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Abstract. Masking with random values is an effective countermeasure
against side-channel attacks. For cryptographic algorithms combining
arithmetic and Boolean masking, it is necessary to switch from arith-
metic to Boolean masking and vice versa. Following a recent approach
by Hutter and Tunstall, we describe a high-order Boolean to arithmetic
conversion algorithm whose complexity is independent of the register
size k. Our new algorithm is proven secure in the Ishai, Sahai and Wag-
ner (ISW) framework for private circuits. In practice, for small orders,
our new countermeasure is one order of magnitude faster than previous
work.

We also describe a 3rd-order attack against the 3rd-order Hutter-
Tunstall algorithm, and a constant, 4th-order attack against the t-th
order Hutter-Tunstall algorithms, for any t ≥ 4.

1 Introduction

The Masking Countermeasure. Masking is a very common countermeasure
against side channel attacks, first suggested in [CJRR99,GP99]. It consists in
masking every variable x into x′ = x ⊕ r, where r is a randomly generated
value. The two shares x′ and r are then manipulated separately, so that a first-
order attack that processes intermediate variables separately cannot succeed.
However first-order masking is vulnerable to a second-order attack combining
information on the two shares x′ and r; see [OMHT06] for a practical attack.
Boolean masking can naturally be extended to n shares, with x = x1 ⊕ · · · ⊕ xn;
in that case an implementation should be resistant against t-th order attacks, in
which the adversary combines leakage information from at most t < n variables.
It was shown in [CJRR99,PR13,DDF14] that under a reasonable noisy model,
the number of noisy samples required to recover a secret x from its shares xi

grows exponentially with the number of shares.

Security Model. The theoretical study of securing circuits against side-channel
attacks was initiated by Ishai, Sahai and Wagner (ISW) [ISW03]. In this model,
the adversary can probe at most t wires in the circuit, but he should not learn
anything about the secret key. The authors show that any circuit C can be
transformed into a new circuit C ′ of size O(t2 · |C|) that is resistant against such
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an adversary. The construction is based on secret-sharing every variable x into n
shares with x = x1 ⊕ · · · ⊕ xn, and processing the shares in a way that prevents
a t-limited adversary from leaning any information about the initial variable x,
for n ≥ 2t + 1.

The approach for proving security is based on simulation: instead of consid-
ering all possible t-uples of probes, which would be unfeasible since this grows
exponentially with t, the authors show how to simulate any set of t wires probed
by the adversary, from a proper subset of the input shares of the transformed
circuit C ′. Since any proper subset of the input shares can be simulated without
knowledge of the input variables of the original circuit (simply by generating
random values), one can then obtain a perfect simulation of the t probes. This
shows that the t probes do not bring any additional information to the attacker,
since he could simulate those t probes by himself, without knowing the secret key.

In this paper, all our constructions are proven secure in the ISW model. More
precisely, we use the refined t-SNI security notion introduced in [BBD+16]. This
enables to show that a particular gadget can be used in a full construction with
n ≥ t + 1 shares, instead of n ≥ 2t + 1 for the weaker definition of t-NI security
(as used in the original ISW security proof). The t-SNI security notion is a very
practical definition that enables modular proofs; this is done by first considering
the t-SNI security of individual gadgets and then composing them inside a more
complex construction.

Boolean vs. Arithmetic Masking. Boolean masking consists in splitting
every variable x into n shares xi such that x = x1 ⊕ x2 ⊕ · · · ⊕ xn, and the
shares are then processed separately. However some algorithms use arithmetic
operations, for example IDEA [LM90], RC6 [CRRY99], XTEA [NW97], SPECK
[BSS+13] and SHA-1 [NIS95]. In that case it can be advantageous to use arith-
metic masking. For example, if the variable z = x + y mod 2k must be com-
puted securely for some parameter k, a first-order countermeasure with arith-
metic shares consists in writing x = A1 + A2 and y = B1 + B2 for arithmetic
shares A1, A2, B1, B2. Then instead of computing z = x + y directly, which
would leak information on x and y, one can add the shares separately, by letting
C1 ← A1 + B1 and C2 ← A2 + B2; this gives the two arithmetic shares C1 and
C2 using z = x + y = A1 + A2 + B1 + B2 = C1 + C2. Note that throughout the
paper all additions and subtractions are performed modulo 2k for some k; for
example for SHA-1 we have k = 32.

When combining Boolean and arithmetic masking, one must be able to con-
vert between the two types of masking; obviously the conversion algorithm itself
must be secure against side-channel attacks. More precisely, a Boolean to arith-
metic conversion algorithm takes as input n shares xi such that:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

and one must compute n arithmetic shares Ai such that:

x = A1 + A2 + · · · + An (mod 2k)

without leaking information about x.
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Prior Work. The first Boolean to arithmetic conversion algorithms were
described by Goubin in [Gou01], with security against first-order attacks only.
Goubin’s Boolean to arithmetic algorithm is quite elegant and has complexity
O(1), that is independent of the register size k. The arithmetic to Boolean con-
version is more complex and has complexity O(k); this was later improved to
O(log k) in [CGTV15]; however in practice for k = 32 the number of operations
is similar.

The first conversion algorithms secure against high-order attacks were
described in [CGV14], with complexity O(n2 · k) for n shares and k-bit addition
in both directions, with a proof of security in the ISW model.1 The authors of
[CGV14] also describe an alternative approach that use Boolean masking only
and employ secure algorithms to perform the arithmetic operations directly on
the Boolean shares, with the same asymptotic complexity; they show that for
HMAC-SHA-1 this leads to an efficient implementation.

Recently, Hutter and Tunstall have described in [HT16] a high-order Boolean
to arithmetic conversion algorithm with complexity independent of the register
size k (as in Goubin’s original algorithm). However no proof of security is pro-
vided, except for second-order and third-order attacks. The complexity of the
algorithm for n shares is O(2n/2), but for small values of n the algorithm is much
more efficient than [CGV14,CGTV15], at least by one order of magnitude2.

Our Contributions. In this paper our contributions are as follows:

• We describe a high-order Boolean to arithmetic conversion algorithm with
complexity independent of the register size k, using a similar approach as
in [HT16], but with a proof of security in the ISW model. Our algorithm
achieves security against attacks of order n−1 for n shares, for any n ≥ 3. Our
conversion algorithm has complexity O(2n), instead of O(n2 · k) in [CGV14],
but for small values of n it is one order of magnitude more efficient. In Sect. 6
we report the execution times we achieved for both algorithms, using 32-bit
registers.

