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Abstract. The continually growing number of security-related auto-
nomous devices requires efficient mechanisms to counteract low-cost
side-channel analysis (SCA) attacks. Masking provides high resistance
against SCA at an adjustable level of security. A high level of SCA resis-
tance, however, goes hand in hand with an increasing demand for fresh
randomness which drastically increases the implementation costs. Since
hardware based masking schemes have other security requirements than
software masking schemes, the research in these two fields has been con-
ducted quite independently over the last ten years. One important practi-
cal difference is that recently published software schemes achieve a lower
randomness footprint than hardware masking schemes. In this work we
combine existing software and hardware masking schemes into a unified
masking algorithm. We demonstrate how to protect software and hard-
ware implementations using the same masking algorithm, and for lower
randomness costs than the separate schemes. Especially for hardware
implementations the randomness costs can in some cases be halved over
the state of the art. Theoretical considerations as well as practical imple-
mentation results are then used for a comparison with existing schemes
from different perspectives and at different levels of security.

Keywords: Masking · Hardware security · Threshold Implementa-
tions · Domain-oriented masking · Side-channel analysis

1 Introduction

One of the most popular countermeasures against side-channel analysis attacks
is Boolean masking. Masking is used to protect software implementations as
well as hardware implementations. However, since it was shown that software
based masking schemes (that lack resistance to glitches) are in general not
readily suitable to protect hardware implementations [15], the research has
split into masking for software implementations and masking for hardware
implementations.

The implementation costs of every masking scheme is thereby highly influ-
enced by two factors. At first, the number of shares (or masks) that are required
to achieve dth-order security, and second the randomness costs for the evaluation
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of nonlinear functions. For the first one, there exists a natural lower bound of
d + 1 shares in which every critical information needs to be split in order to
achieve dth-order security.

For the evaluation of nonlinear functions, the number of required fresh ran-
dom bits have a huge influence on the implementation costs of the masking
because the generation of fresh randomness requires additional chip area, power
and energy, and also limits the maximum throughput. Recently proposed soft-
ware based masking schemes require (with an asymptotic bound of d(d + 1)/4)
almost half the randomness of current hardware based masking schemes.

Masking in hardware. With the Threshold Implementations (TI) scheme by
Nikova et al. [16], the first provably secure masking scheme suitable for hardware
designs (and therefore resistant to glitches) was introduced in 2006. TI was later
on extended to higher-order security by Bilgin et al. [3]. However, the drawback
in the original design of TI is that it requires at least td + 1 shares to achieve
dth-order (univariate [17]) security where t is the degree of the function. In 2015,
Reparaz et al. [18] demonstrated that dth-order security can be also achieved with
only d + 1 shares in hardware. A proof-of-concept was presented at CHES 2016
by De Cnudde et al. [20] requiring (d+1)2 fresh randomness. Gross et al. [11,12]
introduced the so-called domain-oriented masking (DOM) scheme that lowers
the randomness costs to d(d + 1)/2.

Masking in software. Secure masked software implementations with d + 1
shares exist all along [5,14,19]. However, minimizing the requirements for fresh
randomness is still a demanding problem that continues to be researched. Since
efficient implementation of masking requires decomposition of complex nonlinear
functions into simpler functions, the reduction of randomness is usually stud-
ied on shared multiplications with just two shared input bits without a loss of
generality.

In 2016, Beläıd et al. [2] proved an upper bound for the randomness require-
ments of masked multiplication of O(d log d) for large enough d’s, and a lower
bound to be d + 1 for d ≤ 3 (and d for the cases d ≤ 2). Furthermore, for the
orders two to four, Beläıd et al. showed optimized algorithms that reach this
lower bound and also introduced a generic construction that requires d2

4 + d
fresh random bits (rounded). Recently, Barthe et al. [1] introduced a generic
algorithm that requires �d

4�(d + 1) fresh random bits. Barthe et al.’s algorithm
saves randomness in three of four cases over Beläıd et al.’s algorithm but for the
remaining cases it requires one bit more.

Please note, even though Barthe et al. states that their parallelization consid-
eration makes their algorithm more suitable for hardware designs, it stays unclear
how these randomness optimized multiplication algorithms can be securely and
efficiently implemented in hardware with regard to glitches.

Our Contribution. In this work we combine the most recent masking
approaches from both software and hardware in a unified masking approach
(UMA). The basis of the generic UMA algorithm is the algorithm of Barthe
et al. which we combine with DOM [12]. The randomness requirements of UMA
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are in all cases less or equal to generic software masking approaches. As a non-
generic optimization, for the second protection order, we also take the solution
of Beläıd et al. into account.

We then show how the UMA algorithm can be efficiently ported to hardware
and thereby reduce the asymptotic randomness costs from d(d + 1)/2 to d(d +
1)/4. Therefore, we analyze the parts of the algorithm that are susceptible to
glitches and split the algorithm into smaller independent hardware modules that
can be calculated in parallel. As a result, the delay in hardware is at most five
cycles.

Finally, we compare the implementation costs and randomness requirements
of UMA to the costs of DOM in a practical and scalable case study for protection
orders up to 15, and analyze the SCA resistance of the UMA design with a t-test
based approach.

