)
νf([r]p, x)

¬νr(r, x, y) | νf(p, y)
(�)

νf([r]p, x), νr(r, x, y)
νf(p, y)

It can be proved directly that the general rule refinement condition is true in any
branch of the refined calculus Ref((box), TKm

) of the generated calculus TKm
of

basic modal logic Km. By Corollary 1 the refined calculus is therefore construc-
tively complete.

Theorem 2. The tableau calculus Ref((box), TKm
) is sound and constructively

complete for basic multi-modal logic Km.

In Sect. 6 we give an example where this rule refinement is not possible in
an extension of the logic Km. In fact, the general rule refinement condition is
too strong to hold generally, because tableau calculi do not include introduction
rules (just elimination rules), but we give examples in Sects. 4 and 6 where the
refinement condition does hold.

Internalisation refinement in the tableau synthesis process involves elimi-
nating some of the extra-logical notation, by expressing the rules in a tableau
language as close as possible to the language of the logic. In particular, the
internalisation involves reduction of the calculus to one where the holds pred-
icates νs have been eliminated and the domain sort symbols are expressed in
the language of the logic, provided this is possible. The idea is that each atomic
1 The general rule refinement condition given here corresponds to condition (‡) in [19].
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@ip, @i¬p

⊥
@i¬¬p

@ip

@i(p ∨ q)

@ip | @iq

@i¬(p ∨ q)

@i¬p, @i¬q

@i[r]p, @i¬[r]¬j

@jp

@i¬[r]p

@i¬[r]¬f(r, p, i), @f(r,p,i)¬p

Fig. 2. Refined tableau calculus T ref
Km

.

formula νs(E, a) in the tableau calculus is replaced by a suitable formula of the
logic, and all syntactically redundant rules are removed from the calculus.

For example, if the logic L contains nominals and the @ connective of hybrid
logic [5] then the elements of the domain sort D can be identified with nominals
and the formulae νf(φ, v) and νr(α, v, w) can be internalised as the formulae @vφ
and @v¬[α]¬w respectively, where v and w have become nominals. The refined
and internalised calculus for basic modal logic Km is given in Fig. 2.

If the logic is not expressive enough then an option is to simplify the nota-
tion of the rules by reformulating them using labels and the ‘:’ connective (of
varying arity), to rephrase the rules in notation more familiar from the literature
(alternative notations also exist).

The internalisation refinement simplifies the tableau language and, in many
cases, reduces the number of the rules in the tableau calculus. In our experience
it is easiest and produces better results, if rule refinement is performed first,
followed by the internalisation refinement.

4 Atomic Rule Refinement

In this section we introduce the technique of atomic rule refinement. Under
this refinement, formulae in the conclusions are only moved upwards to premise
positions if the formulae are negated L -atomic formulae in the language FO(L).

By definition, a FO(L)-formula φ is L-atomic if it is an atomic formula of
FO(L) and all occurrences of L-formulae in φ are also atomic. Thus, νs(E, t) is L-
atomic only if E is an atomic formula of Ls. For example, the formulae νf(p, x)
and νr(r, f(r, p, x), x) are L(Km)-atomic, but the formulae ¬νf(p, x), νf(¬p, x)
and νf(p ∨ q, x) are not. The respective reasons are that ¬νf (p, x) is a negated
L(Km)-atomic formula and νf(¬p, x) and νf(p∨q, x) are not L-atomic in FO(Km).

Using the notation and assumptions of Theorem1, we can prove:

Theorem 3. Assume that for an open branch B of the refined tableau calcu-
lus Ref(ρ, TL) and for every set Y of L-formulae from B the following holds.
Then, B is reflected in I(B).

Atomic Rule Refinement Condition: If all formulae in Y are reflected in
I(B) then for any E1, . . . , El ∈ Y and any domain terms t1, . . . , tn,

X0(E, t1, . . . , tn) ⊆ B implies that

X1(E, t1, . . . , tn) = {¬ξ1, . . . ,¬ξk} and all ξ1, . . . , ξk are L-atomic.
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Unlike the general rule refinement condition, the atomic rule refinement con-
dition is purely syntactic and, thus, can be automatically checked against each
given open branch B. However, even if all the formulae from X1 are negated
L-atomic formulae, their instantiation within a branch of a tableau derivation
can, in general, produce a formula which is not a negated L-atom. Therefore,
similar to Corollary 1, by Theorem 3, in order to preserve constructive complete-
ness we need to make sure that the atomic rule refinement condition holds for
every branch of any derivation in the refined calculus.

