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Abstract. In the context of the security evaluation of cryptographic
implementations, profiling attacks (aka Template Attacks) play a fun-
damental role. Nowadays the most popular Template Attack strategy
consists in approximating the information leakages by Gaussian distri-
butions. Nevertheless this approach suffers from the difficulty to deal
with both the traces misalignment and the high dimensionality of the
data. This forces the attacker to perform critical preprocessing phases,
such as the selection of the points of interest and the realignment of
measurements. Some software and hardware countermeasures have been
conceived exactly to create such a misalignment. In this paper we pro-
pose an end-to-end profiling attack strategy based on the Convolutional
Neural Networks: this strategy greatly facilitates the attack roadmap,
since it does not require a previous trace realignment nor a precise selec-
tion of points of interest. To significantly increase the performances of
the CNN, we moreover propose to equip it with the data augmentation
technique that is classical in other applications of Machine Learning. As
a validation, we present several experiments against traces misaligned
by different kinds of countermeasures, including the augmentation of
the clock jitter effect in a secure hardware implementation over a mod-
ern chip. The excellent results achieved in these experiments prove that
Convolutional Neural Networks approach combined with data augmen-
tation gives a very efficient alternative to the state-of-the-art profiling
attacks.

Keywords: Side-Channel Attacks · Convolutional Neural Networks ·
Data augmentation · Machine learning · Jitter · Trace misalignment ·
Unstable clock

E. Prouff—This work has been finalized when the author was working at ANSSI,
France.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 45–68, 2017.
DOI: 10.1007/978-3-319-66787-4 3



46 E. Cagli et al.

1 Introduction

To prevent Side-Channel Attacks (SCA), manufacturers commonly implement
countermeasures that create misalignment in the measurements sets. The latter
countermeasures are either implemented in hardware (unstable clock, random
hardware interruption, clock stealing) or in software (insertion of random delays
through dummy operations [8,9], shuffling [31]). Until now two approaches have
been developed to deal with misalignment problems. The first one simply consists
in adapting the number of side-channel acquisitions (usually increasing it by a
factor which is linear in the misalignment effect). Eventually an integration over
a range of points [21] can be made, which guarantees the extraction of the
information over a single point, at the cost of a linear increase of the noise,
that may be compensated by the increase of the acquisitions. The second one,
which is usually preferred, consists in applying realignment techniques in order to
limit the desynchronization effects. Two realignment techniques families might
be distinguished: a signal-processing oriented one (e.g. [24,30]), more adapted to
hardware countermeasures, and a probabilistic-oriented one (e.g. [11]), conceived
for the detection of dummy operations, i.e. software countermeasures.

Among the SCAs, profiling attacks (aka Template Attacks, TA for short)
play a fundamental role in the context of the security evaluation of crypto-
graphic implementations. Indeed the profiling attack scenario allows to evaluate
their worst-case security, admitting the attacker is able to characterize the device
leakages by means of a full-knowledge access to a device identical to the one under
attack. Such attacks work in two phases: first, a leakage model is estimated dur-
ing a so-called profiling phase, then the profiled leakage model is exploited to
extract key-dependent information in the proper attack phase. Approximating
the information leakage by a Gaussian distribution is today the most popular
approach for the profiling, due to its theoretical optimality when the noise tends
towards infinity. Nevertheless the performances of such a classical TA highly
depend on some preliminary phases, such as the traces realignment or the selec-
tion of the Points of Interest (PoIs). Indeed the efficiency/effectiveness of the
Gaussian approximation is strongly impacted by the dimension of the leakage
traces at input.

In this paper we propose the use of a Convolutional Neural Network (CNN)
as a comprehensive profiling attack strategy. Such a strategy, divided into a
learning phase and a proper attack phase, can replace the entire roadmap of
the state of the art attacks: for instance, contrary to a classical TA, any trace
preprocessing such as realignment or the choice of the PoIs are included in the
learning phase. Indeed we will show that the CNNs implicitly perform an appro-
priate combination of the time samples and are robust to trace misalignment.
This property makes the profiling attacks with CNNs efficient and easy to per-
form, since they do not require critical preprocessings. Moreover, since the CNNs
are less impacted than the classical TA by the dimension of the traces, we
can a priori expect that their efficiency outperforms (or at least perform as
well as) the classical TAs. Indeed, CNNs can extract information from a large
range of points while, in practice, Gaussian TAs are used to extract information
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on some previously dimensionality-reduced data (and dimensionality reduction
never raises the informativeness of the data [10]). This claim, and more gener-
ally the soundness and the efficiency of our approach, will be proven by several
experiments throughout this paper.

To compensate some undesired behaviour of the CNNs, we propose as well to
embed them with Data Augmentation (DA) techniques [28,32], recommended in
the machine learning domain for improving performances: the latter technique
consists in artificially generating traces in order to increase the size of the profil-
ing set. To do so, the acquired traces are distorted through plausible transforma-
tions that preserve the label information (i.e. the value of the handled sensitive
variable in our context). Actually, in this paper we propose to turn the misalign-
ment problem into a virtue, enlarging the profiling trace set via a random shift
of the acquired traces and another typology of distortion that together simulate
a clock jitter effect. Paradoxically, instead of trying to realign the traces, we
propose to further misalign them (a much easier task!), and we show that such
a practice provides a great benefit to the CNN attack strategy.

This contribution makes part of the transfer of methodology in progress in
last years from the machine learning and pattern recognition domain to the side-
channel analysis one. Recently the strict analogy between template attacks and
the supervised classification problem as been depicted [15], while the deployment
of Neural Networks (NNs) [22,23,33] and CNNs [20] to perform profiled SCAs
has been proposed. Our paper aims to pursue this line of works.

This paper focuses over the robustness of CNNs to misalignment, thus consid-
erations about other kinds of countermeasures, such as masking, are left apart.
Nevertheless, the fact that CNNs usually applies non-linear functions to the data
makes them potentially (and practically, as already experienced in [20]) able to
deal with such a countermeasure as well.

