
Server-Aided Secure Computation
with Off-line Parties

Foteini Baldimtsi1(B), Dimitrios Papadopoulos2, Stavros Papadopoulos3,
Alessandra Scafuro4, and Nikos Triandopoulos5

1 George Mason University, Fairfax, USA
foteini@gmu.edu

2 Hong Kong University of Science and Technology, Sai Kung, Hong Kong
dipapado@cse.ust.hk

3 Intel Labs, MIT, Cambridge, USA
stavrosp@csail.mit.edu

4 North Carolina State University, Raleigh, USA
ascafur@ncsu.edu

5 Stevens Institute of Technology, Hoboken, USA
ntriando@stevens.edu

Abstract. Online social networks (OSNs) allow users to jointly compute
on each other’s data (e.g., profiles, geo-locations, etc.). Privacy issues nat-
urally arise in this setting due to the sensitive nature of the exchanged
information. Ideally, nothing about a user’s data should be revealed to
the OSN provider or non-friends, and even her friends should only learn
the output of a specific computation. A natural approach for achieving
these strong privacy guarantees is via secure multi-party computation
(MPC). However, existing MPC-based approaches do not capture two
key properties of OSN setting: Users does not need to be online while
their friends query the OSN server on their data; and, once uploaded,
user’s data can be repeatedly queried by the server on behalf of user’s
friends. In this work, we present two concrete MPC constructions that
achieve these properties. The first is an adaptation of garbled circuits
that converts inputs under different keys to ones under the same key, and
the second is based on 2-party mixed protocols and involves a novel 2-
party re-encryption module. Using state- of-the-art cryptographic tools,
we provide a proof-of-concept implementation of our schemes for two
concrete use cases, overall validating their efficiency and efficacy in pro-
tecting privacy in OSNs.

1 Introduction

Secure computation is a cryptographic tool that enables n mutually distrustful
parties to compute the output of a function on their combined inputs, while keep-
ing the inputs secret. Originally, the problem of secure computation considered
n equally powerful, fully connected parties that interact for a one-time compu-
tation and was mostly regarded as an intriguing theoretical question. However,
as more data and services are managed by remote untrusted machines, this tool
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 103–123, 2017.
DOI: 10.1007/978-3-319-66402-6 8

104 F. Baldimtsi et al.

became increasingly relevant for real-world scenarios over time. Thus, the effort
of the community has focused on making secure computation amenable to real
applications in ways that can be summarized in the following three directions:

(a) Optimization of Existing Classical Protocols. An amazing line of work
focused on improving the concrete efficiency of existing results in the model of
equally powerful, fully connected parties such as Yao’s garbled circuit [49,50],
and GMW [25] and BGW [11]. For example, a sequence of work [10,17,36–38,42,
45,51] showed that classic garbled circuits can be implemented very efficiently,
reducing the number of encryptions required for each garbled gate.

(b) Introduction of New Interaction/Computation Models to Reduce
the Computational Burden of the Parties. These new models consider
distinguished nodes (often called “servers”) that carry out most of the compu-
tation and communication. For example, [39] considers a single-server model,
where parties encrypt their inputs using homomorphic encryption, send them to
an untrusted server that performs the computation and delivers the encrypted
output to the parties who engage in a MPC protocol to decrypt the result. In this
way, parties have to do work that is independent of the function complexity, but
depends only on the input/output size. While asymptotically advantageous, [39]
has poor concrete efficiency. Other works [18,19,23,32,33] have looked at lever-
aging this “server-aided” model with the additional assumption that the server
does not collude with the parties. In this setting, they are able to provide effi-
cient multiparty protocols based on garbled circuits, where parties communicate
with the servers upon each computation to provide the encoding of their inputs
(some parties need to additional engage with the server requiring communication
complexity proportional to the circuit size). A multi-server model has also been
considered [14,20,31,43] where computation is performed by multiple servers
and the non-collusion requirement is moved from client-to-server to server-to-
server only.

(c) Introduction of Models Tailored to Specific Real World Applica-
tions. Works in this direction proposed models that better reflect real world
threat models and interaction patterns. An example of such work is the model
for computation over the Internet introduced by Halevi et al. in [27]. In their
model there is a single server which is always online but the parties involved in
the protocol are not expected to be online. Instead, they connect only when they
desire to provide inputs to the computation or learn the output of the protocol.
However, every time a new computation needs to be performed, parties must
connect and provide fresh encodings of their input (even if it has not changed).
This makes [27] very relevant to applications that require a one-time computa-
tion, such as e-voting, where clients connect once to cast their vote and once to
get the election result.

Our Contribution. In this work, we make progress in the last direction, by
proposing a new model that fits a specific real world scenario –Online Social
Networks (OSN)– and we provide two new protocols and respective implemen-
tations. OSNs enable users to store information they wish to share with other

Server-Aided Secure Computation with Off-line Parties 105

authorized users –their friends– and the latter can access friends’ data at their
own convenience. As opposed to one-time computation applications which are
captured by [27], OSNs allow repeated computations over a party’s data. E.g.,
in the friend-finder application of Facebook, called “Nearby Friends”, Alice’s
location is sent to Facebook’s server once and can be re-used by her friends
several times, without Alice performing any further action. This type of interac-
tion mandates two key properties: (i) data re-usability, i.e., personal data that
a user may upload once to the OSN server can be repeatedly computed upon
(possibly in different ways), and (ii) friend non-participation, i.e., a user need
not be online when one of her friends requests a computation that involves her
data. We introduce a model where parties upload their secret input to a single,
untrusted, server in a one-time step, and then they do not have to be on-line
anymore unless they want to update their own input or they want to compute
(via the server) a function on the combined inputs of their friends. Crucially,
and in contrast with [27], whenever a friend requests a computation from the
server, the other parties do not need to provide a new encoding for their inputs.

Our Model. We consider a single-server hosting the OSN, and multiple users
that form the social network. We represent the OSN as a graph; the users con-
stitute the nodes of the graph, and an edge denotes that the two vertices are
friends. Users upload their data to the server, and update them at any time. The
users agree upon arbitrary queries (i.e., specific computations over their uploaded
data) with their friends (e.g., “who is my geographically nearest friend”), and
each user may repeatedly issue queries to the server about her own and her
friends’ data. Both upload and query executions involve only the server and a
single user, while the remaining users do not need to participate or even to be
online.