Corollary 2. If the assumptions and condition of Theorem3 holds for every
open branch B of any fully expanded Ref(ρ, TL)-tableau then the refined calculus
Ref(ρ, TL) is constructively complete for the logic L.

In the following we give several examples of atomic rule refinement.

Example 1. The refinement (�) of the rule (box) mentioned in the previous
section is an example of an atomic rule refinement. Because any instantiation
of νr(r, x, y) in the language of Km is an L(Km)-atomic formula, constructive
completeness of the refined calculus Ref((box), TKm

) follows from Corollary 2.

Example 2. Suppose we wish to impose that one accessibility relation r of our
modal logic is irreflexive, i.e., we specify that ∀x¬νr(r, x, x). This generates the
rule /¬νr(r, x, x).2 Using atomic rule refinement the rule can be refined to the
following closure rule

(irr)
νr(r, x, x)

⊥ , or in internalised form the rule
@i¬[r]¬i

⊥ .

Example 3. If we wish to specify that all relations are irreflexive, atomic
rule refinement allows us to use the rule νr(r, x, x)/⊥. Because the language
of Km contains only atomic relations r1, . . . , rm and no relational connectives,
any instantiation of r and variable x in νr(r, x, x) produces only L(Km)-atomic
formulae of the form νr(ri, t, t) (where t is a term of the domain sort). There-
fore, the atomic rule refinement condition is true for any branch of any tableau
derivation in the calculus Ref((box), TKm

) extended with the (irr) rule. Thus, by
Corollary 2, the calculus Ref((box), TKm

) extended with the (irr) rule is sound
and constructively complete for the logic Km with irreflexive relations.

Applying the internalisation refinement we obtain the following theorem for
the labelled tableau calculus.

Theorem 4. T ref
Km

extended with the rule @i¬[r]¬i/⊥ for each irreflexive rela-
tion r in Km is sound and constructively complete (or, where r denotes a vari-
able, for the case that each relation in the logic is irreflexive).

2 In the framework the rule would have a premise involving domain predication, but
in this paper we silently assume domain predication without making it explicit in
the interest of simplicity of presentation, see [19] for details.
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Example 4. The following frame condition from [2] states the existence of an
immediate predecessor for every element in a model.

∀x∃y∀z
(
νr(r, y, x) ∧ x 
≈ y ∧ (

(νr(r, y, z) ∧ νr(r, z, x)) → (z ≈ x ∨ z ≈ y)
))

We first reduce the formula to a form acceptable in the tableau synthesis frame-
work. Let g be a new Skolem function which depends on two arguments, one of
the sort r and one from the domain sort. The existential quantifier is eliminated
from the frame conditions and decomposed to give three formulae (see [19]):

∀x νr(r, g(r, x), x), ∀x (x 
≈ g(r, x)),

∀x∀z
(
(νr(r, g(r, x), z) ∧ νr(r, z, x)) → (g(r, x) ≈ z ∨ z ≈ x)

)
.

From these formulae three rules are generated:

νr(r, g(r, x), x)
,

x 
≈ g(r, x)
,

¬νr(r, g(r, x), z) | ¬νr(r, z, x) | g(r, x) ≈ z | z ≈ x
.

Atomic rule refinement is not applicable to the first rule since the conclusion is
not negated. Consider the second and third rules. Applying the same argument as
in Example 3 above we find that no instantiation of x ≈ g(r, x), νr(r, g(r, x), z),
and νr(r, z, x) within the language FO(Km) produces a formula which is not
L(Km)-atomic. This means the atomic rule refinement condition holds for these
rules. Refining the second rule once and the third rule twice, the rules

x ≈ g(r, x)
⊥ and

νr(r, g(r, x), z), νr(r, z, x)
g(r, x) ≈ z | z ≈ x

are obtained. By Corollary 2, constructive completeness of any tableau calcu-
lus in the language FO(Km) is preserved under these refinements. Internalising
FO(Km) in the hybrid logic extension of Km we obtain the following theorem.