The paper is organized as follows: in Sect. 2 we recall the classical TA
roadmap, we introduce the MLP family of NNs, we describe the NN-based SCA
and we finally discuss the practical aspects of the training phase of an NN.
In Sect. 3 the basic concepts of the CNNs are introduced, together with the
description of the deforming functions we propose for the data augmentation.
In Sect. 4 we test the CNNs against some software countermeasures, in order to
validate our claim of robustness to the misalignment caused by shifting. Exper-
iments against hardware countermeasures are described in Sect. 5, proving that
the CNN are robust to deformations due to the jitter.

2 Preliminaries

2.1 Notations

Throughout this paper we use calligraphic letters as X to denote sets, the corre-
sponding upper-case letter X to denote random variables (random vectors if in
bold X) over X , and the corresponding lower-case letter x (resp. x for vectors)
to denote realizations of X (resp. X). The i-th entry of a vector x is denoted by
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x[i]. Side-channel traces will be viewed as realizations of a random column vec-
tor X ∈ R

D. During their acquisition, a target sensitive variable Z = f(P,K) is
handled, where P denotes some public variable, e.g. a plaintext, and K the part
of secret key the attacker aims to retrieve. The value assumed by such a variable
is viewed as a realization z ∈ Z = {z1, z2, . . . , z|Z|} of a discrete finite random
variable Z. We will sometimes represent the values zi ∈ Z via the so-called one-
hot encoding representation, assigning to zi a |Z|-dimensional vector, with all
entries equal to 0 and the i-th entry equal to 1: zi → zi = (0, . . . , 0, 1

︸︷︷︸

i

, 0, . . . , 0).

2.2 Profiling Side-Channel Attack

A profiling SCA is composed of two phases: a profiling (or characterization, or
training) phase, and an attack (or matching) phase. During the first one, the
attacker estimates the probability:

Pr[X|Z = z] , (1)

from a profiling set {xi, zi}i=1,...,Np
of size Np, which is a set of traces xi acquired

under known value zi of the target. The potentially huge dimensionality of X
lets such an estimation a very complex problem, and the most popular way
adopted until now to estimate the conditional probability is the one that led to
the well-established Gaussian TA [5] (aka Quadratic Discriminant Analysis [12]).
To perform the latter attack, the adversary priorly exploits some statistical tests
(e.g. SNR or T-Test) and/or dimensionality reduction techniques (e.g. Principal
Component Analysis, Linear Discriminant Analysis [12], Kernel Discriminant
Analysis [4]) to select a small portion of PoIs or an opportune combination
of them. Then, denoting ε(X) the result of such a dimensionality reduction,
the attacker assumes that ε(X)|Z has a multivariate Gaussian distribution, and
estimates the mean vector μz and the covariance matrix Σz for each z ∈ Z
(i.e. the so-called templates). In this way the pdf (1) is approximated by the
Gaussian pdf with parameters μz and Σz. The attack phase eventually consists
in computing the likelihood of the attack set {xi}i=1,...,N for each template and
in sorting the key candidates k ∈ K with respect to their score dk defined such
that:

dk =
N
∏

i=1

Pr[Z = f(pi, k)|ε(X) = ε(xi)] =
N
∏

i=1

Pr[ε(X) = ε(xi)|Z = f(pi, k)]
Pr[Z = f(pi, k))]

,

(2)
where (2) is obtained via Bayes’ Theorem under the hypothesis that acquisitions
are independent.1

Traces misalignment affects the approach above. In particular, if not treated
with a proper realignment, it makes the PoI selection harder, obliging the

1 In TA the profiling set and the attack set are assumed to be different, namely the
traces xi involved in (2) have not been used for the profiling.
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attacker to consider a wide range of points for the characterization and matching
(the more effective the misalignment, the wider the range), directly or after a
previous integration [7] or a dimension reduction methods.2 As we will see in the
next section, neural networks, and in particular the CNNs, are able to efficiently
and simultaneously address the PoI selection problem and the misalignment
issue. More precisely, they can be trained to search for informative weighted
combinations of leakage points, in a way that is robust to traces misalignment.

2.3 Neural Networks and the Multi-layer Perceptron

The classification problem is the most widely studied one in machine learning,
since it is the central building block for all other problems, e.g. detection, regres-
sion, etc. [3] It consists in taking an input, e.g. a side-channel trace x, and in
assigning it a label z ∈ Z, e.g. the value of the target variable handled during
the acquisition. In the typical setting of a supervised classification problem, a
training set is available, which is a set of data already assigned to the right
label. The latter set exactly corresponds to the profiling set in the side-channel
context.

Neural networks (NN) are nowadays the privileged tool to address the clas-
sification problem. They aim at constructing a function F : R

D → R
|Z| that

takes data x ∈ R
D and outputs vectors y ∈ R of scores. The classification of

x is done afterwards by choosing the label zi such that i = argmax y[i]. In
general F is obtained by combining several simpler functions, called layers. An
NN has an input layer (the identity over the input datum x), an output layer
(the last function, whose output is the scores vector y) and all other layers are
called hidden layers. The nature (the number and the dimension) of the layers is
called the architecture of the NN. All the parameters that define an architecture,
together with some other parameters that govern the training phase, have to be
carefully set by the attacker, and are called hyper-parameters. The so-called neu-
rons, that give the name to the NNs, are the computational units of the network
and essentially process a scalar product between the coordinates of its input and
a vector of trainable weights (or simply weights) that have to be trained. Each
layer processes some neurons and the outputs of the neuron evaluations will form
new input vectors for the subsequent layer. The training phase consists in an
automatic tuning of the weights and it is done via an iterative approach which
locally applies the Stochastic Gradient Descent algorithm [13] to minimize a loss
function quantifying the classification error of the function F over the training
set. We will not give further details about this classical optimization approach,
and the interested reader may refer to [13].

