
The Once and Future Onion

Paul Syverson(B)

U.S. Naval Research Laboratory, Washington, DC, USA
paul.syverson@nrl.navy.mil

Abstract. Onionsites are Internet sites accessed via protocols offer-
ing security protections beyond those provided by the usual protocols
and infrastructure of the Internet, such as confidentiality of address
lookup, and that significantly strengthen commonly offered protections;
for example, their self-authenticating addresses preclude the kinds of
certificate hijacks that have occurred against registered domain names.
I will sketch the properties and design of onion services, including early
history as well as recent developments. I will also describe integration of
onionsites much more fully into conventional Internet sites in ways that
promote their general widescale adoption.

1 Introduction

Prior to a decade ago, website access via encrypted and authenticated connec-
tions was relatively uncommon. Now this is recognized as fundamental to online
commerce, government, and more generally to functioning in many aspects of
modern life. The mechanisms for secure site access that we will discuss herein
are roughly where certificates and TLS were at the turn of the century. I will
describe combining and extending protections provided by such conventional
mechanisms with the stronger mechanisms of Tor’s onion services in ways that
both further improve the security and usability that is currently provided by
either alone and that promote broad adoption of more secure site access.

1.1 Predecessors to Onion Services

We introduced onion routing in the 1990s “to separate identification from rout-
ing” for networked communication [21]. Primary intended uses were for clients
to connect to Internet sites with publicly discoverable network locations, such
as connecting to ordinary websites, but without revealing to the infrastructure
carrying the connection’s traffic, who is visiting which site. At the same time we
introduced onion routing we also introduced reply onions, which were designed
to allow replies to such connections or to otherwise permit connection to sites
with hidden locations [7]. One application we proposed for reply onions was pri-
vate location tracking: user location was regularly uploaded to a user’s server,
which could then selectively provide access to the user’s location information.
The sensors and routing infrastructure, however, could not tell which user was

c© US Government 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 18–28, 2017.
DOI: 10.1007/978-3-319-66402-6 3



The Once and Future Onion 19

sending her location to which server. Another application was a protocol to per-
mit mobile telephony, including per-call billing, without revealing to the local
cell tower what phone number is making the call or, to the account provider,
where the call is being made from [22]. Ross Anderson introduced the design
for a censorship-resistant Eternity Service the same year we introduced onion
routing [1], which featured the location-hiding placement and retrieval of doc-
uments at redundant distributed servers. These were all designs without any
implementation. The first system with at least a research implementation to
permit connections to a service without revealing the service’s network location
was Rewebber [6], followed a few years after by Publius [30]. These were systems
specifically for connecting to a web service, a primary application of Tor’s onion
services half a decade later.

1.2 Basic Overview of Tor Design and Onion Services

I now give a high-level description of Tor and onion service protocols that should
be sufficient to understand what follows. For more detailed descriptions see the
Tor design paper [5] and related documentation at the Tor website [28]. For a
high-level graphical description of onion services see [25]. For a more up to date,
and much more technical, description of onion services protocols see the Tor
Rendezvous Specification [27].

Tor clients randomly select three of the many thousands of relays [26] com-
prising the current Tor network, and create a cryptographic circuit through these
to connect to Internet services. Since only the first relay in the circuit sees the
IP address of the client and only the last (exit) relay sees the IP address of the
destination, this technique separates identification from routing.

To offer an onion service, a web (or other) server creates Tor circuits to
multiple introduction points, Tor relays that await connection attempts from
clients. A user wishing to connect to a particular onion service uses the service’s
onion address to look up these introduction points in a directory system. In a
successful interaction, the client and onionsite then both create Tor circuits to
a client-selected relay, the rendezvous point. The rendezvous point joins their
circuits together, and they can then interact as ordinary client and server of a
web connection over this rendezvous circuit.

Since the onionsite only communicates over Tor circuits it creates, this proto-
col hides its network location, the feature that gives it the name ‘hidden service’.
But, there are other important features to the onion service protocols, notably
self-authentication. The onion address is the hash of the public key of the onion-
site. For example, if one wished to connect to the DuckDuckGo search engine’s
onion service, the address is 3g2upl4pq6kufc4m.onion. If that address is linked
to or entered in the address bar of Tor Browser (a browser based on Firefox
ESR, designed to work with Tor, and bundled in the default Tor download), the
Tor client recognizes this as an onion address and thus knows to use the above
protocol rather than attempting to pass the address through a Tor circuit for
DNS resolution at an exit relay. The public key hashed to produce the address



20 P. Syverson

corresponds to the key that signs the list of introduction points and other ser-
vice descriptor information provided by the directory system. In this way, onion
addresses are self-authenticating, a central point to which we will return.

2 The Alliuminated Web

Users are generally completely in the dark about how their information moves
around the Internet. Though Tor does provide confidentiality of routing meta-
data, it also provides the user with far more routing metadata, indeed authenti-
cated routing metadata, than she would otherwise have, and does so in a highly
usable fashion. A pulldown on the Tor Browser indicates the country and IP
address of the relays in the path of an active Tor circuit.