Theorem 5. T ref
Km

extended with the rules

@g(r,i)¬[r]¬i
,

@ig(r, i)
⊥ and

@g(r,i)¬[r]¬j, @j¬[r]¬i

@g(r,i)j | @ji

is sound and constructively complete for Km over the class of models satisfying
the frame condition of existence of an immediate predecessor.

The use of Skolem terms is not in agreement with common, present prac-
tice in the area, but they provide a useful technical device to enhance the
scope of semantic tableau approaches by accommodating properties and speci-
fications with negative occurrences of existential quantification, which produce
rules where these occurrences appear in premise positions, cf. Example 4. This
easily accommodates non-geometric theories. Skolem terms also allow for effec-
tive implementation of blocking and equality reasoning, since, e.g., no inference
steps need to be recomputed when blocking occurs (cf. the comments in [14]).
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Examples 3 and 4 are important because they show that atomic rule refine-
ment allows automatic refinement of tableau rules generated from frame condi-
tions of modal logics. Furthermore, the case of the last rule in Example 4 is a
particularly clear illustration of the benefits of rule refinement. In that case the
unrefined rule is applicable for every pair of domain elements and creates four
branches on application, whereas the refined rule replacing it, is only applied
to formulae matching two premises, and then creates only two branches. This
constraining effect on the search space is an important benefit of rule refinement.
In general, using the fairness requirements for tableau derivations, it is possi-
ble to map each refined derivation to its unrefined counterpart where each rule
application is either mapped to itself or to the application of the corresponding
unrefined rule. Since more premises need to be satisfied, the refined rule will be
applied less often and each of its applications produces fewer branches than the
corresponding point of the unrefined tableau. Thus, each refined derivation (in
other words, the search space) is smaller than its unrefined counterpart.

Another important point is the incrementality of the technique: the rules
can be refined one by one without affecting the refinability of other rules. It is
therefore more flexible, robust and useful than general rule refinement, of which
it is a special case.

Because of these attractive features we have used atomic rule refinement
in other recent work. In [23] we applied the tableau synthesis framework and
atomic rule refinement in the creation of terminating tableau calculi for a bi-
intuitionistic logic with interacting modal operators, called BISKT. This logic
can be equivalently embedded into a tense logic Kt(H,R) with several interact-
ing modalities [18] via an extension of the standard embedding of intuitionistic
propositional logic into modal logic S4. Kt(H,R) was subject to an investiga-
tion of the numerous possibilities of defining tableau calculi for modal logics,
and their relative efficiency [18]. Interestingly, we found that the tableau calculi
of BISKT [23] exhibited better performance than those of Kt(H,R) [18], which
we attribute to the greater constraining power of atomic rule refinement in the
style of calculus used for BISKT.

In [14] we used atomic rule refinement to obtain a tableau calculus with
dynamically generated hypertableau-like inference rules for description logic
ontologies. In particular, the standard inference rule /@iα for TBox state-
ments α, which hold universally, is replaced by a set of refined rules for each
statement in the TBox. E.g., for the statement A1 � A2 � B the specifically
generated rule is @iA1,@iA2/@iB, where A1, A2, B are atomic concepts. For
satisfiable and unsatisfiable inputs, the evaluation results showed improved per-
formance for this refinement. The speed-up was particularly marked for unsatis-
fiable inputs (2.5–6 times faster on average), which was found to be mainly due
to the presence of additional closure rules such as @iA,@iB/⊥ generated from
the disjointness statement A�B � ⊥, where A and B are atomic concepts. The
results also showed a 22% (and 74%) drop in memory use for satisfiable (and
unsatisfiable) inputs when using refined rules. The essential idea in this work is
generalised in the next section.
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5 Hypertableau

Let the given logic L have disjunction-like connectives ∨ and negation-like con-
nectives ¬ for some sort s of the logic. Assume TL is a tableau calculus sound
and constructively complete for L and contains the rules

νs(p ∨ q, x)
νs(p, x) | νs(q, x)

and
νs(¬p, x)
¬νs(p, x)

,

which are the usual rules for disjunction and negation. We transform the syn-
thesised calculus TL into a new calculus T hyp

L in three steps. For simplicity we
assume that disjunction in L is associative and commutative with respect to
satisfiability, that is, the following statements are entailed by the semantic spec-
ification of L.