Our privacy goals are: (i) the server learns nothing about the user data or
the query results, (ii) the querier learns nothing about her friends’ data other
than what is inferred from the results, and (iii) the querier learns nothing about
non-friends’ data. Note that we do not consider the social graph structure to be
sensitive. Moreover, we assume that every user allows all of her friends to query
on her data, i.e., “friendship” implies access control on one’s data. Hiding the
graph and supporting more sophisticated access policies are interesting problems
that are orthogonal to our work. Our performance requirements are: (i) the cost
to upload/update a user’s input should be constant, and (ii) the constructions
should involve lightweight cryptographic tools, with reasonable upload and query
times.

Definitional Choices. Our security model has two relaxations. First, we
assume that friends do not collude with the OSN provider, they can col-
lude with each other however (non-friend collusion with the OSN server is
also accepted). This type of security relaxation, first formalized as bounded-
collusions by Kamara et al. in [32], has since been adopted in a sequence of
works [18,19,23,32,33]. We believe that this collusion model is meaningful in
OSN applications where friendship implies some level of trust. Note that regard-
less of the collusion model, in the OSN interaction model (where the server can

106 F. Baldimtsi et al.

perform a computation without other users), only a weaker input-privacy can
be achieved. Indeed, [27] shows that a collusion between server and any user Uj

allows them to learn the residual function on many inputs of their choice. Second,
we consider the semi-honest model, i.e., we assume that the parties execute the
protocols correctly. Although weaker, this model provides full protection against
security breaches suffered by OSN providers or by friends. In the full version of
the paper [8], we elaborate on some of challenges that arise when moving to the
malicious setting where adversaries may arbitrarily deviate from the protocol.

Our Technique: Multi-party Computation from a Two-Party Proto-
col. Our approach consists of implementing a multi-party functionality, using
strictly two-party protocols run between a single user and the server. Our key
technical contribution is developing “translation” mechanisms to translate input
encrypted under a friend’s secret key, into data that is encrypted with a com-
mon key which is secret shared between the OSN server and the user, but is
not known by any of them. In developing this tool, we leverage the assump-
tion that a friend does not collude with the OSN server. In this way, parties
upload encodings of their inputs to the server and, any time a party wishes to
compute a function, the server will use her friends’ encodings and interact with
the querier to carry out the computation. This might seem relatively easy to
achieve, e.g., if the friend input encodings are all produced under the querier’s
key, or by establishing fresh shared randomness before every single computa-
tion (as in [23]). The former approach requires each friend to produce a separate
encoding of her value for each of her friends, leading to considerable overhead for
upload. The latter prevents re-usability of values, forcing friends to get involved
in someone else’s computations. Thus, the challenge in realizing the multi-party
OSN functionality from two-party protocols boils down to simultaneously achiev-
ing re-usability, friend non-participation and efficient uploads, while employing
lightweight cryptographic primitives (such as symmetric or additively homomor-
phic encryption). At the core of our solutions are mechanisms for re-randomizing
the encoding of the inputs upon each computation, without involving any party
except the querier and the server.

Overview of our Protocols. We design two MPC-based constructions
based on well-studied techniques for secure two-party computation, garbled
circuits [49,50] and mixed protocols [13,21,28,34]. Each user independently
encrypts a value under her own key and uploads the encryption to the server
with constant cost. The difficulty lies in implementing a two-party query pro-
tocol on encryptions produced by different keys. We achieve this by having two
users exchange common secrets once upon establishing their friendship. Using
these secrets, the querier can emulate a multi-party protocol by solely interacting
with the server.

Our first construction, presented in Sect. 4 is based on garbled circuits. The
main idea is that the querier prepares a selection table utilizing the common
secrets during the query, which allows the server to map the (unknown to the
querier) encoded friend inputs to the encoding expected by the querier’s circuit.
A similar idea was used in [40] for a different setting, namely garbled RAMs.

Server-Aided Secure Computation with Off-line Parties 107

A positive side-effect of this is that is eliminates the need for costly oblivious
transfers (OT) required in traditional two-party garbled circuit schemes.

Our second construction, presented in Sect. 5, adopts the two-party mixed
protocols approach, motivated by the fact that the performance of garbled cir-
cuits is adversely affected by functions with large circuit representation. The
main idea is to substitute the parts of the computation that yield a large number
of circuit gates with arithmetic modules. The latter are implemented via two-
party protocols, executed between the querier and the server involving homo-
morphic ciphertexts. A core component of our solution is a novel two-party
re-encryption protocol, which enables the server to privately convert the homo-
morphic ciphertexts of the querier’s friends, to ciphertexts under the querier’s
key. Unlike existing proxy re-encryption schemes [5,6,35], our simple technique
maintains the homomorphic properties of ciphertexts, and can be retrofitted into
any existing scheme that uses (partially) homomorphic encryption (e.g., [46]),
allowing computation over ciphertexts produced with different keys of collabo-
rating users.

Implementation. In Sect. 6, we provide a proof-of-concept implementation and
experimentally evaluate its performance for applications that measure closeness
under the Euclidean and the Manhattan distance metrics, which are useful in
OSNs (e.g., location closeness in Foursquare, or profile closeness in Match.com).

2 Preliminaries

Semi-Homomorphic Encryption. We utilize public-key additively homomor-
phic schemes (e.g., Paillier [47]). Hereafter, [[·]]pk denotes a ciphertext encrypted
with additively homomorphic encryption under key pk . When it is clear from
the context we omit pk from the subscript. Given ciphertexts [[a]], [[b]] of a and
b under the same key, additively homomorphic encryption allows the computa-
tion of the ciphertext of a + b as [[a]] · [[b]] = [[a + b]], where · denotes a certain
operation on ciphertexts (e.g., modular multiplication in Paillier). Given [[a]] it
allows to efficiently compute [[au]], for a plaintext value u, by computing [[a]]u.
Note that [[a]]−u ≡ [[a]]u

′
, where u′ is the additive inverse of u in the plaintext

space. Moreover, given [[a]] one can produce a fresh re-encryption without the
secret key, by generating a new encryption [[0]] of 0, and computing [[a]] · [[0]].

Yao’s Garbled Circuits [49,50]. This is the de-facto method for secure two-
party computation, which was originally proposed for the semi-honest model.
For readers that are not familiar with the concept of garbled circuits, we include
a detailed description in the full version of our paper [8]. At a high level the
scheme works as follows: consider two parties, Uq and S (this notation will be
helpful later). Suppose that Uq wishes to compute a function f on S’s and her
own data. First Uq expresses f as a Boolean circuit, i.e., as a directed acyclic
graph of Boolean gates such as AND and OR, and sends a “garbled” version of
the circuit to S to evaluate it using its own input. Note that Uq does not send
her inputs to S, instead her inputs are encoded into the garbled circuit such that

108 F. Baldimtsi et al.

S can not determine what they are. Uq is typically referred to as the garbler and
S as the evaluator.