In this paper we focus on the family of the Multi-Layer Perceptrons (MLPs).
They are associated with a function F that is composed of multiple linear func-
tions and some non-linear activation functions which are efficiently-computable
and whose derivatives are bounded and efficient to evaluate. To sum-up, we can
express an MLP by the following equation:

2 The latter techniques being themselves very sensible to misalignment effect.
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F (x) = s ◦ λn ◦ σn−1 ◦ λn−1 ◦ · · · ◦ λ1(x) = y , (3)

where:

– the λi functions are the so-called Fully-Connected (FC) layers and are express-
ible as affine functions: denoting x ∈ R

D the input of an FC, its output is
given by Ax + b, being A ∈ R

D×C a matrix of weights and b ∈ R
C a vector

of biases. These weights and biases are the trainable weights of the FC layer.3

– the σi are the so-called activation functions (ACT): an activation function is
a non-linear real function that is applied independently to each coordinate of
its input,

– s is the so-called softmax 4 function (SOFT): s(x)[i] = ex[i]
∑

j ex[j] .

Examples of ACT layers are the sigmoid f(x)[i] = (1 + e−x[i])−1 or the
rectified linear unit (ReLU) f(x)[i] = max(0,x[i]). In general they do not depend
on trainable weights.

The role of the softmax is to renormalise the output scores in such a way
that they define a probability distribution y = Pr[Z|X = x].

In this way, the computed output does not only provide the most likely label
to solve the classification problem, but also the likelihood of the remaining |Z|−1
other labels. In the profiling SCA context, this form of output allows us to enter
it in (2) (setting the preprocessing function ε equal to the identity) to rank key
candidates; actually (3) may be viewed as an approximation of the pdf in (1).5

We can thus rewrite (2) as:

dk =
N
∏

i=1

F (xi)[f(pi, k)]. (4)

We refer to [19] for an (excellent) explication over the relationship between
the softmax function and the Bayes theorem.

2.4 Practical Aspects of the Training Phase and Overfitting

The goal of the training phase is to tune the weights of the NN. The latter ones
are first initialized with random values and are afterwards updated by applying
several times the same process: a batch of traces chosen in random order goes
through the network to obtain its score, the loss function is computed from this

3 They are called Fully-Connected because each i-th input coordinate is connected to
each j-th output via the A[i, j] weight. FC layers can be seen as a special case of the
linear layers in general Feed-Forward networks, in which not all the connections are
present. The absence of some (i, j)-th connections can be formalized as a constraint
for the matrix A consisting in forcing to 0 its (i, j)-th coordinates.

4 To prevent underflow, the log-softmax is usually preferred if several classification
outputs must be combined.

5 Remarkably, this places SCAs based on MLP as a particular case of the classical
profiling attack that exploits the maximum likelihood as distinguisher.
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score and finally the loss is reduced by modifying the trainable parameters. A
good choice for the size of the batch is a value as large as possible but which
avoids computational performances drop. An iteration over the entire training set
is called epoch. To monitor the training of an NN and to evaluate its performances
it is a good practice to separate the labelled data into 3 sets:

– the proper training set, which is actually used to train the weights (in general
it contains the greatest part of the labelled data)

– a validation set, which is observed in general at the end of each epoch to
monitor the training

– a test set, which is kept unobserved during the training phase and which is
involved to finally evaluate the performances of the trained NN.

For our experiments we will use the attack traces as test set, while we will
split the profiling traces into a training set and a validation set.6

The Accuracy is the most common metric to both monitor and evaluate an
NN. It is defined as the successful classification rate reached over a dataset. The
training accuracy, the validation accuracy and the test accuracy are the success-
ful classification rates achieved respectively over the training, the validation and
the test sets. At the end of each epoch it is useful to compute and to compare the
training accuracy and the validation accuracy. For some trained models we will
measure in this paper (see e.g. Table 1) the following two additional quantities:

– the maximal training accuracy, corresponding to the maximum of the training
accuracies computed at the end of each epoch

– the maximal validation accuracy, corresponding to the maximum of the vali-
dation accuracies computed at the end of each epoch.

In addition to the two quantities above, we will also evaluate the performances
of our trained model, by computing a test accuracy. Sometimes it is useful to
complete this evaluation by looking at the so-called confusion matrix (see the
bottom part of Fig. 5). Indeed the latter matrix enables, in case of misclassifi-
cation, for the identification of the classes which are confused. The confusion
matrix corresponds to the distribution over the couples (true label, predicted
label) directly deduced from the results of the classification on the test set. A
test accuracy of 100% corresponds to a diagonal confusion matrix.

6 The way how the profiling set is split into training and validation sets might induce
a bias in the learned model. A good way to get rid of such a bias is to apply a
cross-validation technique, e.g. a 10-fold cross-validation. The latter one consists in
partitioning the profiling set into 10 sub-sets, and in performing 10 times the training
while choosing each time one of the sub-sets for the validation and the union of the
9 other ones for the training. An average over the performances of the 10 obtained
models gives a more robust estimation of the accuracies and performances. Results
of this papers do not make use of such a cross-validation technique.
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On the Need to Also Consider the Guessing Entropy. The accuracy
metric is perfectly adapted to the machine learning classification problem, but
corresponds in side-channel language to the success rate of a Simple Attack,
i.e. an attack where a single attack trace is available. When the attacker can
acquire several traces for varying plaintexts, the accuracy metric is not sufficient
alone to evaluate the attack performance. Indeed such a metric only takes into
account the label corresponding to the maximal score and does not consider the
other ones, whereas an SCA through (4) does (and therefore exploits the full
information).

To take this remark into account, we will always associate the test accuracy
to a side-channel metric defined as the minimal number N� of side-channel traces
that makes the guessing entropy (the average rank of the right key candidate)
be permanently equal to 1 (see e.g. Table 1). We will estimate such a guessing
entropy through 10 independent attacks.