• We describe a 4th order attack against the t-th order Hutter-Tunstall algo-
rithm (with n = t + 1 shares), for any t ≥ 4. We also describe a 3rd order
attack for t = 3. This implies that the conversion algorithm in [HT16] cannot
offer more than second-order security3.

Source Code. A proof-of-concept implementation of our high-order conversion
algorithm, using the C language, is available at: http://pastebin.com/CSn67PxQ

1 This can also be improved to O(n2 · log k) using [CGTV15].
2 In [HT16] the authors claim that the complexity of their algorithm is O(n2), but it

is actually O(2n/2), because it makes 2 recursive calls to the same algorithm with
n − 2 shares.

3 Our attacks apply on the version posted on 22-Dec-2016 of [HT16]; it has been
updated since then.

http://pastebin.com/CSn67PxQ


96 J.-S. Coron

2 Security Definitions

In this section we recall the t-NI and t-SNI security definitions from [BBD+16].
For simplicity we only provide the definitions for a simple gadget taking as input
a single variable x (given by n shares xi) and outputting a single variable y (given
by n shares yi). Given a vector of n shares (xi)1≤i≤n, we denote by x|I := (xi)i∈I

the sub-vector of shares xi with i ∈ I.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and
outputting the vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set
of t intermediate variables, there exists a subset I of input indices with |I| ≤ t,
such that the t intermediate variables can be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)1≤i≤n

and outputting (yi)1≤i≤n. The gadget G is said t-SNI secure if for any set of t
intermediate variables and any subset O of output indices such that t+ |O| < n,
there exists a subset I of input indices with |I| ≤ t, such that the t intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

The t-NI security notion corresponds to the original security definition in the
ISW probing model; based on the ISW multiplication gadget, it allows to prove
the security of a transformed circuit with n ≥ 2t + 1 shares. The stronger t-SNI
notion allows to prove the security with n ≥ t + 1 shares only [BBD+16]. The
difference between the two notions is as follows: in the stronger t-SNI notion, the
size of the input shares subset I can only depend on the number of probes t and
is independent of the number of output variables |O| that must be simulated
(as long as the condition t + |O| < n is satisfied). For a complex construction
involving many gadgets (as the one considered in this paper), this enables to
easily prove that the full construction is t-SNI secure, based on the t-SNI security
of its components.

3 Goubin’s First-Order Conversion and Previous Works

3.1 Goubin’s Algorithm

We first recall Goubin’s first-order algorithm for conversion from Boolean to
arithmetic masking [Gou01]. The algorithm is based on the affine property of
the function Ψ(x1, r) : F2k × F2k → F2k

Ψ(x1, r) = (x1 ⊕ r) − r (mod 2k)

As mentioned previously, all additions and subtractions are performed modulo 2k

for some parameter k, so in the following we omit the mod 2k. Moreover we grant
higher precedence to xor than addition, so we simply write Ψ(x1, r) = x1 ⊕r−r.

Theorem 1 (Goubin [Gou01]). The function Ψ(x1, r) is affine with respect
to r over F2.
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Thanks to the affine property of Ψ , the conversion from Boolean to arithmetic
masking is relatively straightforward. Namely given as input the two Boolean
shares x1, x2 such that

x = x1 ⊕ x2

we can write:

x = x1 ⊕ x2 − x2 + x2

= Ψ(x1, x2) + x2

=
[(

x1 ⊕ Ψ(x1, r ⊕ x2)
) ⊕ Ψ(x1, r)

]
+ x2

for random r ← {0, 1}k. Therefore one can compute

A ← (
x1 ⊕ Ψ(x1, r ⊕ x2)

) ⊕ Ψ(x1, r)

and get the two arithmetic shares A and x2 of

x = A + x2 (mod 2k)

The conversion algorithm is clearly secure against first-order attacks, because
the left term Ψ(x1, r ⊕ x2) is independent of x2 (thanks to the mask r), and the
right term Ψ(x1, r) is also independent from x2. The algorithm is quite efficient
as it requires only a constant number of operations, independent of k.

3.2 t-SNI Variant of Goubin’s Algorithm

In this paper our goal is to describe a high-order conversion algorithm from
Boolean to arithmetic masking, with complexity independent of the register size
k, as in Goubin’s first-order algorithm above. Moreover we will use Goubin’s first-
order algorithm as a subroutine, for which the stronger t-SNI property recalled
in Sect. 2 is needed. However it is easy to see that Goubin’s algorithm recalled
above does not achieve the t-SNI security notion. This is because by definition
the output share x2 in x = A+x2 is the same as the input share in x = x1 ⊕x2;
therefore if we take O = {2} in Definition 2, we need to set I = {2} to properly
simulate x2; this contradicts the t-SNI bound |I| ≤ t, since in that case for t = 0
we should have I = ∅.

However, it is straightforward to modify Goubin’s algorithm to make it t-SNI:
it suffices to first refresh the 2 input shares x1, x2 with a random s. We obtain
the following first-order t-SNI Boolean to arithmetic algorithm (Algorithm 1).

Lemma 1 (GoubinSNI). Let x1, x2 be the inputs of Goubin’s algorithm (Algo-
rithm 1) and let A1 and A2 be the outputs. Let t be the number of probed variables
and let O ⊂ {1, 2}, with t + |O| < 2. There exists a subset I ⊂ {1, 2}, such that
all probed variables and A|O can be perfectly simulated from x|I , with |I| ≤ t

Proof. We distinguish two cases. If t = 0, then the variable s is not probed by the
adversary, and therefore both A2 = a2 = x2⊕s and A1 = x−A2 = x−x2⊕s have
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Algorithm 1. GoubinSNI: Boolean to arithmetic conversion, t-SNI variant
Input: x1, x2 such that x = x1 ⊕ x2

Output: A1, A2 such that x = A1 + A2

1: s ← {0, 1}k

2: a1 ← x1 ⊕ s
3: a2 ← x2 ⊕ s
4: r ← {0, 1}k

5: u ← a1 ⊕ Ψ(a1, r ⊕ a2)
6: A1 ← u ⊕ Ψ(a1, r)
7: A2 ← a2

8: return A1, A2

the uniform distribution separately; therefore any of these 2 output variables can
be perfectly simulated with I = ∅.