Mixed Protocols. In garbled circuits, even simple functions may result in a
circuit with an excessive number of gates. For instance, textbook multiplication
of two �-bit values is expressed with O(�2) gates. Motivated by this, many recent
works (e.g. [13,21,28,34]) focus on substituting a large portion of the circuit with
a small number of boolean or arithmetic gates (i.e., ADD and MUL). The secure
evaluation of the Boolean gates is done efficiently via garbled circuits, while
that of the arithmetic via schemes like homomorphic encryption or arithmetic
secret-sharing, yielding efficient protocols for functionalities like comparison of
encrypted values [7,15,22]. Such protocols, referred to as mixed protocols, also
provide ways for converting from one to the other, i.e., from garbled circuit values
to homomorphic encryptions and vice versa. Note that all possible functions
can be expressed as combinations of additions and multiplications, thus mixed
protocols exist for every function. Without loss of generality, in the sequel we
assume that both parties’ initial inputs to every mixed protocol are encrypted
under an additively homomorphic encryption scheme, and with one party’s key.

Figure 1 illustrates two examples of mixed protocols evaluating functions f
and g, denoted as πf and πg. Function f is expressed as the composition f2 ◦ f1,
where f1 is represented with an arithmetic circuit evaluated by a homomorphic
encryption protocol πf1 , and f2 is represented by a Boolean circuit evaluated by
a garbled circuit protocol πf2 . Moreover, there exists a secure conversion pro-
tocol πC from homomorphically encrypted values to garbled inputs. Function g
is expressed as g2 ◦ g1, where πg1 is based on a garbled circuit, πg2 on homo-
morphic encryption, and πC′ is the corresponding secure conversion protocol.
Since we assume that the inputs are homomorphic encryptions, πg first requires
their conversion to garbled values via πC . Given f , the challenge is to find a
decomposition to simpler functions f1, . . . , fn, where each fi is expressed either
as a Boolean or arithmetic circuit, such that the mixed protocol is more efficient
than evaluating f solely with a garbled circuit. [13,21,28,34] addressed this chal-
lenge by providing automated tools for decomposing certain functions, as well as
appropriate conversions. If there exist protocols for the secure evaluation of all
fi’s, and given that the conversion protocols are secure, the composition of these
protocols securely evaluates f [16]. In the full version, we present two mixed
protocols we use for private multiplication and comparison of encrypted values.

Fig. 1. Examples of mixed protocols

Server-Aided Secure Computation with Off-line Parties 109

3 Problem Formulation

Our setting involves a server S, and a set of users U . The server maintains an
(initially empty) undirected graph G = (V, E). A vertex vi ∈ V represents the
information that the server knows about a user Ui ∈ U . An edge eij ∈ E between
vertices vi and vj stores information about the (bidirectional) friendship between
Ui and Uj . By Gi we denote the friend list of Ui. Table 1 summarizes the notation
used in the rest of the paper.

Table 1. Summary of symbols

Symbol Meaning

Ui, Uq, S User i, querier, server

G = (V, E) Graph with vertices vi ∈ V and edges eij ∈ E
Gi Friend list of Ui

Ek Symmetric encryption under key k

FK Pseudorandom function (PRF) under key K

[[·]]pk Additively homomorphic encryption under key pk

xi Input of Ui

� Length of xi

xi[l] lth bit of xi

GC Garbled circuit

[0.05cm] Xb
jl Encryption of b = xj [l] in our generic protocol

[0.1cm] wb
jl Garbled value for b = xj [l] in our generic protocol

[0.1cm] sbjl Key for selecting wb
jl in our generic protocol

[0.1cm] Tq Selection table of Uq in our generic protocol

3.1 Security Definition

We formalize the privacy requirements for the OSN model in the semi-honest
setting, using the ideal/real world paradigm [25]. Specifically, we first define
the ideal functionality, FOSN, that captures the security properties we want to
guarantee in the OSN model. In the ideal world, FOSN is implemented by a
trusted third party that privately interacts with all parties, while the latter do not
interact with each other. In this setting, parties can only obtain the information
allowed by FOSN. In the real world, the trusted party is replaced by a protocol π
executed jointly by the parties. Informally, π securely realizes FOSN, if whatever
can be learned by an adversary A running the real protocol and interacting
with other parties, can be simulated by an algorithm, called the simulator Sim,
interacting only with the trusted party. We define here our ideal functionality,
which meets the privacy goals stated in Sect. 1. Note that FOSN is a reactive
functionality that responds to messages received by parties.

110 F. Baldimtsi et al.

Ideal Functionality FOSN. Interact with a set U of users and a server S. Initialize an empty graph
G.

– Join(Ui). Upon receiving a Join request from user Ui, if vertex vi already exists in G do
nothing; else, add vi to G, and send (Join, Ui) to S and (Join, ok) to Ui.

– Connect(Ui, Uj). Upon receiving a Connect request from users Ui, Uj , if G contains edge
eij do nothing; else, add eij to edge list E of G, and send (Connect, Uj , Ui) to S and
(Connect, Ui, Uj , ok) to Ui and Uj .

– Upload(Ui, xi). Upon receiving an Upload request from Ui with input xi, if vi does not exist,
do nothing; otherwise, store xi in vi. Finally, send (Upload, Ui) to S and (Upload, ok) to Ui.

– Query(Uq, f). Upon receiving a Query request from user Uq for function f , retrieve the adjacent
vertices of vq from G, then compute y = f(α, xq, {xj | ∀j : Uj ∈ Gq}), where α is a query-
dependent parameter. Finally, send (out, y) to Uq and (Query, f, Uq) to S.

Ideal World Execution. Each user Ui ∈ U receives as input ini = (Gi,xi, ri, fi),
where Gi is Ui’s friend list, xi = (x(1)

i , x
(2)
i , . . .) is the sequence of inputs

that Ui uses in her Upload queries, ri represents Ui’s random tape, and fi =
(f (1)

i , f
(2)
i , . . .) is the functions used in her Query requests. Gi dictates the calls

to Connect, xi the calls to Upload, and fi the calls to Query. Note that the
functionality keeps only the xi value of the latest Upload. Finally, the server’s
only input is the random tape rS . Each Ui hands her ini to the trusted party
implementing FOSN, and receives only the outputs of her Query executions and
the acknowledgments of the Join, Upload and Connect requests. We denote the
output of Ui from the interaction with FOSN by outi. S receives only (ordered)
notifications of the requests made by the users. We denote the output of S from
the interaction with FOSN by outS .