As we will see in the sections dedicated to our attack experiments, applying
Machine Learning in a context where at the same time (1) the model to recover
is complex and (2) the amount of exploitable measurements for the training is
limited, may be ineffective due to some overfitting phenomena.

Overfitting. Often the training accuracy is higher than the validation one.
When the gap between the two accuracies is excessive, we assist to the overfit-
ting phenomenon. It means that the NN is using its weights to learn by heart
the training set instead of detecting significant discriminative features. For this
reason its performances are poor over the validation set, which is new to it. Over-
fitting occurs when an NN is excessively complex, i.e. when it is able to express
an excessively large family of functions. In order to keep the NN as complex as
wished and hence limiting the overfitting, some regularization techniques can be
applied. For example, in this paper we will propose the use of the Data Augmen-
tation (DA) [28] that consists in artificially adding observations to the training
set. Moreover we will take advantage of the early-stopping technique [26] that
consists in well choosing a stop condition based on the validation accuracy or on
the validation loss (i.e. the value taken by the loss function over the validation
set).

3 Convolutional Neural Networks

In this section we describe the layers that turn an MLP into a Convolutional
Neural Network (CNN), and we explain how the form of these layers makes the
CNNs robust to misalignment. Then we will specify the Data Augmentation that
can be applied in our context, in order to deal with overfitting.

3.1 Description of the CNNs

The CNNs complete the classical principle of MLP with two additional types of
layers: the so-called convolutional layer based on a convolutional filtering, and a
pooling layer. We describe these two particular layers hereafter.
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Convolutional (CONV) Layers are linear layers that share weights across
space. The representation is given in Fig. 1(a).7 To apply a convolutional layer
to an input trace, V small column vectors, called convolutional filter, of size
W are slid over the trace.8 The column vectors form a window which defines a
linear transformation of W consecutive points of the trace into a new vector of
V points. The coordinates of the window (viewed as a matrix) are among the
trainable weights and are constrained to be unchanged for every input window.
This constraint is the main difference between a CONV layer and an FC layer; it
allows the former to learn shift-invariant features. The reason why several filters
are applied is that we expect each filter to extract a different kind of characteristic
from the input. As one goes along convolutional layers, higher-level abstraction
features are expected to be extracted. These high-level features are arranged
side-by-side over an additional data dimension, the so-called depth.9 This is this
geometric characteristic that makes CNNs robust to temporal deformations [18].

To avoid complexity explosion due to this depth increasing, the insertion of
pooling layers is recommended.

Pooling (POOL) Layers are non-linear layers that reduce the spatial size in
order to limit the amount of neurons, and by consequence the complexity of
the minimization problem (see Fig. 1(b)). As the CONV layers, they make some
filters slide across the input. Filters are 1-dimensional, characterised by a length
W , and usually the stride (see footnote 5) is chosen equal to their length; for
example in Fig. 1(b) both the length and the stride equal 3, so that the selected
segments of the input do not overlap. In contrast with convolutional layers, the
pooling filters do not contain trainable weights. They only slide across the input
to select a segment, then a pooling function is applied: the most common pooling
functions are the max-pooling which outputs the maximum values within the
segment and the average-pooling which outputs the average of the coordinates
of the segment.

Common architecture. The main block of a CNN is a CONV layer γ directly
followed by an ACT layer σ. The former locally extracts information from the
input thanks to filters and the latter increases the complexity of the learned
classification function thanks to its non-linearity. After some (σ ◦ γ) blocks, a
POOL layer δ is usually added to reduce the number of neurons: δ ◦ [σ ◦ γ]n2 .
This new block is repeated in the neural network until obtaining an output of
reasonable size. Then, some FC are introduced in order to obtain a global result

7 CNNs have been introduced for images [18]. So, usually, layer interfaces are arranged
in a 3D-fashion (height, weight and depth). In Fig. 1(a) we show a 2D-CNN (length
and depth) adapted to 1D-data as side-channel traces are.

8 The amount of units by which the filter shifts across the trace is called stride. In
Fig. 1(a) the stride equals 1.

9 Ambiguity: NNs with many layers are sometimes called Deep Neural Networks, where
the depth corresponds to the number of layers.
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Fig. 1. (a) Convolutional filtering: W = 2, V = 4, stride = 1. (b) Max-pooling layer:
W = stride = 3.

which depends on the entire input. To sum-up, a common convolutional network
can be characterized by the following formula:10

s ◦ [λ]n1 ◦ [δ ◦ [σ ◦ γ]n2 ]n3 . (5)

Layer by layer it increases depth through convolution filters, adds non-
linearity through activation functions and reduces spatial (or temporal, in the
side-channel traces case) size through pooling layers. Once a deep and narrow
representation has been obtained, one or more FC layers are connected to it,
followed by a softmax function. An example of CNN architecture is represented
in Fig. 2.

Fig. 2. Common CNN architecture

10 where each layer of the same type appearing in the composition is not to be intended
as exactly the same function (e.g. with same input/output dimensions), but as a
function of the same form.
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3.2 Data Augmentation

As pointed out in Sect. 2.4, it is sometimes necessary to manage the overfit-
ting phenomenon, by applying some regularization techniques. As we will see in
Sects. 4 and 5 this will be the case in our experiments: indeed we will propose a
quite deep CNN architecture, flexible enough to manage the misalignment prob-
lems, but trained over some relatively small training sets. This fact, combined
with the high number of weights exploited by our CNN implies that the latter
one will learn by heart each element of the training set, without catching the
truly discriminant features of the traces.

Among all regularization techniques, we choose to concentrate priorly on the
Data Augmentation [28], mainly for two reasons. First, it is well known that the
presence of misalignment forces to increase the number of acquisitions. In other
terms, misalignment may provoke a lack of data phenomenon on the adversary
side. In the machine learning domain such a lack is classically addressed thanks to
the DA technique, and its benefits are widely proved. For example, many image
recognition competition winners made use of such a technique (e.g. the winner
of ILSVRC-2012 [17]). Second, the DA is controllable, meaning that the defor-
mations applied to the data are chosen, thus fully characterized. It is therefore
possible to fully determine the addition of complexity induced to the classifica-
tion problem. In our opinion, other techniques add constraints to the problem
in a more implicit way, e.g. the dropout [14] or the �2-norm regularization [3].