If t = 1, then we must have O = ∅. It is easy to see that any single intermedi-
ate variable can be perfectly simulated from the knowledge of either x1 or x2, as
in Goubin’s original conversion algorithm, which gives |I| ≤ t as required.

Complexity Analysis. We see that Algorithm 1 requires 2 random genera-
tions, 2 computations of Ψ , and 5 xors, for a total of 11 operations. In particular,
the complexity of Goubin’s algorithm is independent of the register size k.

3.3 High-Order Conversion Between Boolean and Arithmetic
Masking

The first conversion algorithms secure against high-order attacks were described
in [CGV14], with complexity O(n2 · k) for n shares and k-bit addition in both
directions. The algorithms in [CGV14] are proven secure in the ISW probing
model [ISW03], with n ≥ 2t + 1 shares for security against t probes. The arith-
metic to Boolean conversion proceeds by recursively applying a n/2 arithmetic
to Boolean conversion on both halves, and then performing a Boolean-protected
arithmetic addition:

A = A1 + · · · + An/2 + An/2+1 + · · · + An

= x1 ⊕ · · · ⊕ xn/2 + y1 ⊕ · · · ⊕ yn/2

= z1 ⊕ · · · ⊕ zn

The arithmetic addition can be based on Goubin’s recursion formula [Gou01]
with complexity O(k) for k-bit register. This can be improved to O(log k) by
using a recursion formula based on the Kogge-Stone carry look-ahead adder (see
[CGTV15]); however for k = 32 the number of operations is similar. In both cases
the recursion formula only uses Boolean operation, so it can be protected with
n shares with complexity O(n2 · k) or O(n2 · log k). For the other direction, i.e.
Boolean to arithmetic, it is based on the above arithmetic to Boolean conversion,
and it has also complexity O(n2 · k) (and O(n2 · log k) with Kogge-Stone).
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Recently, Hutter and Tunstall have described in [HT16] a different technique
for high-order Boolean to arithmetic conversion, with complexity independent
of the register size k (as in Goubin’s original algorithm). However no proof
of security is provided, except for second-order and third-order attacks. The
complexity of their algorithm for n shares is O(2n/2), but for small values of n
the algorithm is much more efficient than [CGV14,CGTV15], at least by one
order of magnitude. In [HT16] the authors claim that the complexity of their
algorithm is O(n2), but it is easy to see that it must be O(2n/2), because it
makes 2 recursive calls to the same algorithm with n − 2 shares.

However, in this paper we describe a 4th order attack against the t-th order
Hutter-Tunstall algorithm (with n = t+1 shares), for any t ≥ 4; we also describe
a 3rd order attack for t = 3; see Sect. 5. This implies that the conversion algo-
rithm in [HT16] cannot offer more than second-order security. In particular,
we have not found any attack against the second-order Boolean to arithmetic
conversion specified in [HT16, Algorithm 2].

4 High-order Conversion from Boolean to Arithmetic
Masking

In this section, we describe our main contribution: a high-order conversion algo-
rithm from Boolean to arithmetic masking, with complexity independent of the
register size k, with a proof of security in the ISW model for n ≥ t + 1 shares
against t probes (t-SNI security).

4.1 A Simple but Insecure Algorithm

To illustrate our approach, we first describe a simple but insecure algorithm;
namely we explain why it fails to achieve the t-SNI security property. We start
from the n shares xi such that

x = x1 ⊕ · · · ⊕ xn

and we must output n shares Ai such that

x = A1 + · · · + An (mod 2k)

Our tentative conversion algorithm Cn is defined recursively, using a similar
approach as in [HT16], and works as follows:

1. We write

x = x2 ⊕ · · · ⊕ xn + (x1 ⊕ x2 ⊕ · · · ⊕ xn − x2 ⊕ · · · ⊕ xn)

which gives using Ψ(x1, u) = x1 ⊕ u − u:

x = x2 ⊕ · · · ⊕ xn + Ψ(x1, x2 ⊕ · · · ⊕ xn)
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From the affine property of the Ψ function, we obtain:

x = x2 ⊕ · · · ⊕ xn + (n ∧ 1) · x1 ⊕ Ψ(x1, x2) ⊕ · · · ⊕ Ψ(x1, xn)

Therefore we let z1 ← (n ∧ 1) · x1 ⊕ Ψ(x1, x2) and zi ← Ψ(x1, xi+1) for all
2 ≤ i ≤ n − 1. This gives:

x = x2 ⊕ · · · ⊕ xn + z1 ⊕ · · · ⊕ zn−1

2. We then perform two recursive calls to the Boolean to arithmetic conversion
algorithm Cn−1, with n − 1 shares. This gives:

x = A1 + · · · + An−1 + B1 + · · · + Bn−1

3. We reduce the number of arithmetic shares from 2n−2 to n by some additive
grouping, letting Di ← Ai + Bi for 1 ≤ i ≤ n − 2, and Dn−1 ← An−1 and
Dn ← Bn−1. This gives as required:

x = D1 + · · · + Dn

This terminates the description of our tentative algorithm. We explain why
this simple algorithm is insecure. Namely if the adversary probes the n − 1
variables zi, since each zi reveals information about both x1 and xi+1, those
n − 1 variables reveal information about x. More precisely, from the probed zi’s
the adversary can compute:

z1 ⊕ · · · ⊕ zn−1 = Ψ(x1, x2 ⊕ · · · ⊕ xn)

Letting u = x2 ⊕ · · · ⊕ xn and v = xn, for n ≥ 3 we can assume that the two
variables u and v are uniformly and independently distributed. Therefore the
adversary obtains the two variables:

Ψ(x1, u) = x1 ⊕ u − u, Ψ(x1, v) = x1 ⊕ v − v

and one can check that the distribution of (Ψ(x1, u), Ψ(x1, v)) depends on x =
x1⊕u. Therefore, the n−1 probes leak information about x. Moreover, due to the
recursive definition of the above algorithm, the number of required probes can
be decreased by probing within the recursive calls, instead of the zi’s. Namely if
the adversary probes only n − 2 variables within Cn−1, this reveals information
about the n − 1 variables zi’s, which in turn reveals information about x, as
explained above.

The attack can be applied recursively down to a single probe. Namely one
can check experimentally (for small k and n) that for randomly distributed
x1, . . . , xn, some intermediate variables in the recursion have a distribution that
depends on x = x1 ⊕ · · · ⊕ xn; hence the algorithm is actually vulnerable to a
first-order attack.