Real World Execution. In the real world, there exists a protocol specification
π = 〈U , S〉, played between the users in U and the server S. Each user Ui ∈ U has
as input ini = (Gi,xi, ri, fi), defined as in the ideal world, whereas S has random
tape rS . An adversary A can corrupt either a set CorrUsers of users or the
server S (but not both). We denote by viewπ

ACorrUsers
the view of the real adversary

A corrupting users Ui in the set CorrUsers. This consists of the input of every
Ui ∈ CorrUsers, and the entire transcript Transi obtained from the execution
of protocol π between the server and every Ui ∈ CorrUsers. Respectively, viewπ

S

denotes the view of the corrupted server, which contains rS and transcripts
Transi obtained from the execution of π with every Ui ∈ U .

Bounded Collusions. Note that, based on the above description, our scheme
does not allow any user to collude with the server. However, it is straightforward
to extend our security definition to permit users that are not connected with the
querier in G to collude with the server. Intuitively, since such users share no data
with the querier, the coalition of S with them offers no additional knowledge.
We choose not to formulate such collusions to alleviate our notation.

More Elaborate Access Policies. One extension of our model would be to
allow users to specify more elaborate access policies, e.g., that certain friends
may only ask for certain computations, limit the number of times their data
may be queried, or revoke a friendship entirely. In the semi-honest model with
bounded collusions all these can be trivially achieved by simply specifying this
to the server who notifies the affected parties (which can be implemented by
whatever access policy mechanism the OSN provider operates). These become

Server-Aided Secure Computation with Off-line Parties 111

more challenging problems in the malicious setting which we leave as future
work.
Definition 1. A protocol π = 〈U , S〉 securely realizes the functionality FOSN in
the presence of static, semi-honest adversaries if, for all λ, it holds that:

Server Corruption: There exists PPT SimS such that SimS(1λ, outS) ∼=
viewAπ

S
.

Users Corruption: For all sets CorrUsers ⊂ U , there exists PPT SimCorrUsers

such that: SimCorrUsers(1λ, ini, outi}Ui∈CorrUsers} ∼= viewAπ
CorrUsers

.

3.2 Our General Approach

This subsection presents an approach that is common in both our constructions
for realizing the functionality FOSN. It also provides a more practical interpreta-
tion of the party interaction in our protocols, which will facilitate their presenta-
tion in the next sections. The key idea in this approach is twofold: (i) every user
has her own key, which she uses to encrypt her input in Upload, and (ii) dur-
ing Connect, the two involved users exchange keys that are used in subsequent
Query executions initiated by either user. The protocol interfaces are as follows:

– Join〈Ui(1λ), S(G)〉: On input security parameter λ, Ui generates a key Ki and
notifies the server S that she joins the system. The output of the server is
graph G′, where vertex vi is added into V of G.

– Connect〈Ui(Ki), Uj(Kj), S(G)〉: Ui and Uj establish keys ki→j and kj→i via
S. S creates an edge eij that stores the two keys and adds it to E of G. The
private output of S is the updated graph G′.

– Upload〈Ui(Ki, xi), S(G)〉: User Ui encodes her data xi (for simplicity we
assume xi is a single value, but it is straightforward to extend our model
for vectors of values) into ci under her secret key Ki and sends it to S who
stores the received value into vi in G. For simplicity, we assume that vi stores
a single ci, and every Upload execution overwrites the previous value. The
private output of S is the updated G′.

– Query〈Uq(Kq, α), S(G)〉(f): On input function f and auxiliary parameters α,
Uq interacts with S and learns the value y = f(α, xq, {xj | ∀j : Uj ∈ Gq}),
using keys {kj→q | ∀j : Uj ∈ Gq}.

We describe the execution of the interfaces in Fig. 2. The left part of the figure
illustrates the party interaction and the right part depicts how the server’s graph
G changes by the protocol execution. In Join, U1 generates her key and notifies S,
who adds v1 to the graph. In Connect, U2 and U3 establish k2→3, k3→2 and send
them to S. The latter adds edge e23 (storing the two values) to G. In Upload,
U4 encodes her input x4 under her key K4 into c4, and sends it to S who stores
it in vertex v4 (overwriting any previous value). Finally, in Query, U5 engages
in a two-party protocol with S and computes the output of a function f on α
and (x5, x6, x7, x8). The latter are the current plain data of U5 and her friends
U6, U7 and U8, respectively. Note that S possesses only the encryptions of these
values, namely (c5, c6, c7, c8). Also, (c6, c7, c8) were produced by U6, U7, U8 with

112 F. Baldimtsi et al.

Fig. 2. Example protocol executions of our scheme

keys (K6,K7,K8), which are not known to U5 and S. Performing the compu-
tation without these keys is the main challenge in our model, since U6, U7, U8

should not participate in this phase. As we shall see, our solutions overcome
this challenge using the keys k6→5, k7→5, k8→5 that U5 received upon connecting
with U6, U7, U8, respectively. A final remark concerns our decision to store keys
ki→j at the server. Alternatively, each user Uj could store all keys ki→j locally.
However, this would lead to a linear storage cost in the number of friends at the
end of Connect at Uj . In Sects. 4 and 5 we show how to instantiate our general
approach using garbled circuits and mixed protocols, respectively.

4 Garbled Circuit Protocol

Suppose querier Uq wishes to compute a function f . She first expresses f as a
Boolean circuit, garbles it (see Sect. 2), and sends it to the server S along with
the garbled values corresponding to her input xq. In order to evaluate the circuit,
S needs the garbled values corresponding to the input xj of every Uj in friend
list Gq of Uq. How can S and Uq figure out which garbled values Uq should send
to S for the input xj of Uj , without knowing xj?

There are approaches [23,32,33] that solve this problem by having each friend
Uj ∈ Gq interact with Uq once to agree on a common randomness. Then, when-
ever Uq wishes to evaluate f , she creates a garbled circuit using the common
randomness and sends it to S, whereas, all friends send their garbled values to
S. This means that all friends must actively participate in Query. Note also that
the garbled values cannot be reused, and, thus, the friends must participate in
the protocol every time Uq executes Query. Other approaches [18,43] instead
enable the transferring of the friends’ garbled values via an “outsourced” OT,
run between the server S, the querier Uq and each friend Uj in Gq. This approach
gets rid of the common randomness, and hence, the pre-processing phase, but it
still requires all friends to be on-line (to run the outsourced OT) for each Query
request.