Data augmentation consists in artificially generating new training traces by
deforming those previously acquired. The deformation is done by the application
of transformations that preserve the label information (i.e. the value of the
handled sensitive variable in our context). We choose two kinds of deformations,
that we denote by Shifting and Add-Remove.

Shifting Deformation (SHT �) simulates a random delay effect of maximal ampli-
tude T �, by randomly selecting a shifting window of the acquired trace, as shown
in Fig. 3. Let D denote the original size of the traces. We fix the size of the input
layer of our CNN to D′ = D − T �. Then the technique SHT � consists (1) in
drawing a uniform random t ∈ [0, T �], and (2) in selecting the D′-sized window
starting from the t-th point. For our study, we will compare the SHT technique
for different values T ≤ T �, without changing the architecture of the CNN (in
particular the input size D′). Notably, T � T � implies that T � −T time samples
will never have the chance to be selected. As we suppose that the information
is localized in the central part of the traces, we choose to center the shifting
windows, discarding the heads and the tails of the traces (corresponding to the
first and the last T �−T

2 points).

Add-Remove Deformation (AR) simulates a clock jitter effect (Fig. 3). We will
denote by ARR the operation that consists (1) in inserting R time samples, whose
positions are chosen uniformly at random and whose values are the arithmetic
mean between the previous time sample and the following one, (2) in suppressing
R time samples, chosen uniformly at random.

The two deformations can be composed: we will denote by SHT ARR the
application of a SHT followed by a ARR.
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Fig. 3. Left: Shifting technique for DA. Right: Add-Remove technique for DA (added
points marked by red circles, removed points marked by black crosses). (Color figure
online)

4 Application to Software Countermeasures

In this section we present a preliminary experiment we have performed in order
to validate the shift-invariance claimed by the CNN architecture, recalled in
Sect. 3.1. In this experiment a single leaking operation was observed through the
side-channel acquisitions, shifted in time by the insertion of a random number of
dummy operations. A CNN-based attack is run, successfully, without effectuating
any priorly realignment of the traces. We also performed a second experiment
in which we targeted two leaking operations.

We believe (and we discuss it in more details in AppendixA) that dealing with
dummy operations insertion does not represent an actual obstacle for an attacker
nowadays. Thus, the experiment we present in this section is not expected to be
representative of real application cases. Actually, we think that the CNNs bring
a truly great advantage with respect to the state-of-the-art TAs in presence of
hardware-flavoured countermeasures, such as augmented jitter effects. We refer
to Sect. 5 for experiments in such a context.

CNN-based Attack Against Random Delays. For this experiment, we
implemented, on an Atmega328P microprocessor, a uniform Random Delay
Interrupt (RDI) [29] to protect the leakage produced by a single target oper-
ation. Our RDI simply consists in a loop of r nop instructions, with r drawn
uniformly in [0, 127].

Some acquired traces are reported in the left side of Fig. 4, the target peak
being highlighted with a red ellipse. They are composed of 3, 996 time samples,
corresponding to an access to the AES-Sbox look-up table stored in NVM. For
the training, we acquired only 1, 000 traces and 700 further traces were acquired
as validation data. Our CNN has been trained to classify the traces according to
the Hamming weight of the Sbox output; namely, our labels are the 9 values taken
by Z = HW(Sbox(P ⊕ K)). This choice has been done to let each class contain
more than only a few (i.e. about 1, 000/256) training traces.11 Since Z is assumed
to take 9 values and the position of the leakage depends on a random r ranging
over 128 values, it is clear that the 1, 000 training traces do not encompass

11 For Atmega328P devices, the Hamming weight is known to be particularly relevant
to model the leakage occurring during register writing [2].
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Fig. 4. Left: one leakage protected by single uniform RDI. Right: two leaking operations
protected by multiple uniform RDI. (Color figure online)

the full 9 × 128 = 1, 152 possible combinations (z, r) ∈ [0, 8] × [0, 127]. We
undersized the training set by purpose, in order to establish whether the CNN
technique, equipped with DA, is able to catch the meaningful shift-invariant
features without having been provided with all the possible observations.

For the training of our CNN, we applied the SHT data augmentation, select-
ing T � = 500 and T ∈ {0, 100, T �}; this implies that the input dimension of
our CNN is reduced to 3, 496. Our implementation is based on Keras library [1]
(version 1.2.1), and we run the trainings over an ordinary computer equipped
with a gamers market GPU, as specified in Sect. 5.2. For the CNN architecture,
we chose the following architecture:

s ◦ [λ]1 ◦ [δ ◦ [σ ◦ γ]1]4, (6)

i.e. (5) with n1 = n2 = 1 and n3 = 4. To accelerate the training we introduced
a Batch Normalization layer [16] after each pooling δ. The network transforms
the 3, 496×1 inputs in a 1×256 list of abstract features, before entering the last
FC layer λ : R

256 → R
9. Even if the ReLU activation function [25] is classically

recommended for many applications in literature, we obtained in most cases bet-
ter results using the hyperbolic tangent. We trained our CNN by batches of size
32. In total the network contained 869, 341 trainable weights. The training and
validation accuracies achieved after each epoch are depicted in Fig. 5 together
with the confusion matrices that we obtained from the test set. Applying the
early-stopping principle recalled in Sect. 2.4, we automatically stopped the train-
ing after 120 epochs without decrement of the loss function evaluated over the
validation set, and kept as final trained model the one that showed the minimal
value for the loss function evaluation. Concerning the learning rate, i.e. the fac-
tor defining the size of the steps in the gradient descent optimization (see [13])
we fixed the beginning one to 0.01 and reduced it by a factor of

√
0.1 after 5

epochs without validation loss decrement.
Table 1 summarizes the obtained results. For each trained model we can

compare the maximal training accuracy achieved during the training with the
maximal validation accuracy (see Sect. 2.4 for the definition of these accuracies).
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Fig. 5. One leakage protected via single uniform RDI: accuracies vs epochs and confu-
sion matrices obtained with our CNN for different DA techniques. From left to right:
SH0, SH100, SH500.