High-Order Conversion from Boolean to Arithmetic Masking 101

Algorithm 2. RefreshMasks
Input: x1, . . . , xn

Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn

1: yn ← xn

2: for i = 1 to n − 1 do
3: ri ← {0, 1}k

4: yi ← xi ⊕ ri
5: yn ← yn ⊕ ri � yn,i = xn ⊕⊕i

j=1 rj
6: end for
7: return y1, . . . , yn

x1 · · · xi · · · xn−1 xn

r1

...
ri

...
rn−1

y1 · · · yi · · · yn−1 yn

Fig. 1. The RefreshMasks algorithm, with the randoms ri accumulated on the last
column.

4.2 Mask Refreshing

To prevent the above attack (and any other attack), we must perform some mask
refreshing on the intermediate shares. We use the same RefreshMasks procedure
as in [RP10]; see Algorithm 2, and Fig. 1 for an illustration.

In the RefreshMasks algorithm above we denote by yn,i the intermediate
variables in the accumulated sum, namely for 1 ≤ i ≤ n − 1:

yn,i = xn ⊕
i⊕

j=1

rj

We add 3 applications of RefreshMasks in the previous conversion algorithm.
The first application is to first expand the n input shares xi into n + 1 shares,
so that we can now have n variables of the form zi = Ψ(x1, xi+1) instead of only
n−1; this is to prevent the adversary from recovering all variables zi’s. However,
one must still compress to n − 1 variables for the recursive application of the
conversion algorithm with n − 1 shares. This is done by using two RefreshMasks
(one for each recursive application) followed by xoring the last two shares into
one, to get n − 1 shares. As will be seen in the next sections, we obtain a t-SNI
conversion algorithm; this is essentially based on a careful analysis of the security
properties of RefreshMasks.
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4.3 Secure Conversion from Boolean to Arithmetic Masking

We are now ready to describe our new high-order conversion algorithm from
Boolean to arithmetic masking; as previously, our algorithm Cn is defined
recursively. We start from the n shares:

x = x1 ⊕ · · · ⊕ xn

If n = 2, we apply the t-SNI variant of Goubin’s first order algorithm, as
described in Algorithm 1. For n ≥ 3, we proceed as follows.

1. We first perform a (n + 1)-RefreshMasks of the n shares xi’s and xn+1 = 0,
so that we obtain the following n + 1 shares:

a1, . . . , an+1 ← RefreshMasksn+1(x1, . . . , xn, 0)

Therefore we still have x = a1 ⊕ · · · ⊕ an+1. We can write as previously using
Ψ(a1, u) = a1 ⊕ u − u:

x = a2 ⊕ · · · ⊕ an+1 + (a1 ⊕ · · · ⊕ an+1 − a2 ⊕ · · · ⊕ an+1)
= a2 ⊕ · · · ⊕ an+1 + Ψ(a1, a2 ⊕ · · · ⊕ an+1)

2. Thanks to the affine property of Ψ , this gives as previously:

x = a2 ⊕ · · · ⊕ an+1 + (n ∧ 1) · a1 ⊕ Ψ(a1, a2) ⊕ · · · ⊕ Ψ(a1, an+1)

Therefore, we let b1 ← (n ∧ 1) · a1 ⊕ Ψ(a1, a2) and bi ← Ψ(a1, ai+1) for all
2 ≤ i ≤ n. This gives:

x = a2 ⊕ · · · ⊕ an+1 + b1 ⊕ · · · ⊕ bn

3. We perform a RefreshMasks of the ai’s and of the bi’s, letting:

c1, . . . , cn ← RefreshMasks(a2, . . . , an+1)
d1, . . . , dn ← RefreshMasks(b1, . . . , bn)

Therefore we still have:

x = c1 ⊕ · · · ⊕ cn + d1 ⊕ · · · ⊕ dn

4. We compress from n shares to n−1 shares, by xoring the last two shares of the
ci’s and di’s. More precisely we let ei ← ci and fi ← di for all 1 ≤ i ≤ n − 2,
and en−1 ← cn−1 ⊕ cn and fn−1 ← dn−1 ⊕ dn. Therefore we still have:

x = e1 ⊕ · · · ⊕ en−1 + f1 ⊕ · · · ⊕ fn−1

5. We perform two recursive calls to the Boolean to arithmetic conversion algo-
rithm Cn−1:

A1, . . . , An−1 ← Cn−1

(
e1, . . . , en−1

)

B1, . . . , Bn−1 ← Cn−1

(
f1, . . . , fn−1

)

This gives:
x = A1 + · · · + An−1 + B1 + · · · + Bn−1
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6. We reduce the number of arithmetic shares from 2n−2 to n by some additive
grouping, letting Di ← Ai + Bi for 1 ≤ i ≤ n − 2, and Dn−1 ← An−1 and
Dn ← Bn−1. This gives as required:

x = D1 + · · · + Dn (mod 2k)

This completes the description of the algorithm. For clarity we also provide a
formal description in Appendix A.

Theorem 2 (Completeness). The Cn Boolean to arithmetic conversion algo-
rithm, when taking x1, . . . , xn as input, outputs D1, . . . , Dn such that x1 ⊕ · · · ⊕
xn = D1 + · · · + Dn (mod 2k).

Proof. The proof is straightforward from the above description. The complete-
ness property holds for n = 2 with Goubin’s conversion algorithm. Assuming
that completeness holds for n − 1 shares, we obtain:

n∑

i=1

Di =
n−1∑

i=1

Ai +
n−1∑

i=1

Bi =
n−1⊕

i=1

ei +
n−1⊕

i=1

fi =
n⊕

i=1

ci +
n⊕

i=1

di =
n+1⊕

i=2

ai +
n⊕

i=1

bi

=
n+1⊕

i=2

ai + Ψ

(

a1,

n+1⊕

i=2

ai

)

=
n+1⊕

i=1

ai =
n⊕

i=1

xi

and therefore completeness holds for n shares.