We take a different approach that capitalizes on the pre-processing phase
(Connect), in a way that turns Query into a strictly two-party protocol run
between Uq and S, and no friends need to be involved. In our solution, each

Server-Aided Secure Computation with Off-line Parties 113

user Ui has a secret key Ki for a pseudorandom function (PRF), that exchanges
with a friend upon each Connect phase. This is done via the server, using their
respective public keys. To upload her secret input xi, Ui encodes each bit of xi

as a PRF evaluation under key Ki, and sends them to S. Finally, the Query is
performed as follows. Querier Uq first prepares a garbled circuit for the func-
tion f and sends it to S, together with the garbled values corresponding to her
own input. The garbled values of each friend Ui are instead encrypted with keys
derived from the PRF evaluations under Ki, which S uses to evaluate the cir-
cuit. We illustrate this idea using the example of Fig. 3 which focuses on the
evaluation of an AND gate A. For a comparison of the modifications required
by our scheme compared to standard garbled circuits, see the full version of
the paper [8]. The top wire of A corresponds to the first bit of xq (i.e., xq[1])
belonging to Uq, whereas the bottom wire to the lth bit of xj (i.e., xj [l]) of Uj

for some l ∈ [�]. Moreover, xq[1] = 1 and xj [l] = 1. Upon Upload, Uj sends to
the server an encryption of xj [l] as X1

jl = FKj
(1, l, rj), where F is a PRF and rj

is a random nonce sent to S along with X1
jl (note that, if xj [l] was 0, Uj would

send X0
jl = FKj

(0, l, rj)).

Fig. 3. Use of selection tables in garbled circuits

In Query, Uq garbles gate A, obtaining all garbled values w, and producing
the garbled truth table for A. She then sends to S the garbled truth table
and her garbled value w1

q1 corresponding to xq[1]. When sending the above, Uq

does not know the actual value of xj [l] and, thus, she does not know if she
should send w0

jl or w1
jl. Nevertheless, in Connect, Uj provided Uq with the means

to help S select between w0
jl, w1

jl. Specifically, S stores kj→q which encrypts
Uj ’s Kj under Uq’s public key. Uq retrieves kj→q and nonce rj (uploaded by
Uj along with X1

jl) from S. Next, she decrypts Kj from kj→q and computes
selection keys s0jl = FKj

(0, l, rj) and s1jl = FKj
(1, l, rj). Then, she encrypts Uj ’s

possible garbled values using these keys, producing Es1
jl
(w1

jl) and Es0
jl

(w0
jl). She

stores this pair in random order into a two-dimensional selection table Tq[j, l],
where rows represent Uq’s friends and columns the input bits. In the general
construction Uq fills the |Gq| · � entries of Tq and sends it to S with the garbled
circuit.

Upon receiving the garbled circuit and Tq, S attempts to decrypt the values
in T [j, l], using X1

jl as the decryption key. Since, by construction, X1
jl = s1jl,

114 F. Baldimtsi et al.

S successfully decrypts only w1
jl. Note that this can be seen as an OT played

between S and user Uq, where S uses the knowledge of the encrypted input
X1

jl to select the garbled value w1
jl. The rest of the circuit evaluation proceeds

normally, noting that the final garbled output is decrypted by the querier (i.e.,
the output mapping to plaintext is not disclosed to the server).

The idea of mapping encoded bits (unknown to the garbler) to the appro-
priate garbled values expected by a circuit, appeared first in [40] for a different
problem, namely to construct garbled RAMs. In that setting, a single user wishes
to execute a program in a RAM outsourced to some untrusted server, without
the latter ever learning the contents of the RAM. In our setting, the unknown
garbled inputs of Uq’s friends can be perceived as the unknown state of the
server’s RAM before the evaluation of our garbled circuit.

Construction. We follow the notation of Table 1 and assume that GC is con-
structed and evaluated as explained at a high level in Sect. 2, without formaliz-
ing the algorithms to alleviate notation. Let F be a PRF, (E,D) a CPA-secure
symmetric-key encryption scheme, and let (E ′,D ′) be a CPA-secure public-key
encryption scheme. We assume that encryption algorithms are randomized. Our
garbled circuit protocol, πGP, works as follows.1

1. Join〈Ui(1λ), S(G)〉: On input 1λ, Ui randomly chooses a PRF key Ki ∈
{0, 1}λ, and sends her public-key pki to S. S adds vi initialized with value
pki into V of G.

2. Connect〈Ui(Ki), Uj(Kj)〉: Ui receives the public key pkj of Uj from S. Sets
ki→j to E ′(pkj ,Ki) and sends it to S. Uj computes and sends kj→i to S who
then creates edge eij storing ki→j , kj→i, and adds it to E of G.

3. Upload〈Ui(Ki, xi), S(G)〉: Ui chooses nonce ri, computes value X
xi[l]
il as

FKi
(xi[l], l, ri) ∀ l ∈ [�], and sends them to S who stores the value ci =

((Xxi[1]
i1 , . . . , X

xi[�]
i�), ri) in vi.

4. Query〈Uq(Kq, α), S(G)〉(f): Uq does the following:
(a) Key and nonce retrieval. For each Uj ∈ Gq, retrieve key kj→q and

(latest) nonce rj from S, and decrypt kj→q to get Kj .
(b) Garbled circuit computation. Uq transforms f into a circuit, and

garbles it as GC .
(c) Selection table generation. For each user Uj in Gq and index l ∈ [�]:

Compute selection keys: Generate s0jl = FKj
(0, l, rj), s1jl = FKj

(1, l, rj).
Compute garbled inputs: Produce encryptions Es0

jl
(w0

jl) and Es1
jl
(w1

jl)
with the selection keys.
Set selection table entry: Store Es0

jl
(w0

jl) and Es1
jl
(w1

jl) into Tq[j, l] in a
random order.

(d) Circuit transmission. Send GC , Tq to S.
S then decrypts the garbled values of each Uj ∈ Gq from Tq, with the
encoding X

xj [l]
jl for each l ∈ [�]. He evaluates GC and sends output to Uq

who Obtains the result y by decoding the circuit output.

1 Due to space limitations, we include all proofs in the full version of the paper [8].

Server-Aided Secure Computation with Off-line Parties 115

Theorem 1. If F is a PRF, (E,D) is a symmetric-key CPA-secure encryp-
tion scheme with efficiently verifiable range, (E ′,D ′) is a public-key CPA-secure
encryption scheme, the garbling scheme satisfies privacy and obliviousness, and
assuming secure channels between S and the users, protocol πGP securely realizes
FOSN as per Definition 1.