Table 1. Results of our CNN, for different DA techniques, in presence of an uniform
RDI countermeasure protecting. For each technique, 4 values are given: in position
a the maximal training accuracy, in position b the maximal validation accuracy, in
position c the test accuracy, in position d the value of N� (see Sect. 2.4 for definitions).

SH0 SH100 SH500

a b 100% 25.9% 100% 39.4% 98.4% 76.7%

c d 27.0% > 1000 31.8% 101 78.0% 7

This comparison gives an insight about the risk of overfitting for the train-
ing.12 Case SH0 corresponds to a training performed without DA technique.
When no DA is applied, the overfitting effect is dramatic: the training set is
100%-successfully classified after about 22 epochs, while the test accuracy only
achieves 27%. The 27% is around the rate of uniformly distributed bytes showing
an Hamming weight of 4.13 Looking at the corresponding confusion matrix we
remark that the CNN training has been biased by the binomial distribution of
the training data, and almost always predicts the class 4. This essentially means
that no discriminative feature has been learned in this case, which is confirmed
by the fact that the trained model leads to an unsuccessful attack (N� > 1, 000).

12 The validation accuracies are estimated over a 700-sized set, while the test accuracies
are estimated over 100, 000 traces. Thus the latter estimation is more accurate, and
we recall that the test accuracy is to be considered as the final CNN classification
performance.

13 We recall that the Hamming weight of uniformly distributed data follows a binomial
law with coefficients (8, 0.5).
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Table 2. Results of our CNN in presence of uniform RDI protecting two leaking
operations. See the caption Table 1 for a legend.

First operation Second operation

a b 95.2% 79.7% 96.8% 81.0%

c d 76.8% 7 82.5% 6

Remarkably, the more artificial shifting is added by the DA, the more the over-
fitting effect is attenuated; for SHT with e.g. T = 500 the training set is never
completely learnt and the test accuracy achieves 78%, leading to a guessing
entropy of 1 with only N� = 7 traces.

These results confirm that our CNN model is able to characterize a wide
range of points in a way that is robust to RDI.

Two Leaking Operations. In this section we study whether our CNN classi-
fier suffers from the presence of multiple leaking operations with the same power
consumption pattern. This situation occurs for instance any time the same oper-
ation is repeated several successive times over different pieces of data (e.g. the
SubByte operation for a software AES implementation is often performed by 16
successive look-up table access). To start our study we performed the same exper-
iments as in Sect. 4 over a second traces set, where two look-up table accesses
leak, each preceded by a random delay. Some examples of this second traces
set are given in the right side of Fig. 4, where the two leaking operations being
highlighted by red and green ellipses. We trained the same CNN as in Sect. 4,
once to classify the first leakage, and a second time to classify the second leak-
age, applying SH500. Results are given in Table 2. They show that even if the
CNN transforms spatial (or temporal) information into abstract discriminative
features, it still holds an ordering notion: indeed if no ordering notion would have
been held, the CNN could no way discriminate the first peak from the second
one.

5 Application to Hardware Countermeasures

A classical hardware countermeasure against side-channel attacks consists in
introducing instability in the clock. This implies the cumulation of a deforming
effect that affects each single acquired clock cycle, and provokes traces misalign-
ment on the adversary side. Indeed, since clock cycles do not have the same
duration, they are sampled during the attack by a varying number of time sam-
ples. As a consequence, a simple translation of the acquisitions is not sufficient
in this case to align w.r.t. an identified clock cycle. Several realignment tech-
niques are available to manage this kind of deformations, e.g. [30]. The goal of
this paper is not to compare a new realignment technique with the existing ones,
but to show that we can get rid of the realignment pre-processing exploiting the
end-to-end attack strategy provided by the CNN approach.
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5.1 Performances over Artificial Augmented Clock Jitter

In this section we present the results that we obtained over two datasets named
DS low jitter and DS high jitter. Each one contains 10, 000 labelled traces, used
for the training/profiling phase (more precisely, 9, 000 are used for the train-
ing, and 1, 000 for the validation), and 100, 000 attack traces. The traces are
composed of 1, 860 time samples. The two datasets have been obtained by artifi-
cially adding a simulated jitter effect over some synchronized original traces. The
original traces were measured on the same Atmega328P microprocessor used in
the previous section. We verified that they originally encompass leakage on 34
instructions: 2 nops, 16 loads from the NVM and 16 accesses to look-up tables.
For our attack experiments, it is assumed that the target is the first look-up
table access, i.e. the 19th clock cycle. As in the previous section, the target
is assumed to take the form Z = HW(Sbox(P ⊕ K)). To simulate the jitter
effect each clock pattern has been deformed14 by adding r new points if r > 0
(resp. removing r points if r < 0), with r ∼ N (0, σ2).15 For the DS low jitter
dataset, we fixed σ2 = 4 and for the DS high jitter dataset we fixed σ2 = 36.
As an example, some traces of DS low jitter are depicted in the left-hand side
of Fig. 6: the cumulative effect of the jitter is observable by remarking that the
desynchronization raises with time. Some traces of DS high jitter are depicted
as well in the right-hand side of Fig. 6. For both datasets we did not operate any
PoI selection, but entered the entire traces into our CNN.

Fig. 6. Left: some traces of the DS low jitter dataset, a zoom of the part highlighted
by the red rectangle is given in the bottom part. Right: some traces (and the relative)
of the DS high jitter dataset. The interesting clock cycle is highlighted by the grey
rectangular area.