2 Boolean Masked Multiplication

We use similar notations as Barthe et al. [1] to write the multiplication of two
variables a and b. In shared form, the multiplication of a·b is given by Eq. 1 where
the elements of the vectors a and b are referred to as the randomly generated
sharing of the corresponding variable. For any possible randomized sharing, the
equations a =

∑d
i=0 ai and b =

∑d
j=0 bj always needs to be fulfilled, where ai

and bj refer to individual shares of a and b, respectively.

q = a · b =
d∑

i=0

d∑

j=0

aibj (1)

In order to correctly implement this multiplication in shared form, Eq. 1 needs
to be securely evaluated. In particular, summing up the multiplication terms
aibj needs to result again in a correct sharing of the result q with d + 1 shares,
and needs to be performed in such a way that an attacker does not gain any
information on the unshared variables a, b, or q. To achieve dth-order security,
an attacker with the ability to “probe” up to d signals during any time of the
evaluation should not gain an advantage in guessing any of the multiplication
variables. This model is often referred to as the so-called (d-)probing model of
Ishai et al. [14] which is linked to differential side-channel analysis (DPA) attacks
over the statistical moment that needs to be estimated by an attacker for a
limited set of noisy power traces [7,19]. This task gets exponentially harder with
increasing protection order d if the implementation is secure in the d-probing
model [4].

However, directly summing up the terms aibj does not even achieve first-
order security regardless of the choice for d. To make the addition of the terms
secure, fresh random shares denoted as r in the following are required that are
applied to the multiplication terms on beforehand. The number of required fresh
random bits and the way and order in which they are used is essential for the
correctness, security, and efficiency of the shared multiplication algorithm.
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Barthe et al.’s Algorithm. A vectorized version of Barthe et al.’s algorithm
is given in Eq. 2 where all operations are performed share-wise from left to right.
Accordingly, the vector multiplication is the multiplication of the shares with the
same share index, e.g. ab = {a0b0, a1b1, . . . , adbd}. Additions in the subscript
indicate an index offset of the vector modulo d+1 which equals a rotation of the
vector elements inside the vector, e.g. a+1 = {a1, a2, . . . , a0}. Superscript indices
refer to different and independent randomness vectors with a size of d+1 random
bits for each vector.

q = ab + r0 + ab+1 + a+1b + r0+1 + ab+2 + a+2b

+ r1 + ab+3 + a+3b + r1+1 + ab+4 + a+4b

+ r2 + ab+5 + a+5b + r2+1 + ab+6 + a+6b . . .

(2)

At the beginning of the algorithm, the q shares are initialized with the terms
resulting from the share-wise multiplication ab. Then there begins a repeating
sequence that ends when all multiplication terms were absorbed inside one of the
shares of q. The first sequence starts with the addition of the random bit vector
r0. Then a multiplication term and mirrored term pair (aibj and ajbi, where
i �= j) is added, before the rotated r0+1 vector is added followed by the next
pair of terms. The next (up to) four multiplication terms are absorbed using the
same sequence but with a new random bit vector r1. This procedure is repeated
until all multiplication terms are absorbed. There are thus �d

4� random vectors
required with each a length of d+1 bits. So in total the randomness requirement
is �d

4�(d + 1). In cases other than d ≡ 0 mod 4, the last sequence contains less
than four multiplication terms.

3 A Unified Masked Multiplication Algorithm

For the assembly of the unified masked multiplication algorithm (UMA) we
extend Barthe et al.’s algorithm with optimizations from Beläıd et al. and DOM.
We therefore differentiate between four cases for handling the last sequence in
Barthe et al.’s algorithm: (1) if the protection order d is an integral multiple of
4 than we call the last sequence complete, (2) if d ≡ 3 mod 4 we call it pseudo-
complete, (3) if d ≡ 2 mod 4 we call it half-complete, and (4) if d ≡ 1 mod 4
we call it incomplete. We first introduce each case briefly before we give a full
algorithmic description of the whole algorithm.

Complete and Pseudo-Complete. Complete and pseudo complete sequences
are treated according to Barthe et al.’s algorithm. In difference to the complete
sequence, the pseudo-complete sequence contains only three multiplication terms
per share of q. See the following example for d = 3:

q = ab + r0 + ab+1 + a+1b + r0+1 + ab+2

Half-Complete. Half-complete sequences contain two multiplication terms per
share of q. For handling this sequence we consider two different optimizations.
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The first optimization requires d fresh random bits and is in the following referred
to as Beläıd’s optimization because it is the non-generic solution in [2] for the
d = 2 case. An example for Beläıd’s optimization is given in Eq. 3. The trick to
save randomness here is to use the accumulated randomness used for the terms
in the first functions to protect the last function of q. It needs to be ensured
that r00 is added to r01 before the terms a2b0 and a0b2 are added.

q0 = a0b0 + r00 + a0b1 + a1b0
q1 = a1b1 + r01 + a1b2 + a2b1
q2 = a2b2 + r00 + r01 + a2b0 + a0b2

(3)

Unfortunately Beläıd’s optimization can not be generalized to higher orders
to the best of our knowledge. As a second optimization we thus consider the
DOM approach for handling this block which is again generic. DOM requires
one addition less for the last q function for d = 2 but requires one random bit
more than the Beläıd’s optimization (see Eq. 4) and thus the same amount as
Barthe et al.’s original algorithm. However, for the hardware implementation in
the next sections the DOM approach saves area in this case because it can be
parallelized.