5 Mixed Protocol

Sharing the motivation of mixed protocols we explore an alternative construc-
tion for evaluating a function f in the OSN model, which combines garbled
circuits with additive homomorphic encryption. Recall from Sect. 3.2 that our
general approach for designing private constructions for the OSN model entails
only two-party interactions. Let Ff denote the functionality that evaluates f
on input homomorphically encrypted values (i.e., the function which the querier
wishes to apply to the server stored data). In this work we define the func-
tion f to operate over additively homomorphic ciphertexts when also given as
input the decryption key (formally defined in the full version [8]). Let πf be
a mixed protocol that securely realizes Ff as discussed in Sect. 2, executed by
the server S and the querier Uq. Assume that S possesses the values of Uq and
her friends, homomorphically encrypted under the Uq’s key. These constitute
the input to πf . In this case, S and Uq can securely evaluate f upon Query by
executing πf . The challenge lies in bringing the inputs of Uq’s friends into homo-
morphic encryptions under Uq’s key, without necessitating friend participation
in Query. A naive solution would be to have every user send her input to S dur-
ing Upload, encrypted under all of her friends’ keys. This would allow the server
to readily have all inputs in the right form upon Uq’s Query, but it would also
violate our performance requirement for Upload, since the cost would be linear
in the number of friends.

In our proposed approach, each user uploads only a single encryption of her
input (under her own key), rendering the cost of Upload independent of the
number of her friends. In addition, during Connect, each friend Uj of the querier
Uq provides her with the means (namely through the kj→q key shown in Fig. 2)
to re-encrypt Uj ’s input into a homomorphic ciphertext under the querier’s key.

Construction. Throughout this section, we utilize the symbols summarized in
Table 1. πRE represents a protocol implementing the re-encryption functionality
FRE , fully described in Sect. 5.1. The protocol πf is executed between a server
S holding a sequence of encrypted values ([[x1]]pkq

, [[x2]]pkq
, . . .), and Uq holding

pkq. At the end of the execution, Uq receives y = f(α, . . . , xq, . . .), whereas S
receives nothing. Below, we describe our mixed protocol πMP:

1. Join〈Ui(1λ), S(G)〉: On input the security parameter λ, Ui generates a PRF
key Ki, and notifies S that she joins the system by sending pk i. S adds node
vi (initialized with pk i) to graph G.

2. Connect〈Ui(Ki), Uj(Kj), S(G)〉: Users Ui and Uj , having each other public
keys, compute kj→i = [[Kj]]pki

, ki→j = [[Ki]]pkj
respectively, and send them

to S. Then, S creates an edge eij in G storing the two values.

116 F. Baldimtsi et al.

3. Upload〈Ui(Ki, xi), S(G)〉: User Ui picks random nonce ri, computes ρi =
FKi

(ri), and sends ci = (xi + ρi, ri) to S, who stores it into vi ∈ G.
4. Query〈Uq(Kq, α), S(G)〉(f): User Uq and S run πRE, where Uq has as input

Kq and S has G. Recall that G contains cj and kj→q for every friend Uj of
Uq. The server receives as output [[xj]]pkq

, where xj is the private input of
a friend Uj . Subsequently, S and Uq execute πf , where S uses as input the
ciphertexts [[xj]]pkq

, along with [[α]]pkq
which is provided by the querier. At

the end of this protocol, Uq learns y = f(α, xq, {xj | ∀j : Uj ∈ Gq}).

Theorem 2. If F is a PRF and the homomorphic public-key encryption scheme
is CPA-secure, assuming secure channels between S and the users, and assuming
πRE and πf securely realize functionalities FRE and Ff , respectively, protocol πMP

securely realizes FOSN as per Definition 1.

5.1 Re-Encryption Protocol

Our re-encryption protocol πRE implements FRE which is a two-party function-
ality executed between the server S and a querier Uq. Let cj be the ciphertext
of input xj of user Uj (under Uj ’s key), stored at S. The goal is to switch cj into
a new ciphertext c′

j under Uq’s key, without the participation of Uj . Moreover,
it is crucial that c′

j is an encryption under an (additive) homomorphic scheme,
because this will subsequently be forwarded to the two-party mixed protocol
(πf) that expects homomorphically encrypted inputs. We provide a formal def-
inition of the re-encryption functionality FRE in the semi-honest setting using
the real/ideal paradigm in the full version [8].

A re-encryption protocol, πRE , can be achieved via the well-known notion
of proxy re-encryption [12,30]. Specifically, Uj can provide S with a proxy re-
encryption key kj→q for Uq during Connect. S can then re-encrypt cj into c′

j

using kj→q in Query, without interacting with either Uj or Uq. Nevertheless,
recall that πRE needs the resulting c′

j to be additive homomorphic. Therefore,
this approach needs the proxy re-encryption scheme to also be additive homo-
morphic. One such candidate is the classic ElGamal-like scheme of [6], which
is multiplicative homomorphic, but can be turned into additive homomorphic
by a simple “exponential ElGamal” trick. The problem of this modified scheme
is that it requires a small message domain, since decryption entails a discrete
logarithm computation. Even if the x values are indeed small in a variety of appli-
cations, all existing mixed protocols frequently inject some large (e.g., 100-bit)
randomness ρ into the homomorphically encrypted value x, necessitating after-
wards the decryption of (the large) x + ρ instead of x. This renders the scheme
inefficient in our context. To the best of our knowledge, the only other proxy
re-encryption schemes with additive homomorphic properties are based on lat-
tices [5,35], whose efficiency is rather limited for practical purposes.

Our Construction. Our alternative approach can be efficiently implemented
with any additive homomorphic scheme and a PRF. The key idea is to engage
the server S and the querier Uq in a single-round interaction that does not reveal

Server-Aided Secure Computation with Off-line Parties 117

Fig. 4. The re-encryption protocol πRE

anything to Uq. We illustrate our protocol in Fig. 4 for the re-encryption of cj

(produced with Uj ’s key) to c′
j under Uq’s key. S has as input cj (obtained during

Uj ’s Upload) and kj→q (obtained during the execution of Connect between Uq

and Uj), whereas Uq has key skq. In the following, [[·]] denotes a homomorphic
ciphertext under Uq’s key. S first parses cj as (xj+ρj , rj) in Step 1. She then picks
a random value ρ∗ from an appropriate large domain and computes c∗

j = xj+ρj+
ρ∗ to statistically hide xj +ρj (Steps 2-3). Subsequently, she sends c∗

j , rj , kj→q to
Uq (Step 4). The latter decrypts kj→q using skq to retrieve Kj , then computes
c∗
j − FKj

(rj) to remove randomness ρj , homomorphically encrypts the result
under pkq and sends it back to S (Steps 5-7). Finally, S computes [[ρ∗]]−1 and
uses it to remove ρ∗ from the received ciphertext. The final output is c′

j = [[xj]],
i.e., Uj ’s original input encrypted under Uq’s key. The above protocol can also
be extended to accommodate the simultaneous conversion of all ciphertexts cj

such that Uj is a friend of Uq, into homomorphic ciphertexts c′
j under Uq’s key.