Complexity Analysis. We denote by Tn the number of operations for n shares.
We assume that random generation takes unit time. We have T2 = 11 (see
Sect. 3.2). The complexity of RefreshMasks with n shares is 3n − 3 operations.
From the recursive definition of our algorithm, we obtain:

Tn = [3 · (n + 1) − 3] + [2 · n + 3] + [2 · (3n − 3)] + 2 + 2 · Tn−1 + [n − 2]
= 2 · Tn−1 + 12 · n − 3

This gives:
Tn = 14 · 2n − 12 · n − 21

Therefore, the complexity of our algorithm is exponential in n, namely O(2n),
instead of O(n2 · k) in [CGV14]; however for small values of n our conversion
algorithm is one order of magnitude more efficient; see Sect. 6 for implementation
results.

Security. The following theorem shows that our conversion algorithm achieves
the t-SNI property. This means that our conversion algorithm is secure against
any adversary with at most n−1 probes in the circuit. Moreover thanks to the t-
SNI property, our conversion algorithm can be used within a larger construction
(for example a block-cipher, or HMAC-SHA-1), so that the larger construction
also achieves the t-SNI property.
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Theorem 3 (t-SNI of Cn). Let (xi)1≤i≤n be the input and let (Di)1≤i≤n be
the output of the Boolean to arithmetic conversion algorithm Cn. For any set of t
intermediate variables and any subset O ⊂ [1, n], there exists a subset I of input
indices such that the t intermediate variables as well as D|O can be perfectly
simulated from x|I , with |I| ≤ t.

The rest of the section is devoted to the proof of Theorem 3. The proof is
based on a careful analysis of the properties of the RefreshMasks algorithm. In the
next section, we start with three well known, basic properties of RefreshMasks.

4.4 Basic Properties of RefreshMasks

The lemma below shows that RefreshMasks achieves the t-NI property in a
straightforward way, for any t < n.

Lemma 2 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of Refresh-
Masks and let (yi)1≤i≤n be the output. For any set of t intermediate variables,
there exists a subset I of input indices such that the t intermediate variables can
be perfectly simulated from x|I , with |I| ≤ t.

Proof. The set I is constructed as follows. If for some 1 ≤ i ≤ n − 1, any of the
variables xi, ri or yi is probed, we add i to I. If xn or yn or any intermediate
variable yn,j is probed, we add n to I. Since we add at most one index to I per
probe, we must have |I| ≤ t.

The simulation of the probed variable is straightforward. All the randoms
ri for 1 ≤ i ≤ n − 1 can be simulated as in the real algorithm, by generat-
ing a random element from {0, 1}k. If yi is probed, then we must have i ∈ I,
so it can be perfectly simulated from yi = xi ⊕ ri from the knowledge of xi.
Similarly, if any intermediate variable yn,j is probed, then n ∈ I, so it can be
perfectly simulated from xn. Therefore all probes can be perfectly simulated
from x|I .

Remark 1. It is easy to see that RefreshMasks does not achieve the t-SNI prop-
erty. Namely with t = 1 we can probe yn,1 = xn ⊕ r1 and additionally require
the simulation of the output variable y1 = x1 ⊕ r1. We have yn,1 ⊕ y1 = xn ⊕x1,
hence the knowledge of both x1 and xn is required for the simulation of the two
variables, which contradicts the bound |I| ≤ t.

The following lemma shows that any subset of n − 1 output shares yi of
RefreshMasks is uniformly and independently distributed, when the algorithm is
not probed.

Lemma 3. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of Refresh-
Masks. Any subset of n − 1 output shares yi is uniformly and independently
distributed.
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Proof. Let S � [1, n] be the corresponding subset. We distinguish two cases. If
n /∈ S, we have yi = xi ⊕ ri for all i ∈ S, and therefore those yi’s are uniformly
and independently distributed. If n ∈ S, let i∗ /∈ S. We have yi = xi ⊕ ri for all
i ∈ S \ {n}. Moreover:

yn =

⎛

⎝xn ⊕
n−1⊕

i=1,i �=i∗
ri

⎞

⎠ ⊕ ri∗

where ri∗ is not used in another yi for i ∈ S. Therefore the n − 1 output yi’s are
uniformly and independently distributed.

The following lemma, whose proof is also straightforward, shows that when
RefreshMasks is not probed, the distribution of the n output shares yi’s can
be perfectly simulated from the knowledge of x1 ⊕ · · · ⊕ xn only; that is, the
knowledge of the individual shares xi’s is not required.

Lemma 4. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of Refresh-
Masks. The distribution of (yi)1≤i≤n can be perfectly simulated from x1⊕· · ·⊕xn.

Proof. We have yi = xi ⊕ ri for all 1 ≤ i ≤ n − 1 and:

yn = xn ⊕
n−1⊕

i=1

ri =

(
n⊕

i=1

xi

)

⊕
(

n−1⊕

i=1

yi

)

Therefore we can perfectly simulate the output (yi)1≤i≤n by letting yi ← {0, 1}k

for all 1 ≤ i ≤ n − 1 and yn ←
(

n⊕

i=1

xi

)
⊕

(
n−1⊕

i=1

yi

)
.

4.5 Property of the Initial RefreshMasks

The lemma below gives the first non-trivial property of RefreshMasks. We con-
sider the first RefreshMasks of our conversion algorithm Cn described in Sect. 4.3,
taking as input n + 1 input shares xi (instead of n), but with xn+1 = 0. The
lemma below is a refinement of the basic t-NI lemma (Lemma 2); namely we
show that if at least one of the output variables yj is probed, then it can be
simulated “for free”, that is without increasing the size of the input index I.
More precisely, we get the bound |I| ≤ t − 1 under that condition, instead of
|I| ≤ t in Lemma 2. This stronger bound will be used for the security proof of
our conversion algorithm; namely at Step 2 in Sect. 4.3 the adversary can probe
t of the variables bi = Ψ(a1, ai+1), whose simulation then requires the knowledge
of t + 1 variables ai. Thanks to the stronger bound, this requires the knowledge
of only t input shares xi (instead of t + 1), as required for the t-SNI bound.

Below we actually prove a slightly stronger lemma: if we fix xn+1 = 0, then
we can always simulate the t probes from x|I with |I| ≤ t − 1, except in the
trivial case of the adversary probing the input xi’s only.