q0 = a0b0 + r00 + a0b1 + r02 + a0b2
q1 = a1b1 + r01 + a1b2 + r00 + a1b0
q2 = a2b2 + r02 + a2b0 + r01 + a2b1

(4)

Incomplete. Incomplete sequences contain only one multiplication term per
share of q. Therefore, in this case one term is no longer added to its mirrored
term. Instead the association of each term with the shares of q and the usage of
the fresh random bits is performed according to the DOM scheme. An example
for d = 1 is given in Eq. 5.

q0 = a0b0 + r00 + a0b1
q1 = a1b1 + r00 + a1b0

(5)

3.1 Full Description of UMA

Algorithm 1 shows the pseudo code of the proposed UMA algorithm. The inputs
of the algorithm are the two operands a and b split into d + 1 shares each.
The randomness vector r∗ (we use ∗ to make it explicit that r is a vector of
vectors) contains �d/4� vectors with d+1 random bits each. Please note that all
operations, including the multiplication and the addition, are again performed
share-wise from left to right.

At first the return vector q is initialized with the multiplication terms that
have the same share index for a and b at Line 1. In Line 2 to 4, the complete
sequence are calculated according to Barthe et al. ’s original algorithm. We use
the superscript indices to address specific vectors of r∗ and use again subscript
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Algorithm 1. Unified masked multiplication algorithm (UMA)
Input: a, b, r∗

Output: q
Initialize q:

1: q = ab
Handle complete sequences:

2: for i = 0 < �d/4� do
3: q += ri + ab+2i+1 + a+2i+1b + ri

+1 + ab+2i+2 + a+2i+2b
4: end for

Handle last sequence:
5: l = �d/4�

Pseudo-complete sequence:
6: if d ≡ 3 mod 4 then
7: q += rl + ab+2l+1 + a+2l+1b + rl

+1 + ab+2l+2

Half-complete sequence:
8: else if d ≡ 2 mod 4 then
9: if d = 2 then

10: z = {rl0, rl1, rl0 + rl1}
11: q += z + ab+2l+1 + a+2l+1b
12: else
13: q += rl + ab+2l+1 + rl

+2l+2 + ab+2l+2

14: end if
Incomplete sequence:

15: else if d ≡ 1 mod 4 then
16: z = {rl, rl}
17: q += z + ab+2l+1

18: end if
19: return q

indices for indexing operations on the vector. Subscript indexes with a leading
“+” denote a rotation by the given offset.

From Line 5 to 17 the handling of the remaining multiplication terms is per-
formed according to the description above for the pseudo-complete, half-complete,
and incomplete cases. In order to write this algorithm in quite compact form,
we made the assumption that for the last random bit vector rl only the required
random bits are provided. In Line 10 where Beläıd’s optimization is used for
d = 2, a new bit vector z is formed that consists of the concatenation of the two
elements of the vector rl and the sum of these bits. So in total the z vector is
again d + 1 (three) bits long. In similar way we handle the randomness in Line
16. We concatenate two copies of rl of the length (d + 1)/2 to form z which is
then added to the remaining multiplication terms.

Randomness requirements. Table 1 shows a comparison of the randomness
requirements of UMA with other masked multiplication algorithms. The com-
parison shows that UMA requires in all generic cases the least amount of fresh
randomness. With the non-generic Beläıd’s optimization, the algorithm reaches
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the Beläıd et al.’s proven lower bounds of d + 1 for d > 2 and of d for d ≤ 2
below the fifth protection order.

Compared to Barthe et al.’s original algorithm, UMA saves random bits in the
cases where the last sequence is incomplete. More importantly, since we target
efficient higher-order masked hardware implementations in the next sections,
UMA has much lower randomness requirements than the so far most randomness
efficient hardware masking scheme DOM. Up to half of the randomness costs can
thus be saved compared to DOM. In the next section we show how UMA can
be securely and efficiently implemented in hardware.

Table 1. Randomness requirement comparison

d UMA Barthe et al. Beläıd et al. DOM

1 1 2 1 1

2 3 (21) 3 3 (21) 3

3 4 4 5 (41) 6

4 5 5 8 (51) 10

5 9 12 11 15

6 14 14 15 21

7 16 16 19 28

8 18 18 24 36

9 25 30 29 45

10 33 33 35 55

11 36 36 41 66

12 39 39 48 78

13 49 56 55 91

14 60 60 63 105

15 64 64 71 120
(1) Non-generic solution

4 UMA in Hardware

Directly porting UMA to hardware by emulating what a processor would do,
i.e. ensuring the correct order of instruction execution by using registers in
between every operation, would introduce a tremendous area and performance
overhead over existing hardware masking approaches. To make this algorithm
more efficient and still secure in hardware, it needs to be sliced into smaller
portions of independent code parts than can be translated to hardware modules
which can be evaluated in parallel.