νs(p ∨ q, x) ↔ νs(q ∨ p, x) νs((p ∨ q) ∨ r, x) ↔ νs(p ∨ (q ∨ r), x)

This assumption is not essential for the transformation but allows us to flatten
disjunctions and avoid a combinatorial blow-up.

In the first step of the transformation, the usual disjunction rule
νs(p ∨ q, x)/νs(p, x) | νs(q, x) is replaced by the set of the rules (for k > 1):

(splitk)
νs(p1 ∨ · · · ∨ pk, x)

νs(p1, x) | · · · | νs(pk, x)
.

We denote by T sp
L a tableau calculus obtained from TL by replacing the usual

disjunction rule by the rules (splitk). The (splitk) rules and the usual disjunction
rule are derivable from each other. Therefore, the transformed calculus T sp

L is
sound and constructively complete.

For the second step consider the following rules (for m + n > 1)

(split+mn)
νs(¬p1 ∨ · · · ∨ ¬pm ∨ q1 ∨ · · · ∨ qn, x)

¬νs(p1, x) | · · · | ¬νs(pm, x) | νs(q1, x) | · · · | νs(qn, x)

with the side-condition that only atomic substitutions are allowed for p1, . . . , pm.
Note, m is the maximal number of negated atoms in the disjunction which match
the premise. That is, the rules are applicable only to formulae of the shape
νs(¬E1 ∨ · · ·∨¬Em ∨F1 ∨ · · ·∨Fn, x), where all E1, . . . , Em are atomic formulae
of the logic L and no F1, . . . , Fn is a negated atomic formula of L.

Let T sp+
L be a tableau calculus obtained from T sp

L by replacing the rules
(splitk) by the rules (split+mn). The rules (splitk) and (split+mn) are derivable from
each other and, thus, the following theorem holds.

Theorem 6. T sp+
L is sound and constructively complete for the logic L.

Now we are in a position to use atomic rule refinement to refine the rules
(split+mn) to the rules (m + n > 1)
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(hypmn)
νs(¬p1 ∨ · · · ∨ ¬pm ∨ q1 ∨ · · · ∨ qn, x), νs(p1, x), · · · , νs(pm, x)

νs(q1, x) | · · · | νs(qn, x)

with the restriction that only atomic substitutions are allowed for p1, . . . , pm.
These are hypertableau-like rules. Similarly to the rules in the previous step,
an application of the rule (hypmn) is allowed only to formulae of the shape
νs(¬E1 ∨ · · · ∨ ¬Em ∨ F1 ∨ · · · ∨ Fn), where all E1, . . . , Em are atomic formulae
and no F1, . . . , Fn are negated atomic formulae of the logic L. Notice that in the
case of n = 0 the rules (hypmn) are atomic closure rules.

Let T hyp
L be the calculus obtained from T sp

L by adding the (hypmn) rules. By
Corollary 2 and Theorem 6 we obtain constructive completeness of T hyp

L .

Theorem 7. T hyp
L is sound and constructively complete for the logic L.

Thus, for any (propositional) logic L with disjunction and negation connectives
and any sound and constructive complete calculus for L with the usual disjunc-
tion and negation rules, it is possible to devise a hypertableau-like calculus that
is sound and constructively complete for the logic L.

Derivations in T hyp
L can be done more efficiently if the logic L has additional

properties. We already assume associativity and commutativity of disjunction.
Suppose now that the satisfiability of formulae in a subset of the language L is
reducible to the satisfiability of formulae in conjunctive normal form:

νs(E, x) ↔
I∧

i=1

νsij (
Ji∨
j=1

Eij , x) where s and sij are sorts of the logic.

Thus, every formula E has an equi-satisfiable clausal representation as a set
of clauses C1, . . . , CI , where Ci = Ei1 ∨ · · · ∨ EiJi

for each i = 1, . . . , I. Since
disjunction is associative and commutative, we can assume that, in every clause,
all negated atomic formulae (negative literals) of the logic appear before all other
formulae. Let A be a reduction algorithm which transforms any formula E into
such equi-satisfiable clausal normal form.