106 J.-S. Coron

Lemma 5. Let x1, . . . , xn be n inputs shares, and let xn+1 = 0. Consider the
circuit y1, . . . , yn+1 ← RefreshMasksn+1(x1, . . . , xn, xn+1), where the randoms
are accumulated on xn+1. Let t be the number of probed variables. There exists
a subset I such that all probed variables can be perfectly simulated from x|I , with
|I| ≤ t − 1, except if only the input xi’s are probed.

x1 · · · xi · · · xn 0
r1

...
ri

...
rn

y1 · · · yi · · · yn yn+1

x1 · · · xj · · · xn 0
r1

...
rj

...
rn

y1 · · · yj · · · yn yn+1

Fig. 2. Illustration of Lemma 5. Case 1 (left): the adversary has spent at least one
probe on the last column for which xn+1 = 0, therefore we can have |I| ≤ t − 1. Case
2 (right): no intermediate variable is probed on the last column; therefore rj can play
the role of a one-time pad for the simulation of the probed yj , hence xj is not required
and again |I| ≤ t − 1.

Proof. As illustrated in Fig. 2, we distinguish two cases. If xn+1 or yn+1 or any
intermediate variable yn+1,j has been probed, we construct the set I as follows.
If for some 1 ≤ i ≤ n, any of the variables xi, yi or ri is probed, we add i to I.
In the construction of I we have omitted at least one probed variable (on the
column of index n + 1), and therefore we must have |I| ≤ t − 1 as required. The
simulation is then straightforward and proceeds as in Lemma 2. Namely all the
randoms ri are simulated as in the actual algorithm, and all probed variables
xi and yi can be perfectly simulated from xi, since in that case i ∈ I. The only
difference is that n + 1 need not be in I since xn+1 = 0 by definition.

We now consider the second case. If neither xn+1 nor yn+1 nor any inter-
mediate variable yn+1,i has been probed, we construct the set I as follows. By
assumption, there exists an index j such that rj or yj or both have been probed,
with 1 ≤ j ≤ n; namely we have excluded the case of the adversary probing only
the input xi’s. For all 1 ≤ i ≤ n and i �= j, if xi or ri or yi has been probed,
we add i to I. Moreover if xj has been probed, or if both rj and yj have been
probed, we add j to I. From the construction of I, we must have |I| ≤ t − 1 as
required. Namely either a single variable among rj and yj has been probed, and
this probe does not contribute to I, or both rj and yj have been probed, and
these two probes contribute to only one index in I.

The simulation of probed xi, ri or yi is straightforward for i �= j, from the
knowledge of xi. If j ∈ I, the simulation of xj , rj and yj is also straightforward.
If j /∈ I, then either rj or yj has been probed (but not both). If rj has been
probed, it can be simulated by generating a random value. If yj has been probed,
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since we have yj = xj ⊕ rj and moreover rj does not appear in the computation
of any other probed variable (since in that case rj has not been probed, nor any
intermediate variable yn+1,i), we can simulate yj as a random value in {0, 1}k.
Therefore all probed variables can be perfectly simulated from x|I .

Remark 2. The lemma does not necessarily hold if we don’t assume that xn+1 =
0, or if we only assume that xi = 0 for some i �= n + 1. For example, assuming
that x2 = 0, the adversary can probe both y1 = x1 ⊕ r1 and yn+1,1 = xn+1 ⊕ r1,
which gives y1 ⊕ yn+1 = x1 ⊕ xn+1. Hence the knowledge of 2 input shares
is required to simulate the 2 probes (including the output variable y1), which
contradicts the bound |I| ≤ t − 1.

4.6 More Results on RefreshMasks

In this section we consider the properties of RefreshMasks required for the com-
pression from n shares to n − 1 shares as performed at steps 3 and 4 of our
conversion algorithm in Sect. 4.3. Namely if the adversary probes t of the vari-
ables fi’s, because of the last variable fn−1 = dn−1 ⊕ dn, this can require the
knowledge of t + 1 of the variables di’s. Without RefreshMasks the knowledge
of t + 1 of the variables bi’s would be required, and eventually t + 1 of the
input shares xi’s, which would contradict the t-SNI bound. In this section, we
show that thanks to RefreshMasks we can still get the bound |I| ≤ t instead of
|I| ≤ t + 1.

We first prove two preliminary lemmas. The first lemma below is analogous
to Lemma 5 and shows that when the randoms in RefreshMasks are accumulated
on xn, the corresponding output variable yn can always be simulated “for free”,
that is, without increasing the size of the input index I; more precisely, if we
require that yn is among the t probes, then we can have |I| ≤ t − 1 instead of
|I| ≤ t in Lemma 2. This will enable to show that when a subsequent compression
step to n − 1 shares is performed with zn−1 ← yn−1 ⊕ yn, we can still keep the
bound |I| ≤ t instead of |I| ≤ t + 1. Namely either the adversary does not
probe zn−1 = yn−1 ⊕ yn and he does not benefit from getting information on
two variables with a single probe, or zn−1 is probed and we can apply Lemma 6
below with probed yn; in both cases we get |I| ≤ t instead of |I| ≤ t + 1. We
provide the proof of Lemma 6 in the full version of this paper [Cor17].

Lemma 6. Let x1, . . . , xn be the input of a RefreshMasks where the randoms
are accumulated on xn, and let y1, . . . , yn be the output. Let t be the number
of probed variables, with t < n. If yn is among the probed variables, then there
exists a subset I such that all probed variables can be perfectly simulated from
x|I , with |I| ≤ t − 1.

Remark 3. The lemma does not hold for other output variables. For example
the adversary can probe both y1 = x1 ⊕ r1 and yn,1 = xn ⊕ r1. Since y1 ⊕ yn,1 =
x1 ⊕ xn, both x1 and xn are required for the simulation, which contradicts the
bound |I| ≤ t − 1.
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In the previous lemma we have restricted ourselves to t < n probes (including
the probe on yn). Namely if t = n, the adversary can probe all yi’s and learn
x1 ⊕ · · · ⊕ xn = y1 ⊕ · · · ⊕ yn; therefore the simulation cannot be performed
using a proper subset I of [1, n]. In Lemma 4 we have showed that when no
intermediate variables of RefreshMasks are probed, the n output shares yi can
be simulated from the knowledge of x1 ⊕ · · · ⊕ xn only. The lemma below shows
that this is essentially the best that the adversary can do: when the adversary
has n probes, and if one of which must be yn, then either all probes in the circuit
can be simulated from x1 ⊕· · ·⊕xn only, or they can be simulated from x|I with
|I| ≤ n − 1. As previously this only holds if yn must be among the n probes;
namely without this restriction the attacker could probe the n input shares xi

directly and learn the value of the individual shares xi (and not only the xor of
the xi’s); see also Remark 4 below.