Domain-Oriented Masking (DOM). To discuss the security of the intro-
duced hardware modules in the presence of glitches, we use the same terminol-
ogy as DOM [10] in the following. DOM interprets the sharing of any function
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Fig. 1. Inner-domain block Fig. 2. Incomplete block

in hardware as a partitioning of the circuit into d + 1 independent subcircuits
which are also called domains. All shares of one variable are then associated with
one specific domain according to their share index number (a0 is associated with
domain “0”, a1 with domain “1”, et cetera.). By keeping the d+1 shares in their
respective domains, the whole circuit is trivially secure against an attacker with
the ability to probe d signals as required.

This approach is intuitively simple for linear functions that can be performed
on each of the shares independently. To realize nonlinear functions, shared infor-
mation from one domain needs to be sent to another domain in a secure way.
This process requires the usage of fresh randomness without giving the attacker
any advantage in probing all shares of any sensitive variable.

In the context of DOM, multiplication terms with the same share index
(e.g. a0b0) are also called inner-domain terms. These terms and are considered
uncritical since the combination of information inside one domain can never
reveal two or more shares of one variable as the domain itself contains only
one share per variable. Terms which consist of shares with different share index
(cross-domain terms) that thus originate from different domains (e.g. a0b1) are
considered to be more critical. Special care needs to be taken to ensure that
at no point in time, e.g. due to timing effects (glitches), any two shares of one
variable come together without a secure remasking step with fresh randomness
in between.

Inner-domain block. The assignment of the inner-domain terms (q = ab)
in Line 1 of Algorithm1 can thus be considered uncritical in terms of dth-order
probing security. Only shares with the same share index are multiplied and stored
at the same index position of the share in q. The inner-domain block is depicted
in Fig. 1 and consist of d+1 AND gates that are evaluated in parallel. Hence each
share stays in its respective share domain. So even if the sharings of the inputs
of a and b would be the same, this block does not provide a potential breach
of the security because neither a0a0 nor b0b0, for example, would provide any
additional information on a or b. We can thus combine the inner-domain block
freely with any other secure masked component that ensures the same domain
separation.
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Fig. 3. Complete block (Color figure
online)

Fig. 4. Half-complete block (Beläıd
opt.)

(Pseudo-)Complete blocks. For the security of the implementation in hard-
ware, the order in which the operations in Line 3 (and Line 7) are performed
is essential. Since the calculation of one complete sequence is subdivided by the
addition of the random vector in the middle of this code line, it is quite tempting
to split this calculation into two parts and to parallelize them to speed up the
calculation.

However, if we consider Eq. 2, and omit the inner domain-terms that would be
already calculated in a separate inner-domain block, a probing attacker could get
(through glitches) the intermediate results from the probe p0 = r0 + a0b1 + a1b0
from the calculation of q0 and p1 = r0 + a4b1 + a1b4 from the calculation of
q4. By combining the probed information from p0 and p1 the attacker already
gains information on three shares of a and b. With the remaining two probes
the attacker could just probe the missing shares of a or b to fully reconstruct
them. The complete sequence and for the same reasons also the pseudo-complete
sequence can thus not be further parallelized.

Figure 3 shows the vectorized complete block that consists of five register
stages. Optional pipeline registers are depicted with dotted lines where necessary
that make the construction more efficient in terms of throughput. For the pseudo-
complete block, the last XOR is removed and the most right multiplier including
the pipeline registers before the multiplier (marked green).

The security of this construction has already been analyzed by Barthe
et al. [1] in conjunction with the inner-domain terms (which have no influence on
the probing security) and for subsequent calculation of the sequences. Since the
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scope of the randomness vector is limited to one block only, a probing attacker
does not gain any advantage (information on more shares than probes she uses)
by combining intermediate results of different blocks even if they are calculated
in parallel. Furthermore, each output of these blocks is independently and freshly
masked and separated in d+1 domains which allows the combination with other
blocks.

Half-complete block. Figure 4 shows the construction of the half-complete
sequence in hardware when Beläıd’s optimization is used for d = 2. The creation
of the random vector z requires one register and one XOR gate. The security
of this construction was formally proven by Beläıd et al. in [2]. For protection
orders other than d = 2, we use instead the same DOM construction as we use
for the incomplete block.

Incomplete block. For the incomplete block (and the half-complete block with-
out Beläıd optimization) each random bit is only used to protect one multiplica-
tion term and its mirrored term. The term and the mirrored term are distributed
in different domains to guarantee probing security. Figure 2 shows the construc-
tion of an incomplete block following the construction principles of DOM for
two bits of q at the same time. For half-complete blocks (without Beläıd’s opti-
mization) two instances of the incomplete constructions are used with different
indexing offsets and the resulting bits are added together (see Line 13). No fur-
ther registers are required for the XOR gate at the output of this construction
because it is ensured by the registers that all multiplication terms are remasked
by r before the results are added. For a more detailed security discussion we
refer to the original paper of Gross et al. [10].

Assembling the UMA AND Gate. Figure 5 shows how the UMA AND gate
is composed from the aforementioned building blocks. Except the inner-domain
block which is always used, all other blocks are instantiated and connected
depending on the given protection order which allows a generic construction
of the masked AND gate from d = 0 (no protection) to any desired protection
order. Connected to the inner-domain block, there are �d

4	 complete blocks, and
either one or none of the pseudo-complete, half-complete, or incomplete blocks.