Cases of logics become interesting when there are many clauses with negated
atomic formulae, because then the (hypmn) rules with m > 0 are applied more
frequently in derivations in T hyp

L . Since the (hypmn) rules with m > 0 create fewer
branching points in derivations than the (hypmn) rules with m = 0, derivations
in T hyp

L will have fewer branches and therefore performance is enhanced.
The conclusions of the (hypmn) rules are allowed to contain non-atomic L-

formulae which have to be decomposed further by other rules of the calculus.
For the conclusions of other rules, we have two alternatives. One is to use the
rules of the tableau calculus to decompose their formulae up to atomic compo-
nents. The other alternative is to apply the reduction algorithm A to every new
conclusion of any rule different from the (hypmn) rules. The first alternative uses
the decomposition rules of the tableau calculus (assuming it includes rules for
conjunction and disjunction) and the second one uses the algorithm A. In the
implementation of a prover these two alternatives have to be carefully balanced,
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depending on the complexity of the algorithm A and how efficiently it is imple-
mented. There is an efficient clausification algorithm for Boolean parts which
runs in polynomial time on the length of the input [17]. Thus, we can assume
that every conclusion of a rule is immediately transformed into a set of clauses.
This allows to omit all the rules for Boolean connectives except the hypertableau
rules. We give an example of a hypertableau-style calculus in the next section.

6 Case Study: The Modal Logic of ‘Some’, ‘All’
and ‘Only’

As an illustration of the usefulness and generality of the refinement techniques
investigated in this paper, we apply them to the modal logic Km(¬) of ‘some’,
‘all’ and ‘only’ [12]. Km(¬) is the extension of the basic multi-modal logic Km

with the relational negation.
Following the tableau synthesis framework [19] the language L has two sorts:

a sort f for formulae and a sort r for relations. Assuming the sort r is formed
over a set of relational constants {a1, . . . , am}, in L every relation α is defined
by the BNF α

def= a1 | · · · | am | ¬α, where ¬ is a relational connective. The sort f
is formed over a set of propositional variables {p, q, . . .} and every formula φ is
defined by the BNF φ

def= p | ¬φ | φ ∨ φ | [α]φ, where α ranges over all relations
in the language.

The semantic specification language FO(Km(¬)) for Km(¬) is a first-order
language over the sorts f and r and an additional domain sort D. Formu-
lae of L are encoded in the obvious way as terms of the appropriate sorts in
FO(Km(¬)). That is, every logical connective of L is represented by a function
in FO(Km(¬)). Every propositional variable of L is an individual variable of the
sort f in FO(Km(¬)). Besides the individual constants a1, . . . , am for relations,
the language FO(Km(¬)) has a countable set of relation variables r, r′, . . .. The
additional sort D has a countable set of individual variables x, y, z, . . .. Further-
more, the semantic specification language has two predicate symbols νf and νr
of sort (f,D) and (r,D,D), respectively, to encode satisfiability. The meaning of
these symbols can be understood from the definitions given next. The seman-
tic specification consists of the following formulae, one for each of the logical
connectives of Km(¬).

∀x (νf(¬p, x) ↔ ¬νf(p, x)) ∀x (νf(p ∨ q, x) ↔ νf(p, x) ∨ νf(q, x))
∀x∀y (νr(¬r, x, y) ↔ ¬νr(r, x, y)) ∀x (νf([r]p, x) ↔ ∀y (νr(r, x, y) → νf(p, y)))

Compared to the specification of Km, the specification of Km(¬) is extended
with the second clause in the left column, which defines relational negation.