We used the same CNN architecture (6) as in previous section. We assisted
again to a strong overfitting phenomenon and we successfully reduced it by
applying the DA strategy introduced in Sect. 3.2. This time we applied both the
shifting deformation SHT with T � = 200 and T ∈ {0, 20, 40} and the add-remove
deformation ARR with R ∈ {0, 100, 200}, training the CNN model using the 9

14 The 19th clock cycle suffers from the cumulation of the previous 18 deformations.
15 This deformation is not the same of the proposed AR technique for the DA.
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combinations SHT ARR. We performed a further experiment with much higher
DA parameters, i.e. SH200AR500, to show that the benefits provided by the DA
are limited: as expected, too much deformation affects the CNN performances
(indeed results obtained with SH200AR500 will be worse than those obtained
with e.g. SH40AR200).

Fig. 7. Comparison between a Gaussian template attack, with and without realign-
ment, and our CNN strategy, over the DS low jitter (left) and the DS high jitter (right).

The results we obtained are summarized in Table 3. Case SH0AR0 corre-
sponds to a training performed without DA technique (and hence serves as a
reference suffering from the overfitting phenomenon). It can be observed that
as the DA parameters raise, the validation accuracy increases while the train-
ing accuracy decreases. This experimentally validates that the DA technique
is efficient in reducing overfitting. Remarkably in some cases, for example in
the DS low jitter dataset case with SH100AR40, the best validation accuracy is
higher than the best training accuracy. In Fig. 8 the training and validation accu-
racies achieved in this case epoch by epoch are depicted. It can be noticed that
the unusual relation between the training and the validation accuracies does not
only concern the maximal values, but is almost kept epoch by epoch. Observing
the picture, we can be convinced that, since this fact occurs at many epochs, this
is not a consequence of some unlucky inaccurate estimations. To interpret this
phenomenon we observe that the training set contains both the original data
and the augmented ones (i.e. deformed by the DA) while the validation set only
contains non-augmented data. The fact that the achieved training accuracy is
lower than the validation one, indicates that the CNN does not succeed in learn-
ing how to classify the augmented data, but succeeds to extract the features of
interest for the classification of the original data. We judge this behaviour pos-
itively. Concerning the DA techniques we observe that they are efficient when
applied independently and that their combination is still more efficient.

According to our results in Table 3, we selected the model issued using the
SH200AR40 technique for the DS low jitter dataset and the one issued using the
SH200AR20 technique for the DS higher jitter. In Fig. 7 we compare their per-
formances with those of a Gaussian TA possibly combined with a realignment
technique. To tune this comparison, several state-of-the-art Gaussian TA have
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Table 3. Results of our CNN in presence of artificially-generated jitter countermeasure,
with different DA techniques. See the caption of Table 1 for a legend.

DS low jitter
a b
c d

SH0 SH20 SH40 SH200

100.0% 68.7% 99.8% 86.1% 98.9% 84.1%
AR0 57.4% 14 82.5% 6 83.6% 6

87.7% 88.2% 82.4% 88.4% 81.9% 89.6%
AR100 86.0% 6 87.0% 5 87.5% 6

83.2% 88.6% 81.4% 86.9% 80.6% 88.9%
AR200 86.6% 6 85.7% 6 87.7% 5

85.0% 88.6%
AR500 86.2% 5

DS high jitter
a b

SH0 SH20 SH40 SH200c d

AR0
100% 45.0% 100% 60.0% 98.5% 67.6%
40.6% 35 51.1% 9 62.4% 11

AR100
90.4% 57.3% 76.6% 73.6% 78.5% 76.4%
50.2% 15 72.4% 11 73.5% 9

AR200
83.1% 67.7% 82.0% 77.1% 82.6% 77.0%
64.0% 11 75.5% 8 74.4% 8

AR500
83.6% 73.4%
68.2% 11

Fig. 8. Training of the CNN model with DA SH100AR40. The training classification
problem becomes harder than the real classification problem, leading validation accu-
racy constantly higher than the training one.

been tested. In particular, for the selection of the PoIs, two approaches have
been applied: first we selected from 3 to 20 points maximising the estimated
instantaneous SNR, secondly we selected sliding windows of 3 to 20 consecutive
points covering the region of interest. For the template processing, we tried (1)
the classical approach [5] where a mean and a covariance matrix are estimated
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for each class, (2) the pooled covariance matrix strategy proposed in [6] and (3)
the stochastic approach proposed in [27]. In this experiment, the leakage is con-
centrated in peaks that are easily detected by their relatively high amplitude,
so we use a simple method that consists in first detecting the peaks above a
chosen threshold, then keeping all the samples in a window around these peaks.
The results plotted in Fig. 7 are the best ones we obtained (via the stochastic
approach over some 5-sized windows). Results show that the performances of
the CNN approach are much higher than those of the Gaussian templates, both
with and without realignment. This confirms the robustness of the CNN app-
roach with respect to the jitter effect: the selection of PoIs and the realignment
integrated in the training phase are effective.

5.2 Performances on a Secure Smartcard

As a last (but most challenging) experiment we deployed our CNN architecture
to attack an AES hardware implementation over a modern secure smartcard
(secure implementation on 90 nm technology node). On this implementation,
the architecture is designed to optimize the area, and the speed performances
are not the major concern. The architecture is here minimal, implementing only
one hardware instance of the SubByte module. The AES SubByte operation
is thus executed serially and one byte is processed per clock cycle. To protect
the implementation, several countermeasures are implemented. Among them, a
hardware mechanism induces a strong jitter effect which produces an important
traces’ desynchronization. The bench is set up to trig the acquisition of the trace
on a peak which corresponds to the processing of the first byte. Consequently,
the set of traces is aligned according to the processing of the first byte while
the other bytes leakages are completely misaligned. To illustrate the effect of
this misalignment, the SNR characterizing the (aligned) first byte and the (mis-
aligned) second byte are computed (according to the formula given in [4]) using
a set of 150, 000 traces labelled by the value of the SubByte output (256 labels).
These SNRs are depicted in the top part of Fig. 9. The SNR of the first byte (in
green) detects a quite high leakage, while the SNR of the second byte (in blue)
is nullified. A zoom of the SNR of the second peak is proposed in the bottom-
left part of Fig. 9. In order to confirm that the very low SNR corresponding
to the second byte is only due to the desynchronization, the patterns of the
traces corresponding to the second byte have been resynchronized using a peak-
detection-based algorithm, quite similar to the one applied for the experiments
of Sect. 5.1. Then the SNR has been computed onto these new aligned traces and
has been plot in red in the top-left part of Fig. 9; this SNR is very similar to that
of the first byte. This clearly shows that the leakage information is contained
into the trace but is efficiently hidden by the jitter-based countermeasure.