Fig. 5. Fully assembled UMA AND gate
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Table 2. Overview on the hardware costs of the different blocks

Block AND XOR FF ·(d + 1) Delay

·(d + 1) ·(d + 1) w/o pipel. Pipelined [Cycles]

Inner-domain 1 � d
4
� 0 0–10 0

Complete 4 5 5 7 5

Pseudo-complete 3 4 4 6 4

Half-complete:

Beläıd’s optimization 2 2 + 1
3

3 3 3

DOM 2 3 2 2 1

Incomplete 1 1 1 1 1

Table 2 gives an overview about the hardware costs of the different blocks
that form the masked AND gate. All stated gate counts need to be multiplied
by the number of shares (d + 1). The XOR gates which are required for con-
necting the different blocks are accounted to the inner-domain block. In case
pipelining is used, the input shares of a and b are pipelined instead of pipelining
the multiplication results inside the respective blocks. The required pipelining
registers for the input shares are also added on the inner-domain block’s regis-
ter requirements, since this is the only fixed block of every masked AND gate.
The number of pipelining registers are determined by the biggest delay required
for one block. In case one or more complete blocks are instantiated, there are
always five register stages required which gives a total amount of 10(d+1) input
pipelining registers. However, for d < 4 the number of input pipelining register
is always twice the amount of delay cycles of the instantiated block which could
also be zero for the unprotected case where the masked AND gate consists only
of the inner-domain block. The inner-domain block itself does not require any
registers except for the pipelining case and thus has a delay of zero.

For the cost calculation of the UMA AND gate, the gate counts for the
complete block needs to be multiplied by the number of instantiated complete
blocks (�d

4	) and the number of shares (d+1). The other blocks are instantiated
at maximum one time. The pseudo-complete block in case d ≡ 3 mod 4, the
half-complete block in case d ≡ 2 mod 4 (where Beläıd’s optimization is only
used for d = 2), and the incomplete block in case d ≡ 1 mod 4.

Comparison with DOM. Table 3 shows a first comparison of the UMA AND
gate with a masked AND gate from the DOM scheme. For the generation of these
numbers we used Table 2 to calculate the gate counts for the UMA AND gate. For
DOM, we used the description in [10] which gives us (d+1)2 AND gates, 2d(d+1)
XOR gates, and (d + 1)2 registers ( − d − 1, for the unpipelined variant). For
calculating the gate equivalence, we used the 90 nm UMC library from Faraday
as reference as we also use them for synthesis in Sect. 5. Accordingly, a two input
AND gate requires 1.25 GE, an XOR gate 2.5 GE, and a D-type flip-flop with
asynchronous reset 4.5 GE.
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Table 3. Comparison of the UMA AND gate with DOM

UMA AND DOM AND

d AND XOR Registers GE AND XOR Registers GE

Unpipel. Pipel. Unpipel. Pipel. Unpipel. Pipel. Unpipel. Pipel.

1 4 4 2 6 24 42 4 4 2 4 24 33

2 9 10 9 27 77 157 9 12 6 9 68 82

3 16 20 16 56 142 322 16 24 12 16 134 152

4 25 30 25 85 219 489 25 40 20 25 221 244

5 36 48 36 108 327 651 36 60 30 36 330 357

6 49 70 49 133 457 835 49 84 42 49 460 492

7 64 88 72 184 624 1, 128 64 112 56 64 612 648

8 81 108 90 216 776 1, 343 81 144 72 81 785 826

9 100 140 110 250 970 1, 600 100 180 90 100 980 1, 025

10 121 176 132 286 1, 185 1, 878 121 220 110 121 1, 196 1, 246

11 144 204 168 360 1, 446 2, 310 144 264 132 144 1, 434 1, 488

12 169 234 195 403 1, 674 2, 610 169 312 156 169 1, 693 1, 752

13 196 280 224 448 1, 953 2, 961 196 364 182 196 1, 974 2, 037

14 225 330 270 510 2, 321 3, 401 225 420 210 225 2, 276 2, 344

15 256 368 304 592 2, 608 3, 904 256 480 240 256 2, 600 2, 672
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Fig. 6. Data encryption and authentication with Ascon

Since in both implementations AND gates are only used for creating the
multiplication terms, both columns for the UMA AND gate construction and the
DOM AND are equivalent. The gate count for the XORs is in our implementation
is lower than for the DOM gate which results from the reduced randomness usage
compared to DOM. The reduced XOR count almost compensates for the higher
register usage in the unpipelined case. The difference for the 15th order is still
only 8 GE, for example. However, the delay of the UMA AND gate is in contrast
to the DOM AND gate, except for d = 1, not always one cycle but increases
up to five cycles. Therefore, in the pipelined implementation more register are
necessary which results in an increasing difference in the required chip area for
higher protection orders.
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5 Practical Evaluation on Ascon

To show the suitability of the UMA approach and to study the implications on a
practical design, we decide on implementing the CAESAR candidate Ascon [6]
one time with DOM and one time with the UMA approach. We decided on
Ascon over the AES for example, because of its relatively compact S-box con-
struction which allows to compare DOM versus UMA for a small percentage of
non-linear functionality, but also for a high percentage of non-linear functional-
ity if the S-box is instantiated multiple times in parallel. The design is for both
DOM and UMA generic in terms of protection order and allows some further
adjustments. Besides the different configuration parameters for the algorithm
itself, like block sizes and round numbers, the design also allows to set the num-
ber of parallel S-boxes and how the affine transformation in the S-box is handled,
for example.