The logic Km(¬) is interesting because of the presence of three quantifier
operators. These are the necessity operator [α], the possibility operator ¬[α]¬
and a third operator, the sufficiency operator [¬α]¬, sometimes referred to as the
window operator. νf([α]φ, v) can be read as saying ‘φ is true in all α-successors’,
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νf(¬p, x)

¬νf(p, x)

¬νf(¬p, x)

νf(p, x)

νf(p ∨ q, x)

νf(p, x) | νf(q, x)

¬νf(p ∨ q, x)

¬νf(p, x), ¬νf(q, x)

νf([r]p, x)

¬νr(r, x, y) | νf(p, y)

¬νf([r]p, x)

νr(r, x, f(r, p, x)), ¬νf(p, f(r, p, x))

νf(p, x), ¬νf(p, x)

⊥
νr(r, x, y), ¬νr(r, x, y)

⊥
νr(¬r, x, y)

¬νr(r, x, y)

¬νr(¬r, x, y)

νr(r, x, y)

Fig. 3. Generated tableau calculus TKm(¬) for Km(¬)

νf(¬[α]¬φ, v) as ‘φ is true in some α-successor’, and νf([¬α]¬φ, v) as ‘φ is true
in only α-successors of v’. Km(¬) is a sublogic of Boolean modal logic [9] and
the description logics ALBO and ALBOid [20]. Km(¬) has the finite model
property [9] but the tree model property fails for the logic (e.g. [15]). The results
of [15] imply that the satisfiability problem in Km(¬) is ExpTime-complete.

The tableau calculus TKm(¬) obtained from the semantic specification of
Km(¬) in the tableau synthesis framework is given in Fig. 3. New compared
to the generated tableau calculus for the basic modal logic Km in Fig. 1 are
the last two rules for relational negation. Because the semantic specification of
Km(¬) is well-defined in the sense of [19], from Theorems 5.1 and 5.6 in that
work, we immediately obtain the following result.

Theorem 8 (Soundness and constructive completeness). The calculus
TKm(¬) is sound and constructively complete for the logic Km(¬).

However, none of the rules of the tableau calculus for Km(¬) from Fig. 3
are refinable. In particular, the (box) rule cannot be refined to the (�) rule (as
discussed in Sect. 4) without loosing constructive completeness. Take for instance
the set of formulae {νf([¬¬r]p, a), νr(r, a, b),¬νf(p, b)}. The set is not Km(¬)-
satisfiable but none of the rules of the refined calculus Ref((box), TKm(¬)) are
applicable to the set.

A possibility for refinement is the atomic refinement of instances of rules.
Atomic rule refinement would allow us to use the rule (�) on formulae [r]φ,
where r is bound to a relational constant. We would still need to use the rule (box)
when r is bound to a complex relational formula (in this case a negated relational
formula). This kind of refinement is generally possible, and will be useful in
practice, but leads to an uneven treatment of box formulae. Better would be if
all instances of a rule can be refined.

In fact, by a small amendment of the semantic specification it is possible
to refine the (box) rule generally, for all instances. Observe that the semantic
specification of Km(¬) entails the following formula.

∀x (νf([¬r]p, x) → ∀y (¬νr(r, x, y) → νf(p, y)))

This means the formula can be added to the semantic specification of Km(¬)
without changing the class of models of the logic. We use the notation T+

Km(¬) to



Rule Refinement for Semantic Tableau Calculi 241

@ip, @i¬p

⊥
@i¬¬p

@ip

@i(p ∨ q)

@ip | @iq

@i¬(p ∨ q)

@i¬p, @i¬q

@i[r]p, @i¬[r]¬j

@jp

@i¬[r]p

@i¬[r]¬f(r, p, i), @f(r,p,i)¬p

@i¬[¬r]¬j

@i[r]¬j

@i[¬r]¬j

@i¬[r]¬j

@i[¬r]p

@i¬[r]¬j | @jp

Fig. 4. Refined tableau calculus T ref
Km(¬).

refer to the tableau calculus generated from the semantic specification extended
with this formula. T+

Km(¬) consists of the rules listed in Fig. 3 and the rule:

([¬])
νf([¬r]p, x)

νr(r, x, y) | νf(p, y)
.

We can check that the well-definedness conditions from [19] are satisfied for
the extended semantic specification of Km(¬). Therefore, by the results of the
tableau synthesis framework, the extended calculus T+

Km(¬) is sound and con-
structively complete for Km(¬). Note, the rule ([¬]) is a derived rule in the
calculus TKm(¬).

While the rule ([¬]) neither satisfies the atomic nor the general rule refine-
ment condition, the general rule refinement condition is now satisfied for the
(box) rule, and, thus, as a consequence of Corollary 1 we get:

Theorem 9. The tableau calculus Ref((box), T+
Km(¬)) using the (�) rule instead

of the (box) rule is sound and constructively complete for the logic Km(¬).