As noted, we originally called Tor onion services “hidden services” (actually
“location-hidden services” in the first publication [5]). This was perhaps natural
given the above history, but it was misleading terminology in at least two ways.
First, given the varied and nuanced meanings of ‘hidden’ it is easy to insinuate
a general air of exotic mystery and arcane offerings on such sites, rather than
the mundane idea that network location is not revealed merely by making a
site reachable. Calling these “hidden services” did not exactly dissuade those
tech pundits and television drama writers who might be generally inclined to
titillating and frightening stories that boost readership and ad revenue.

More important technically, it calls attention to only one sort of protection
that onion services provide, hiding the network location of the service. This is an
important security property, and researchers and developers continue to work on
strengthening its protection. But putting just that aspect into the name makes it
easy to downplay the other important protections that onion services provide. In
fact, while other properties such as self-authentication remain inherent, location
hiding is now a configuration option since it is not desirable for all settings.
Because ‘hidden services’ was importantly misleading in multiple ways, we now
generally refer to these simply as “onion services”.

3 Evolution of Onion Services

Guards and Vanguards: One of the first design changes to occur after we
introduced onion services in 2004 was to add entry guards. A malicious client
can rapidly request many connections to an onion service, each of which will
cause the onion service to use a new circuit to the rendezvous point. Setting up
even a single relay and making many connections to an onion service, we were
able to correlate connections we requested with ones from a server connecting
into the Tor network at our relay. We were thus able to find the network address
of the onion service within minutes. To counter such attacks, we introduced guard
relays, a set of a very few relays that a client used persistently to connect to
the Tor network [19]. Guards protect onion-service-originated circuits, but also
all clients circuits. Normal clients make multiple connections to multiple sites
during the course of their online activity—albeit normally at a much slower rate



The Once and Future Onion 21

than just described. In that same work, we showed that a similar attack could
quickly uncover a service’s entry guards, and we proposed layered guards as a
means to make such attacks on onion services even slower and more complex.
Over the last decade, many have researched this area, for example exploring the
performance implications of using layered guards for hidden services [12]. Design
and implementation specifics are actively being settled at the time of writing.
Further details can be found in a Tor Proposal [13]. (Tor Proposals are similar
to IETF RFCs.)

Counters to Mining the Onion Service Directory: The first onion-service
directory system, for looking up introduction points and other information given
in a service descriptor, was run at the Tor directory authorities (which maintain
and serve information about the relays comprising the Tor network). But this
was only intended to get onion services up and running, and even the original Tor
design paper mentioned running the directory on a distributed hash table (DHT)
comprised of Tor relays [5]. The DHT-based onion-service directory system was
deployed a few years later. Even with the dynamic distribution of a DHT, an
adversary occupying any of the six positions holding at a given time the service
descriptor for a given onion address could monitor when lookups of it occur, and
could even deny service if it held all six positions in the DHT. We proposed a
partial counter to this by encrypting both the record locator and its content using
the onion address as key [20]. This was later implemented and deployed [27].
Though deployed, it was not widely used, and published research showed how
adversaries could position themselves in the DHT to learn (or block) most onion
addresses [3].

Even if widely used, such encryption would not resist DHT monitoring or
DoS of onion addresses an adversary knew otherwise. Something that does help
even in this case (and is now implemented and deployed) is for the Tor directory
authorities to run a distributed random-value-commitment protocol to be used
in the determination of next-round DHT assignments, thus confounding any
adversary’s attempt to predictably position itself within the DHT [9].

Metrics for onions: Onion-service traffic constitutes a tiny fraction of overall
traffic on the Tor network, but until a few years ago we had no idea how much.
This is now regularly reported on the Tor Metrics site and is roughly 1–5% of
overall application traffic [17]. Likewise the number of onion addresses that exist
(c. 50 K at any time), are reachable, serve content, etc. was not known. These
latter appear to be far fewer, on the order of 10 K and 1 K respectively, but
good numbers are not yet readily available. Collecting such statistics without
harming privacy is difficult [8]. Future work using more secure techniques, such
as provided by PrivCount [11], should give us additional statistics, e.g., the per-
onion-service distribution on connections to onion services during a given period.
The Tor Metrics site also tracks performance, reporting on the time to download
various size files over the network. Until recently, this was limited to downloads
from external servers via exit circuits. With the introduction of OnionPerf [10],
more complex traffic performance could be generated and monitored, and in
particular, performance of onion services is now measured and reported.



22 P. Syverson

Ephemeral and Personal Onions: Further complicating things, onionsites
are not all ordinary web pages. As just one example, OnionShare [18] is a tool
for secure and private file transfer. It creates an onion service on the source com-
puter and places the desired file at its onion address. In default use, once the file
is retrieved, the onion service and the file are deleted. Obviously such onionsites
complicate our understanding of onionsite statistics. Another example of a dif-
ferent sort of onion service is Ricochet [23], a secure instant messaging system
with no central server. Each Ricochet user has an onionsite on his computer
and shares the onion address with potential communicants. Two users wishing
to talk will connect to each other’s onionsite. Ricochet presents the exchanged
messages as a dialogue in its GUI. Onionsites can also be useful for securely
operating a personal cloud service. With privacy and cost in mind, many people
are operating their own cloud infrastructure to store files and calendar entries
using open-source systems such as Cozy.