Ascon is an authenticated encryption scheme with a sponge-like mode of
operation as depicted in Fig. 6. The encryption and decryption work quite sim-
ilar. At the beginning of the initialization the 320-bit state is filled with some
cipher constants, the 128-bit key K, and the 128-bit nonce N . In the upcoming
calculation steps, the state performs multiple rounds of the transformation p
which consists of three substeps: (1) the addition of the round constant, (2) the
nonlinear substitution layer, and (3) the linear transformation. For the Ascon-
128 the initialization and the finalization takes 12 rounds and the processing of
any data takes six rounds. The input data is subdivided into associated data
(data that only requires authentication but no confidentiality) and plaintext or
ciphertext data. The data is processed by absorbing the data in 64-bit chunks
into the state and subsequently performing the state transformation. In the
finalization step, a so-called tag is either produced or verified that ensures the
authenticity of the processed data.

5.1 Proposed Hardware Design

An overview of the top module of our hardware design is given in Fig. 7 (left).
It consists of a simple data interface to transfer associated data, plaintext or
ciphertext data with ready and busy signaling which allows for simple connection

Fig. 7. Overview of the Ascon core (left) and the state module of the Ascon design
(right)
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with e.g. AXI4 streaming masters. Since the nonce input and the tag output have
a width of 128 bit, they are transferred via a separate port. The assumptions
taken on the key storage and the random number generator (RNG) are also
depicted. We assume a secure key storage that directly transfers the key to the
cipher core in shared form, and an RNG that has the capability to deliver as
many fresh random bits as required by the selected configuration of the core.

The core itself consists of the control FSM and the round counter that form
the control path, and the state module that forms the data path and is respon-
sible for all state transformations. Figure 7 (right) shows a simplistic schematic
of the state module. The state module has a separate FSM and performs the
round transformation in four substeps:

(1) during IDLE, the initialization of the state with the configuration constants,
the key, and the nonce is ensured.

(2) in the ADD ROUND CONST state the round constant is added, and option-
ally other required data is either written or added to the state registers like
input data or the key. Furthermore, it is possible to perform the linear parts
of the S-box transformation already in this state to save pipeline registers
during the S-box transformation and to save one delay cycle. This option,
however, is only used for the configuration of Ascon where all 64 possible
S-box instances are instantiated.

(3) the SBOX LAYER state provides flexible handling of the S-box calculation
with a configurable number of parallel S-box instances. Since the S-box is
the only non-linear part of the transformation, its size grows quadratically
with the protection order and not linearly as the other data path parts of the
design. The configurable number of S-boxes thus allows to choose a trade-off
between throughput and chip area, power consumption, et cetera. During
the S-box calculation the state registers are shifted and the S-box module
is fed with the configured number of state slices with five bits each slice.
The result of the S-box calculation is written back during the state shifting.
Since the minimum delay of the S-box changes with the protection order and
whether the DOM or UMA approach is used, the S-box calculation takes
one to 70 cycles.

(4) in the LINEAR LAYER state the whole linear part of the round transforma-
tion is calculated in a single clock cycle. The linear transformation simply
adds two rotated copies of one state row with itself. It would be possible
to breakdown this step into smaller chunks to save area. However, the per-
formance overhead and the additional registers required to do so, would
relativize the chip area savings especially for higher orders.

S-box construction. Ascons’s S-box is affine equivalent to the Keccak S-
box and takes five (shared) bits as an input (see Fig. 8). The figure shows
where the pipeline registers are placed in our S-box design (green dotted lines).
The first pipeline stage (Stage 0, grey) is optionally already calculated in the
ADD ROUND CONST stage. The registers after the XOR gate in State 0 are
important for the glitch resistance and therefore for the security of the design.
Without this registers, the second masked AND gate from the top (red paths),



Reconciling d + 1 Masking in Hardware and Software 129

Fig. 8. Ascon’s S-box module with optional affine transformation at input (grey) and
variable number of pipeline registers (green) (Color figure online)

for example, could temporarily be sourced two times by the shares of x1 for both
inputs of the masked AND gate. Because the masked AND gate mixes shares
from different domains, a timing dependent violation (glitch) of the d-probing
resistance could occur. Note that the XOR gates at the output do not require
an additional register stage because they are fed into one of the state registers.
As long as no share domains are crossed during the linear parts of the trans-
formation the probing security is thus given. We assure this by associating each
share and each part of the circuit with one specific share domain (or index) and
keeping this for the entire circuit.

The other pipelining registers are required because of the delay of the masked
AND gates which is one cycle for the DOM gate, and up to five cycles for the
UMA AND gate according to Table 2.