Lemma 1. If F is a PRF and the additive homomorphic scheme is CPA-secure,
πRE is secure in the presence of static semi-honest adversaries, under the stan-
dard secure MPC definition of [24].

6 Experimental Evaluation

In this section we experimentally evaluate our schemes for two concrete use
cases: (squared) Euclidean and Manhattan distances. These two metrics are used
extensively in location-based applications (e.g., where the inputs are geograph-
ical coordinates and the query returns the geographically closest friend), and
they entail different arithmetic operations (recall that the performance of a gar-
bled circuit or mixed protocol is tightly dependent on the types of operations
involved).2

2 For simplicity, we focus on returning the smallest distance, rather than the identity
of the closest friend (which can be done easily in garbled circuits and with a standard
technique in mixed protocols, e.g., see [7,22]).

118 F. Baldimtsi et al.

Cryptographic Libraries. We used JustGarble [9], a state-of-the-art tool with
excellent performance for circuit garbling and evaluation. It supports two impor-
tant optimizations, free-XOR [37] and row-reduction [45], which reduce the size
of the garbled circuit, and the time to garble and evaluate it. Existing compil-
ers (e.g., [34,41]) for constructing the necessary circuits for our use cases are
not directly compatible with JustGarble. Thus, we designed the necessary cir-
cuits ourselves, using the basic building blocks that come with JustGarble and
employing heuristic optimizations for reducing the number of non-XOR gates.

For our mixed protocols, we used the cryptographic tools described in Sect. 2.
We used the Paillier implementation of [1] for the additive homomorphic scheme.
For oblivious transfers (OT), we used the code of [52] that implements the OT
of [44] with the extension of [29], over an elliptic curve group instantiated with
the Miracl C/C++ library [2]. When possible, we used the standard ciphertext-
packing method to save communication cost.

Setup. We tested four instantiations: our garbled circuit protocol for the Euclid-
ean and Manhattan case (referred to as GP-Euc and GP-Man, respectively),
and their mixed protocol counterparts (referred to as MP-Euc and MP-Man,
respectively). All experiments were run on a single 64-bit machine with an
Intel R©CoreTM i5-2520M CPU at 2.50 GHz and 16 GB RAM, running Linux
Ubuntu 14.04. We employed the OpenSSL AES implementation [3] for PRF
evaluation and symmetric key encryption at 128-bit level security, leveraging
the AES-NI capability [26] of our testbed CPU. For Paillier, we used a 2048-
bit group, and for OT a 256-bit elliptic curve group of prime order. Finally, we
set the statistically hiding randomness (e.g., ρ in our re-encryption protocol) to
100 bits.

We assess the following costs: size of the garbled circuit in GP-Euc and
GP-Man, total communication cost over the channel between two parties, and
computational cost at each party. Note that we focus only on Query, since the
costs for Join, Upload, and Connect are negligible. We vary the number of friends
(10, 100, 1000), the bit-length of each value in the input vector of a user (16,
32, 64), and the number of dimensions (1, 2, 4). Larger numbers of dimensions
can capture more general applications entailing Euclidean/Manhattan distance
(e.g., user profiles in matchmaking applications). In each experiment, we vary
one parameter fixing the other two to their middle values. For computation over-
head, we run each experiment 100 times and report average (wall-clock) time.

Circuit Size and Bandwidth Cost. Our first set of experiments evaluates
the circuit size (in terms of number of non-XOR gates) in the garbled circuit
instantiations, and the communication cost (in MB) in all methods. The results
are shown in Fig. 5. First, we vary the number of friends, while fixing the bit
size to 32 and the dimensions to 2. The circuit size grows linearly in the number
of friends for both distance functions. In the Euclidean case, the circuit is an
order of magnitude larger than in Manhattan. This is due to the multiplications
Euclidean involves, which require a quadratic number of gates in the number
of input element bits. This impacts the communication cost accordingly, since
the querier must send a number of garbling values per gate. The overhead of

Server-Aided Secure Computation with Off-line Parties 119

Fig. 5. Circuit size in terms of non-XOR gates (top) and total communication cost in
MBs (bottom) vs. number of friends (left), element bit-size (middle), and number of
dimensions (right).

MP-Euc is approximately an order of magnitude smaller than that of GP-Euc
(e.g., ∼33 MB vs. ∼346 MB for 1000 friends). For the case of Manhattan, the
corresponding gap is smaller, due to its substantially smaller circuit size. Note
that the communication cost in MP-Man is larger than that of MP-Euc. This
is because, recall, MP-Man involves two comparison stages; one during distance
computation (due to the absolute values) and one for the final comparison phase.

Then, we show the same two costs for variable bit sizes, setting the number of
friends to 100 and dimensions to 2. The circuit size for the Euclidean case grows
more steeply with the number of bits; when the bit size doubles, the number
of gates almost quadruples. This is expected due to the quadratic (in the bit
size) complexity of multiplication. This is not true for the case of Manhattan,
where the size roughly doubles when doubling the bit size. The circuit size trend
carries over in the communication cost for the garbled circuit approaches. For
the mixed protocols, the communication cost grows linearly, but less severely
than when varying the number of friends. The reason is that the main cost in
these schemes stems mostly from transmitting the necessary garbled circuits the
size of which is dominated by the statistical randomness that is fixed to 100 bits
(and thus is independent of the variable parameter).

Finally, we plot circuit size and communication overhead as a function of
the number of dimensions, for 100 friends and 32-bit inputs. There is a linear
dependence between the number of dimensions and the required gates and, thus,
both metrics grow linearly for the case of garbled circuits. The same is true for
MP-Man, since it entails one absolute value computation per dimension. In the
case of MP-Euc there is one multiplication component per dimension and, hence,
the communication cost scales linearly as well. However, contrary to MP-Man,

120 F. Baldimtsi et al.

MP-Euc involves a comparison protocol only in the final stage: as we explained
above, this component receives inputs with a fixed 100-bit length, independently
of dimensions. Since this component introduces the dominant communication
cost, the total overhead is marginally affected by the number of dimensions.