We applied the CNN approach onto the rough set of traces (without any
alignement). First, a 2, 500-long window of the trace has been selected to input
CNN. The window, identified by the vertical cursors in the bottom part of Fig. 9,
has been selected to ensure that the pattern corresponding to the leakage of the
second byte is inside the selection. At this step, it is important to notice that
such a selection is not at all as meticulous as the selection of PoIs required by
a classical TA approach. The training phase has been performed using 98, 000
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labelled traces; 1, 000 further traces have been used for the validation set. We
performed the training phase over a desktop computer equipped with an Intel
Xeon E5440 @2,83GHz processor, 24Gb of RAM and a GeForce GTS 450 GPU.
Without data augmentation each epoch took about 200s.16 The training stopped
after 25 epochs. Considering that in this case we applied an early-stopping strat-
egy that stopped training after 20 epochs without validation loss decrement, it
means that the final trainable weights are obtained after 5 epochs (in about
15 min). The results that we obtained are summarized in Table 4. They prove
not only that our CNN is robust to the misalignment caused by the jitter but
also that the DA technique is effective in raising its efficiency. A comparison
between the CNN performances and the best results we obtained over the same
dataset applying the realignment-TA strategy in the right part of Fig. 9. Beyond
the fact that the CNN approach slightly outperforms the realignment-TA one,
and considering that both case-results shown here are surely non-optimal, what
is remarkable is that the CNN approach is potentially suitable even in cases
where realignment methods are impracticable or not satisfying. It is of partic-
ular interest in cases where sensitive information does not lie in proximity of
peaks or of easily detectable patterns, since many resynchronization techniques
are based on pattern or peak detection. If the resynchronization fails, the TA
approach falls out of service, while the CNN one remains a further weapon in
the hands of an attacker.

Fig. 9. Top Left: in green the SNR for the first byte; in blue the SNR for the second
byte; in red the SNR for the second byte after a trace realignment. Bottom Left: a zoom
of the blue SNR trace. Right: comparison between a Gaussian template attack with
realignment, and our CNN strategy, over the modern smart card with jitter. (Color
figure online)

Table 4. Results of our CNN over the modern smart card with jitter.

SH0AR0 SH10AR100 SH20AR200

a b 35.0% 1.1% 12.5% 1.5% 10.4% 2.2%

c d 1.2% 137 1.3% 89 1.8% 54

16 Raising to about 2, 000 seconds when SH20DA200 data augmentation is performed
(data are augmented online during training).
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6 Conclusions

In this paper we have proposed an end-to-end profiling attack approach, based
on the CNNs. We claimed that such a strategy would be robust to trace misalign-
ment, and we successfully verified our claim by performing CNN-based attacks
against different kinds of misaligned data. This property represents a great prac-
tical advantage compared to the state-of-the-art profiling attacks, that require a
meticulous trace realignment in order to be efficient. It represents also a solution
to the problem of the selection of points of interest issue: CNNs efficiently man-
age high-dimensional data, allowing the attacker to simply select large windows.
In this sense, the experiments described in Sect. 5.2 are very representative: our
CNN retrieves information from a large window of points instead of an almost
null instantaneous SNR. To guarantee the robustness to trace misalignment, we
used a quite complex architecture for our CNN, and we clearly identified the risk
of overfitting phenomenon. To deal with this classical issue in machine learning,
we proposed two Data Augmentation techniques adapted to misaligned side-
channel traces. All the experimental results we obtained have proved that they
provide a great benefit to the CNN strategy.
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A Discussion about Software Countermeasures

The goal of the experiences performed in in Sect. 4 was to verify the shift-
invariance property claimed by the CNN architecture. We achieved this objective
by considering the case of a simple countermeasure, the uniform RDI, which con-
sists in injecting shifts in side-channel traces. We remark that this kind of coun-
termeasure is nowadays considered defeated, e.g. thanks to resynchronization
by cross-correlation [24]. The complexity of the state-of-the-art resynchroniza-
tion techniques strongly depends on the variability of the shift. When the latter
variability is low, i.e. when attacks are judge to be applicable, multiple random
delays are recommended. It has even been proposed to adapt the probabilis-
tic distributions of the random delays to achieve good compromises between the
countermeasure efficiency and the chip performance overhead [8,9]. Attacks have
already been shown even against this multiple RDI kind of countermeasures, e.g.
[11]. The latter attack exploits some Gaussian templates to classify the leakage
of each instruction; the classification scores are used to feed a Hidden Markov
Model (HMM) that describes the complete chip execution, and the Viterbi algo-
rithm is applied to find the most probable sequence of states for the HMM and
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to remove the random delays. We remark that this HMM-based attack exploits
Gaussian templates to feed the HMM model, and the accuracy of such templates
is affected by other misalignment reasons, e.g. clock jitter. We believe that our
CNN approach proposal for operation classification, is a valuable alternative to
the Gaussian template one, and might even provide benefits to the HMM per-
formances, by e.g. improving the robustness of the attack in presence of both
RDI and jitter-based countermeasures. This robustness w.r.t. of misalignment
caused by the clock jitter is analysed in Sect. 5.
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