5.2 Implementation Results

All results stated in this section are post-synthesis results for a 90 nm Low-K
UMC process with 1 V supply voltage and a 20 MHz clock. The designs were syn-
thesized with the Cadence Encounter RTL compiler v14.20-s064-1. Figure 9 com-
pares the area requirements of the UMA approach with DOM for the pipelined
Ascon implementation with a single S-box instance. The figure on the left shows
the comparison of single masked AND gates inside the Ascon design, while
figure right compares the whole implementations of the design. Comparing this
results with Table 3 reveals that the expected gate counts for DOM quite nicely
match the practical results. For the UMA approach, on the other hand, the prac-
tical results are always lower than the stated numbers. The reduction results
from the fact that the amount of required pipelining registers for the operands
is reduced because the pipelining register are shared among the masked AND
gates. This does not affect the DOM implementation because the multiplication
results are always calculated within only one delay cycle.
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Fig. 9. UMA versus DOM area requirements for different protection orders. Left figure
compares masked AND gates, right figure compares full Ascon implementations

Fig. 10. UMA versus DOM area requirements for different protection orders and 64
parallel S-boxes (left) and throughput comparison in the right figure

The right figure shows that the difference for the single S-box Ascon imple-
mentation is relatively low especially for low protection orders, and seems to
grow only linearly within the synthesized range for d between 1 and 15. For the
first order implementation both designs require about 10.8 kGE. For the sec-
ond order implementation the difference is still only about 200 GE (16.2 kGE
for DOM versus 16.4 kGE). The difference grows with the protection order and
is about 4.8 kGE for d = 15 which is a size difference of about 5%. The seem-
ingly linear growth in area requirements for both approaches is observed because
the S-box is only a relatively small part with 3–20% of the design which grows
quadratically, while the state registers that grow linearly dominate the area
requirements with 96–80%.

We also synthesized the design for 64 parallel S-boxes which makes the imple-
mentation much faster in terms of throughput but also has a huge impact on
the area requirements (see Fig. 10). The characteristics for UMA and DOM look
pretty similar to the comparison of the masked AND gates in Fig. 9 (left) and



Reconciling d + 1 Masking in Hardware and Software 131

shows a quadratic increase with the protection order. The chip area is now
between 28 kGE (d = 1) and 1,250 kGE (d = 15) for UMA and 926 kGE for
DOM. The S-box requires between 55% and 92% of the whole chip area.

Throughput. To compare the maximum throughput achieved by our designs
we calculated the maximum clock frequency for which our design is expected
to work for typical operating conditions (1 V supply, and 25 ◦C) over the timing
slack for the longest delay path. This frequency is then multiplied with the block
size for our encryption (64 bits) divided by the required cycles for absorbing the
data in the state of Ascon (for six consecutive round transformations).

The results are shown in Fig. 10. The throughput of both masking approaches
with only one S-box instance is quite similar which can be explained with the
high number of cycles required for calculating one round transformation (402–
426 cycles for UMA versus 402 cycles for DOM). The UMA approach achieves
a throughput between 48 Mbps and 108 Mbps, and the DOM design between
50 Mbps and 108 Mbps for the single S-box variants.

For 64 parallel S-boxes the gap between DOM and UMA increases because
DOM requires only 18 cycles to absorb one block of data while UMA requires
between 18 and 42 cycles which is a overhead of more than 130%. Therefore, also
the throughput is in average more than halved for the UMA implementation.
The UMA design achieves between 0.5 Gbps and 2.3 Gbps, and DOM Ascon
between 1.5 Gbps and 2.3 Gbps.

Randomness. The amount of randomness required for the UMA and DOM
designs can be calculated from Table 1 by multiplying the stated number by five
(for the five S-box bits), and additionally with 64 in case of the 64 parallel S-
box version. For the single S-box design, the (maximum) amount of randomness
required per cycle for the UMA design is thus between 5 bits for d = 1 and
320 bits for d = 15, and for DOM between 5 bits and 600 bits. For the 64 parallel
S-boxes design, the first-order designs already require 320 bits per cycle, and
for the 15th-order designs the randomness requirements grow to 20 kbits and
37.5 kbits per cycle, respectively.

6 Side-Channel Evaluation

In order to analyze the correctness and the resistance of our implementations, we
performed a statistical t-test according to Goodwill et al. [8] on leakage traces
of the S-box designs of the UMA variants. We note that t-tests are unfeasible
to prove any general statements on the security of a design (for all possible
conditions and signal timings) as it would be required for a complete security
verification. However, to the best of our knowledge there exist no tools which
are suitable to prove the security of higher-order masked circuits in the presence
of glitches in a formal way. T-tests only allow statements for the tested devices
and under the limitations of the measurement setup. Many works test masked
circuits on an FPGA and perform the t-test on the traces gathered from power
measurements. This approach has the drawback that due to the relatively high
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noise levels the evaluation is usually limited to first and second-order multivariate
t-tests. We use the recorded signal traces from the post-synthesis simulations of
the netlists, which are noise-free and allows us to evaluate the designs up to
the third-order. Because of the simplified signal delay model this evaluation
covers only glitches resulting from cascaded logic gates and no glitches caused
by different signal propagation times resulting from other circuit effects. We
emphasize that we use this t-test based evaluation merely to increase the trust in
the correctness and security of our implementation, and keep a formal verification
open for future work.