The internalisation refinement is possible for the new calculus if nominals
and the @ operator of hybrid logic [5] are introduced to the tableau language
of Km(¬). This significantly strengthens the tableau language and allows all
formulae νf(φ, a) and ¬νf(φ, a) to be replaced by the formulae @aφ and @a¬φ,
respectively, and the formulae νr(α, a, b) and ¬νr(α, a, b) can be replaced respec-
tively by the formulae @a¬[α]¬b and @a[α]¬b (the latter is equivalent to
@a¬〈α〉b). In this case the result of the refinement is a significantly simplified
calculus, reminiscent of standard labelled tableau calculi. The obtained rules are
listed in Fig. 4. We denote this calculus by T ref

Km(¬). By the results of this paper
and [19] it is sound and constructively complete for Km(¬).

Because disjunction and negation in Km(¬) are Boolean, it is possible to
devise a hypertableau calculus for Km(¬), see Fig. 5. By Theorem 7, this calculus
is sound and constructively complete for Km(¬). In summary, we have:

Theorem 10. The refined tableau calculi T ref
Km(¬) and T hyp

Km(¬) (of Figs. 4 and 5)
are sound and constructively complete for the logic Km(¬).

A further example of systematic rule refinement using the ideas of this paper
is the description logic ALBOid, for which we presented a tableau calculus in [20].
ALBOid is an extension of the description logic ALC with individuals, the inverse
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@i¬p1 ∨ · · · ∨ ¬pm ∨ q1 ∨ · · · ∨ qn, @ip1, . . . , @ipm

@iq1 | · · · | @iqn

(
m + n > 1

p1, . . . , pm are atomic

)

@ip, @i¬p

⊥
@i[r]p, @i¬[r]¬j

@jp

@i¬[r]p

@i¬[r]¬f(r, p, i), @f(r,p,i)¬p

@i¬[¬r]¬j

@i[r]¬j

@i[¬r]¬j

@i¬[r]¬j

@i[¬r]p

@i¬[r]¬j | @jp

Fig. 5. Hybrid hypertableau calculus T hyp
Km(¬) for Km(¬)

role (relation) connective, Boolean connectives on roles and the identity role.
Although that work predates the work in [19] and the present work, the tableau
calculus in [20] of ALBOid can be in fact synthesised by altering the semantic
specification similar as described for Km(¬) in this section. Using the results of
the previous section a hypertableau calculus can be defined for ALBOid.

7 Concluding Remarks

The paper has investigated refinement of inference rules for semantic tableau
calculi in the setting of the tableau synthesis framework. We introduced atomic
rule refinement as a general principle to reduce branching and simplify the way
deductions are carried out with disjunctive formulae. A distinctive feature of
the refinement is that it is syntactic and can be automated. As we have shown
the approach covers two important cases: refinement of inference rules generated
from frame conditions and systematically developing hypertableau-like calculi.
In both cases, properties of the language of the logic are exploited. In the first
case, because frame conditions are properties on atomic relations, the condition
for atomic rule refinement trivially holds. In the second case, formulae of the logic
were transformed into a normal form and the hypertableau rule was defined by
constraining disjunctive splitting rules with atomic premises.

In the case study of Km(¬) we showed that even if none of the rules of the
initially generated calculus are refinable (without loss of completeness) there may
be ways to modify the semantic specification for the logic and extend the calculus
by additional rules in order to achieve refinability. In this case the addition of
derivable rule enabled the refinement of other rules in the calculus.

Adding analytic cut rules [6] to the calculus is another approach to make rule
refinement possible. This allows KE tableau calculi to be systematically derived
in the framework. Due to space limitation we do not elaborate on this case.

We have considered rule refinement in the tableau synthesis framework. Since
its rule language gives full freedom to generate sets of inference rules for any
logic, where the semantics can be expressed in a first-order language, the results
of the paper apply to all calculi that can be described in the framework. The
refinements and essential ideas are however more general and can be applied to
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other types of deduction calculi, which deserves to be investigated. Further work
will include the investigation of other refinements and reduction of the search
space, such as ordering restrictions [11].
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