As previously, this will enable to show that when a subsequent compression
step is performed with zn−1 ← yn−1 ⊕ yn, if the adversary has a total of n − 1
probes, then the simulation can be performed from x1⊕· · ·⊕xn only, or from x|I
with |I| ≤ n − 1. Namely either the adversary does not probe zn−1 = yn−1 ⊕ yn
and we can simulate from x|I with |I| ≤ n − 1, or zn−1 is probed and we can
apply Lemma 7 below with probed yn. The proof of Lemma 7 can be found in
the full version of this paper [Cor17].

Lemma 7. Let x1, . . . , xn be the input of a RefreshMasks where the randoms
are accumulated on xn, and let y1, . . . , yn be the output. Let t be the number of
probed variables, with t = n. If yn is among the probed variables, then either all
probed variables can be perfectly simulated from x1 ⊕ · · · ⊕ xn, or there exists a
subset I with |I| ≤ n − 1 such that they can be perfectly simulated from x|I .

Remark 4. As previously, the lemma does not hold if any other output variable
yi is required to be probed instead of yn. Namely the adversary can probe the
n variables y1 = x1 ⊕ r1, x2, . . . , xn−1 and yn,1 = xn ⊕ r1. The xor of these n
variables gives x1 ⊕ · · · ⊕ xn, but the adversary also learns the individual shares
x2, . . . , xn−1. Whereas in Lemma 7, the adversary either learns x1 ⊕· · ·⊕xn and
nothing else, or at most n − 1 of the shares xi.

The lemma below is the main result of the section. As mentioned previously,
it enables to show that when we perform the compression from n shares to n−1
shares at steps 3 and 4 of our conversion algorithm from Sect. 4.3, we can still
have the bound |I| ≤ t instead of |I| ≤ t + 1 when t < n; and for t = n − 1,
the simulation can be performed either from x1 ⊕ · · · ⊕ xn, or from x|I with
|I| ≤ n − 1. We refer to the full version of this paper [Cor17] for the proof of
Lemma 8.

Lemma 8. Consider the circuit with y1, . . . , yn ← RefreshMasks(x1, . . . , xn),
zi ← yi for all 1 ≤ i ≤ n − 2 and zn−1 ← yn−1 ⊕ yn. Let t be the number of
probed variables. If t < n − 1, there exists a subset I with |I| ≤ t such that all
probed variables can be perfectly simulated from x|I . If t = n − 1, then either all
probed variables can be perfectly simulated from x1 ⊕ · · · ⊕ xn, or there exists a
subset I with |I| ≤ n − 1 such that they can be perfectly simulated from x|I .
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Remark 5. The lemma does not hold if the two xored output variables of Refresh-
Masks do not include yn (when the randoms of RefreshMasks are accumulated
on xn). For example, if we let z1 ← y1 ⊕ y2 instead, the adversary could probe
both z1 = y1 ⊕ y2 = (x1 ⊕ r1) ⊕ (x2 ⊕ r2) and yn,2 = xn ⊕ r1 ⊕ r2, which gives
z1 ⊕ yn,2 = x1 ⊕ x2 ⊕ xn. Hence to simulate those 2 probes the knowledge of 3
shares is required, which contradicts the bound |I| ≤ t.

Note that the value x1 ⊕ · · · ⊕ xn in the above lemma corresponds to either
a2 ⊕ · · · ⊕ an+1 or b1 ⊕ · · · ⊕ bn at Step 3 of our conversion algorithm from
Sect. 4.3. In that case, the adversary has already spent n − 1 probes, and no
other variable is probed. As shown in the next section, this enables to prove
that these values can be simulated without knowing the input shares. Namely
when the initial RefreshMasks is not probed, the distribution of a2 ⊕ · · · ⊕ an+1

is uniform because of Lemma 3, and can therefore be simulated by a random
value. Similarly we have:

b1 ⊕ · · · ⊕ bn = Ψ(a1, a2 ⊕ · · · ⊕ an+1) = x − x ⊕ a1

where x = x1 ⊕ · · · ⊕ xn = a1 ⊕ · · · ⊕ an+1. Since in that case the initial Refresh-
Masks is not probed, the variable a1 has the uniform distribution, hence the
value b1 ⊕ · · · ⊕ bn can also be simulated by a random value.

4.7 Proof of Theorem 3

We refer to the full version of this paper [Cor17] for the proof of Theorem 3.

5 Cryptanalysis of the Hutter-Tunstall Boolean
to Arithmetic Conversion Algorithm

In this section, we describe two attacks against the high-order Hutter-Tunstall
Boolean to arithmetic conversion algorithm in [HT16], breaking all the conver-
sion algorithms except the second-order algorithm. For clarity we will use the
same notations as in [HT16] and denote by n the maximum number of probes
in the circuit; therefore the conversion algorithm takes as input n+1 shares and
outputs n+1 shares, instead of n in the previous sections. Following [HT16], we
say that a countermeasures is of order n when it should be resistant against n
probes (hence with n + 1 shares as input and output).

Our two attacks are as follows:

• An attack of order 4 against the n-th order countermeasure, for n ≥ 4.
• An attack of order n against the n-th order countermeasure, for n ≥ 3.

Therefore the second attack is only useful for n = 3, as for n ≥ 4 the first
attack is of constant order 4. In particular, we show that our second attack
can be applied against the third-order algorithm explicitly described in [HT16,
Algorithm 3]. Our two attacks imply that the conversion algorithm in [HT16]
cannot offer more than second-order security.
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In the following we do not provide a full description of the conversion algo-
rithm from [HT16]; for simplicity we only provide the relevant part leading to
the attack; we refer to [HT16] for the full description.

5.1 Attack of Order 4 Against n-th Order Countermeasure

We have as input the n + 1 shares x′, r1, . . . rn, where:

x = x′ ⊕ r1 ⊕ · · · ⊕ rn

We copy Eq. (24) from [HT16]:

(
n−1⊕
i=1

κi

)
−
(

α ⊕
n⊕

i=1

ri

)
= ((¬n ∧ 1)β) ⊕

n−1⊕
i=1

Ψ(β, δi) ⊕ Ψ

(
β, α ⊕ rn ⊕

n−1⊕
i=1

δi ⊕ ri

)

The above equation means that the variable

X = ((¬n ∧ 1)β) ⊕
n−1⊕

i=1

Ψ(β, δi) ⊕ Ψ

(

β, α ⊕ rn ⊕
n−1⊕

i=1

δi ⊕ ri

)

(1)

is explicitly computed, using a certain sequence of operations following from the
right-hand side of the equation. From the affine property of the Ψ function, we
have:

X = Ψ

(

β, α ⊕
n⊕

i=1

ri

)

Letting u := α ⊕
n⊕

i=1

ri, we can write:

X = Ψ(β, u) = β ⊕ u − u

x = x′ ⊕ α ⊕ u

Therefore, if the variable β is explicitly computed when evaluating (1), our attack
works by probing the 4 variables β, X, α and x′. From β and X = β ⊕ u − u,
we obtain information about u. From α and x′, this reveals information about
x = x′ ⊕ α ⊕ u.