The intuition of the t-test follows the idea that an DPA attacker can only
make use of differences in leakage traces. To test that a device shows no
exploitable differences, two sets of traces are collected per t-test: (1) a set with
randomly picked inputs, (2) a set with fixed inputs and the according t-value is
calculated. Then the t-value is calculated according to Eq. 6 where X denotes
the mean of the respective trace set, S2 is the variance, and N is the size of the
set, respectively.

t =
X1 − X2√
S2
1

N1
+ S2

2
N2

(6)

The null-hypothesis is that the means of both trace sets are equal, which
is accepted if the calculated t-value is below the border of ±4.5. If the t-value
exceeds this border then the null-hypothesis is rejected with a confidence greater
than 99.999% for large enough trace sets. A so-called centered product pre-
processing step with trace points inside a six cycle time window is performed
for higher-order t-tests. Beyond this time frame, the intermediates are ensured
to be unrelated to the inputs. We thus combine multiple tracepoints by first
normalizing the means of the trace points and then multiplying the resulting
values with other normalized points inside the time window.

Results. Figure 11 shows the results of the t-tests for the time offsets which
achieved the highest t-values for the UMA S-box implementations of Ascon.
From top to bottom the figures show the results for different protection orders
from d = 0 to d = 3, and from left to right we performed different orders of
t-tests starting from first order up to third order. Above d = 3 and third-order
t-tests the evaluation of the t-tests becomes too time intensive for our setup.

On the y-axis of the figures the t-values are drawn, and the y-axis denotes
the used number of traces at a fraction of a million. The horizontal lines (green,
inside the figures) indicate the ±4.5 confidence border. The protection border
between the figures (the red lines) separates the t-tests for which the protection
order of the design is below the performed t-test (left) from the t-tests for which
the test order is above (right).

As intended, the t-values for the masked implementations below the protec-
tion border do not show any significant differences even after one million noise-
free traces. For the unprotected implementation (top, left figure), for example,
the first-order t-test fails with great confidence even after only a couple of traces,
and so do the second and third-order t-tests on the right. The first-order t-test
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Fig. 11. T-test evaluation for different protection orders d = 0 . . . 3 (from top to bot-
tom) and for different t-test orders (first to third, from left to right) (Color figure
online)

below of the first-order protected S-box does not show leakages anymore but the
higher-order t-tests fail again as expected. The third-order implementation does
not show any leakages anymore for the performed t-tests. We thus conclude that
our implementations seem to be secure under the stated limitations.

7 Discussion on the Randomness Costs and Conclusions

In this work, we combined software and hardware based masking approaches
into a unified masking approach (UMA) in order to save randomness and the
cost involved. In practice, the generation of fresh randomness with high entropy
is a difficult and costly task. It is, however, also difficult to put precise num-
bers on the cost of randomness generation because there exist many possible
realizations. The following comparison should thus not be seen as statement of
implementation results but reflects only one possible realization which serves as
basis for the discussion.

A common and performant way to generate many random numbers with high
entropy is the usage of PRNGs based on symmetric primitives, like Ascon for
example. A single cipher design thus provides a fixed number of random bits,
e.g. 64 bits in the case of Ascon, every few cycles. In the following comparison,
we assume a one-round unrolled Ascon implementation resulting in six delay
cycles and 7.1 kGE of chip area [13]. If more random bits are required, additional
PRNGs are inserted, which increase the area overhead accordingly.

Figure 12 (left) shows the area results from Sect. 5 including the overhead cost
for the required PRNGs. Starting with d = 2 for DOM, d = 3 for UMA for the
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Fig. 12. UMA versus DOM area requirements including an area estimation for the
randomness generation in the left figure, and an efficiency evaluation (throughput per
chip area) on the right

single S-box variants, and for all of the 64 parallel S-box variants, one PRNG
is no longer sufficient to reach the maximum possible throughput the designs
offer. The randomness generation thus becomes the bottleneck of the design
and additional PRNGs are required, which result in the chip area differences
compared to Figs. 9 and 10, respectively. As depicted, both UMA variants require
less chip area than their DOM pendants. However, this comparison does not take
the throughput of the designs into account (see Fig. 10).

Figure 12 (right) compares the efficiency, calculated as throughput (in Mbps)
over the chip area (in kGE). By using this metric, it shows that UMA is the more
efficient scheme when considering the single S-box variants, while DOM is the
more efficient solution for the 64 S-box variants. However, the practicality of the
64 S-box implementations with up to a few millions of GE and between 30 and
3,600 additional PRNGs is very questionable.

In practice, the most suitable approach for generating random bits and the
constraints vary from application to application. While UMA seems to be the
more suitable approach for low-area applications, DOM introduces less delay
cycles which is a relevant constraint for performance oriented applications. To
make our results comparable for future designs and under varying constraints,
we make our hardware implementations available online [9].

Acknowledgements. This work has been supported by the Austrian Research Pro-
motion Agency (FFG) under grant number 845589 (SCALAS), and has received fund-
ing from the European Unions Horizon 2020 research and innovation programme under
grant agreement No 644052. The work has furthermore been supported in part by the
Austrian Science Fund (project P26494-N15) and received funding from the European
Research Council (ERC) under the European Unions Horizon 2020 research and inno-
vation programme (grant agreement No 681402).



Reconciling d + 1 Masking in Hardware and Software 135

References

1. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
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