Computational Cost. The second set of our experiments assesses the compu-
tational cost at the querier and the server upon Query, and the results are illus-
trated in Fig. 6. A first observation is that the computational cost in the garbled
circuit approaches is extremely small due to our selection table technique that
entirely eliminates the need for oblivious transfers, and the very efficient imple-
mentation of JustGarble. Our mixed protocols feature a higher overhead (at
both client and server) than their counterparts, because they entail expensive
public-key operations (mainly for homomorphic encryptions and decryptions,
but also for the base OTs). Still, the computational times for our mixed proto-
col constructions are not prohibitive even for our largest tested parameters. In
most cases the overhead for both querier and server is below 3 s, whereas even
for 1000 friends it is below 14 s. A general observation regarding the garbled
circuit approaches is that, for all varied parameters, the cost at the server is sig-
nificantly smaller than that at the client. This is due to the fact that the server
performs only symmetric key operations (for extracting the garbled inputs from
the selection table and evaluating the garbled circuit), whereas the client also
has to decrypt the keys established with her friends during the connection phase,
using public-key operations. Finally, regarding the individual curves in the plots,
note that they follow similar trends to the corresponding ones in Fig. 5, for the
same reasons we explained for the communication cost.

Fig. 6. Total computational cost in seconds at querier (top) and server (bottom) vs.
number of friends (left), element bit-size (middle), and number of dimensions (right).

Server-Aided Secure Computation with Off-line Parties 121

Summary and Discussion. Overall, our GC implementations feature excellent
computational times for our tested settings, in the order of a few milliseconds
for most scenarios. However, they incur an excessive communication cost for
the Euclidean distance (more than 300 MBs for the case of 1000 friends). Our
MP implementation is very beneficial for this case, reducing the communication
cost by roughly 10x. On the other hand, our MP incur higher computational
times than GC, as they entail numerous public key operations to manipulate
the Paillier ciphertexts; yet they still offer reasonable performance. Overall, our
schemes offer different computation/communication trade-offs in the OSN set-
ting and, interestingly, the overall performance is comparable to existing works
that use the same tools in the standard secure two-party computation setting.
It is beyond the scope of this paper to advocate one approach over the other.
Their performance is highly dependent on the query function and the capabil-
ities of a given system and is a hot research topic in the secure computation
literature (e.g., see [34,48]). Moreover, ongoing research can help optimize both
alternatives, e.g., the half-gate optimization of [51] reduces the garbled circuit
size, whereas [21] shows how faster mixed protocols are achieved using arithmetic
shares.

Acknowledgements. We would like to thank Payman Mohassel and Arash Afshar
for sharing parts of their code from [4], and the anonymous reviewers for their detailed
comments and suggestions. Work partially done while the first and second authors were
at Boston University and the fourth author was at Boston University and Northeastern
University. Research supported in part by the U.S. National Science Foundation under
CNS grants 1012798, 1012910, 1347350, 1413964, and 1414119.

References

1. CPABE (Ciphertext-Policy Attribute-Based Encryption) toolkit. http://acsc.cs.
utexas.edu/cpabe/

2. MIRACL cryptographic SDK. https://www.certivox.com/miracl
3. OpenSSL cryptography and SSL/TLS toolkit. https://www.openssl.org/
4. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computa-

tion based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 22

5. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). doi:10.1007/978-3-319-03515-4 1

6. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM TISSEC 9(1), 1–30
(2006)

7. Baldimtsi, F., Ohrimenko, O.: Sorting and searching behind the curtain. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 127–146. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47854-7 8

8. Baldimtsi, F., Papadopoulos, D., Papadopoulos, S., Scafuro, A., Triandopoulos, N.:
Secure computation in online social networks. Cryptology ePrint Archive, Report
2016/948 (2016)

http://acsc.cs.utexas.edu/cpabe/
http://acsc.cs.utexas.edu/cpabe/
https://www.certivox.com/miracl
https://www.openssl.org/
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-319-03515-4_1
http://dx.doi.org/10.1007/978-3-662-47854-7_8

122 F. Baldimtsi et al.

9. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: IEEE SP (2013)

10. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the Internet. In: ACM CCS (2016)

11. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)

12. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

13. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic language for privacy-
preserving applications. In: CCS-PETShop (2013)

14. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: FC (2009)

15. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

16. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

17. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 416–445.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3 15

18. Carter, H., Mood, B., Traynor, P., Butler, K.R.B.: Secure outsourced garbled cir-
cuit evaluation for mobile devices. In: USENIX Security (2013)

19. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 28

20. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). doi:10.1007/11535218 23

21. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

22. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03168-7 14

23. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC (1994)

24. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

25. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC
(1987)

26. Gueron, S.: Intel advanced encryption standard AES instruction set white paper.
Intel Corporation, August 2008

27. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 132–150. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 8

28. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: CCS (2010)

29. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 9

http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-662-53015-3_15
http://dx.doi.org/10.1007/978-3-642-36594-2_28
http://dx.doi.org/10.1007/11535218_23
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-22792-9_8
http://dx.doi.org/10.1007/978-3-540-45146-4_9

Server-Aided Secure Computation with Off-line Parties 123

30. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS (2003)
31. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure

computation. In: CCSW (2014)
32. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.

Cryptology ePrint Archive, Report 2011/272 (2011)
33. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function

evaluation. In: CCS (2012)
34. Kerschbaum, F., Schneider, T., Schröpfer, A.: Automatic protocol selection in

secure two-party computations. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 566–584. Springer, Cham (2014). doi:10.1007/
978-3-319-07536-5 33

35. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0 5

36. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1 25

37. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and appli-
cations. In: ICALP (2008)

38. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security (2012)

39. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

40. Lu, S., Ostrovsky, R.: How to garble RAM programs. In: EUROCRYPT (2013)
41. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-

tation system. In: USENIX Security (2004)
42. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:

the garbled circuit approach. In: ACM CCS (2015)
43. Mood, B., Gupta, D., Butler, K.R.B., Feigenbaum, J.: Reuse it or lose it: more

efficient secure computation through reuse of encrypted values. In: CCS (2014)
44. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
45. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism

design. In: EC (1999)
46. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-

preserving ridge regression on hundreds of millions of records. In: IEEE SP (2013)
47. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

48. Schneider, T., Zohner, M.: GMW vs. yao? efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 23

49. Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)
50. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)
51. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 8

52. Zohner, M.: OTExtension library. https://github.com/encryptogroup/
OTExtension

http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-642-54631-0_5
http://dx.doi.org/10.1007/978-3-642-54631-0_5
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://dx.doi.org/10.1007/978-3-662-46803-6_8
https://github.com/encryptogroup/OTExtension
https://github.com/encryptogroup/OTExtension

	Server-Aided Secure Computation with Off-line Parties
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	3.1 Security Definition
	3.2 Our General Approach

	4 Garbled Circuit Protocol
	5 Mixed Protocol
	5.1 Re-Encryption Protocol

	6 Experimental Evaluation
	References