Alternatively, if the variable β is not explicitly computed4, the variable Y =
Ψ(β, δ1) must still be explicitly computed when evaluating X. Therefore our
attack works by probing the 4 variables Y , X, α and x′. We obtain the two
variables:

X = Ψ(β, u), Y = Ψ(β, δ1)

4 In the concrete description of the third-order conversion algorithm in [HT16, Algo-
rithm 3], the variable β is not explicitly computed when computing Ψ(β, δi) =
β ⊕ δi − δi, by only computing β ⊕ δi instead.
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and one can check that for randomly distributed β, δ1, the distribution of (X,Y )
leaks information about u. Namely, the variable Y = Ψ(β, δ1) = β ⊕ δ1 − δ1
leaks information about β, which combined with X = Ψ(β, u) = β ⊕ u − u leaks
information about u. From α and x′, this reveals information about x = x′⊕α⊕u.
Hence in both cases we obtain an attack of constant order 4 against the n-th
order countermeasures for any n ≥ 4.

5.2 Attack of Order n Against the n-th Order Countermeasure

We refer to the full version of this paper [Cor17] for the description of our second
attack.

6 Operation Count and Implementation

As shown in Sect. 4.3, the number of operations of our Boolean to arithmetic
conversion algorithm is given by Tn = 14 · 2n − 12 · n − 21, so it has complexity
O(2n) independent of the register size k, while the conversion algorithm from
[CGV14] has complexity O(k ·n2). We summarize in Table 1 the operation count
for [CGV14] (for k = 32) and for our new algorithm from Sect. 4.3. We see that
for small orders t, our new countermeasure is at least one order of magnitude
faster than previous work.

Table 1. Operation count for Boolean to arithmetic conversion algorithms, up to
security order t = 12, with n = t + 1 shares.

B → Aconversion Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 7

Hutter-Tunstall [HT16] 31

CGV, 32 bits [CGV14] 2 098 3 664 7 752 10 226 14 698 28 044 39 518 56 344

Our algorithm (Sect. 4.3) 55 155 367 803 1 687 7 039 28 519 114 511

We have also implemented the algorithm in [CGV14] and our new algorithm,
in C on an iMac running a 3.2 GHz Intel processor, using the Clang compiler.
We summarize the execution times in Table 2, which are consistent with the
operation count from Table 1. This confirms that in practice for small orders,
our new countermeasure is at least one order of magnitude faster than previous
work.
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Table 2. Running time in μs for Boolean to arithmetic conversion algorithms, up to
security order t = 12, with n = t + 1 shares. The implementation was done in C on a
iMac running a 3.2 GHz Intel processor.

B → A conversion Security order t

2 3 4 5 6 8 10 12

CGV, 32 bits [CGV14] 1 593 2 697 4 297 5 523 7 301 10 919 15 819 21 406

Our algorithm (Sect. 4.3) 45 119 281 611 1 270 5 673 22 192 87 322
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tion” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 158–172. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 15

[HT16] Hutter, M., Tunstall, M.: Constant-time higher-order boolean-to-
arithmetic masking. Cryptology ePrint Archive, Report 2016/1023 (2016).
http://eprint.iacr.org/2016/1023. Version posted on 22 Dec 2016

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

[LM90] Lai, X., Massey, J.L.: A proposal for a new block encryption standard.
In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404.
Springer, Heidelberg (1991). doi:10.1007/3-540-46877-3 35

[NIS95] NIST. Secure hash standard. In: Federal Information Processing Standard,
FIPA-180-1 (1995)

[NW97] Needham, R.M., Wheeler, D.J.: Tea extentions. Technical report, Com-
puter Laboratory, University of Cambridge (1997)

[OMHT06] Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order
DPA attacks for masked smart card implementations of block ciphers.
In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207.
Springer, Heidelberg (2006). doi:10.1007/11605805 13

[PR13] Prouff, E., Rivain, M.: Higher-order side channel security and mask refresh-
ing. In: Advances in Cryptology - EUROCRYPT 2013 - 32nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26–30, 2013. Proceedings, pp. 142–159
(2013)

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

http://dx.doi.org/10.1007/3-540-48059-5_15
http://eprint.iacr.org/2016/1023
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/3-540-46877-3_35
http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/978-3-642-15031-9_28


114 J.-S. Coron

A Formal Description of the High-order Boolean
to Arithmetic Conversion

Algorithm 3. Cn: high-order Boolean to Arithmetic Conversion
Input: x1, . . . , xn

Output: D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn = D1 + · · · + Dn (mod 2k)
1: if n = 2 then
2: D1, D2 ← GoubinSNI(x1, x2)
3: return D1, D2

4: end if
5: a1, . . . , an+1 ← RefreshMasksn+1(x1, . . . , xn, 0)
6: b1 ← (n ∧ 1) · a1 ⊕ Ψ(a1, a2)
7: for i = 2 to n do
8: bi ← Ψ(a1, ai+1)
9: end for

10: c1, . . . , cn ← RefreshMasksn(a2, . . . , an+1)
11: d1, . . . , dn ← RefreshMasksn(b1, . . . , bn)
12: e1, . . . , en−2 ← c1, . . . , cn−2 and en−1 ← cn−1 ⊕ cn
13: f1, . . . , fn−2 ← d1, . . . , dn−2 and fn−1 ← dn−1 ⊕ dn

14: A1, . . . , An−1 ← Cn−1(e1, . . . , en−1)
15: B1, . . . , Bn−1 ← Cn−1(f1, . . . , fn−1)
16: for i = 1 to n − 2 do
17: Di ← Ai + Bi

18: end for
19: Dn−1 ← An−1

20: Dn ← Bn−1

21: return D1, . . . , Dn
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