Facebook and increased integration with the less-secure web: Thou-
sands of users connect to Facebook from locations that do not allow direct con-
nections to facebook.com. And many others simply use Tor Browser for the
added security it provides for general Internet activity. Indeed, in April 2016,
Facebook reported over a million people accessing Facebook over Tor [16]. Now
Facebook could simply encourage users to make an ordinary connection over Tor
to facebook.com. But on the Tor network limited exit capacity is often a dom-
inating factor for Tor performance. This was one of the motivations Facebook
described for offering an onionsite rather than merely encouraging connections to
their registered domain via Tor [15]. More recently, Facebook has begun allowing
onionsite owners to offer previews of their sites to non-Tor users on pages with
a link to their onionsite. Facebook also provides guidance for anyone attempting
to follow such a link using a non-Tor browser, telling them how and why they
might use Tor. And if the onionsite has opted to allow it, a link to the less secure
(non-Tor) version of the site is also offered [24].

Facebook is the largest site by far to incorporate onion service, but is not
the only significant “conventional” site to do so. A few other examples include
ProPublica, a well-known news site, DuckDuckGo, a popular search engine I have
already mentioned, and services and repositories of the Debian operating system.
Some news sites do not, at the time of writing, offer onion addresses for accessing
their content but do make use of SecureDrop, which is an onion service for sources
to securely and anonymously contribute to media organizations including The
Washington Post, The New Yorker, and The Globe and Mail.

A potential concern for popular mainstream sites is doppelgangers. If some-
one were to put up an onionsite at 3g2upk4au4ldfc4m.onion that appears
to be the DuckDuckGo homepage, users might not spot that they had not
reached 3g2upl4pq6kufc4m.onion. Onion addresses are self-authenticating, but
by themselves offer nothing to tie themselves to known public entities. This is
an example of Zooko’s Triangle, which states that names can be any two of
decentralized, secure, and human-meaningful, but not all three at once. One
of the ways to get closer to having all three is to leverage TLS certificates.



The Once and Future Onion 23

If 3g2upl4pq6kufc4m.onion is entered in the Tor Browser, the display in the
URL bar shows “Duck Duck Go, Inc. (US) | https://3g2upl4pq6kufc4m.onion”:
for this address, DuckDuckGo has obtained a TLS certificate that includes the
identification of itself as the organization holding the certificate. And that is pos-
sible because the CA/Browser Forum has authorized the issuance of extended
validation (EV) Certs for onion addresses. Note that this provides an addi-
tional element of site-owner control over authentication that no certificates can:
even with an accepted certificate, without the private key from which the onion
address derives, an adversary cannot read or respond to traffic encoded for
that address (though this does not preclude certificates for doppelgangers). One
important enabling condition for allowing issuance of certs for onion addresses
was the recognition of .onion as a reserved top-level domain by the IETF in
2015 [2]. RFC 7686 designated .onion as a special-use TLD: onion addresses are
not be resolved by DNS as an ordinary registered domain, and they are given a
standardized status.

Only EV certs are eligible for display of the organization name and lock icon
together in the browser URL bar. And, onion addresses are only eligible for EV
certs. This limits them to entities with enough time, money, and motivation to
jump through the hoops necessary to obtain them. Smaller or less well-funded
entities generally obtain domain validation (DV) certificates, which are much
quicker and easier to obtain. One of the concerns that the CA/Browser Forum
had concerning onion addresses, prompting the limitation to EV certs, was the
16-character names that might make them vulnerable to hash collisions. What-
ever the validity of that or some other expressed cryptographic concerns, they
should all be addressed by the new protocols and 56-character names [14] that
are already in the Tor-alpha code release and should be in the stable release by
the time this paper is published.

The motivations for Facebook to run an onion service, e.g., as cited above, do
not include hiding server network location. As such, the original protocol’s use
of Tor circuits from the onion service to the rendezvous point and to the intro-
duction points only adds overhead and reduces performance for both the onion
service and the Tor network. Facebook thus uses single onion services. These
make direct connections from the onion service to the rendezvous and introduc-
tion points and are now specified and implemented for general Tor use [4].

4 John Jacob Onionheimer Schmidt

Should the CA/Browser Forum approve issuing DV certs for onion addresses,
it will further advance the integration of onion services with existing, famil-
iar authentication mechanisms. But even if that happens, it will not permit
the inclusion of organization names in the URL bar or solve other problems
associated with addresses that are not generally understood or recognizable by
humans.

https://3g2upl4pq6kufc4m.onion


24 P. Syverson

The Onion Name System (OnioNS) attempts to respond to these concerns
by creating a system for globally-unique but still human-meaningful names for
onionsites [29]. This has the advantage of not being dependent on any exist-
ing naming scheme, such as existing domain registration. On the other hand,
through much experience and design, existing approaches to naming have evolved
effective usage and infrastructure that we can leverage. And integrating onion
addresses with registered domain names has other advantages.

One way to further this integration is literally, i.e., by incorporating onion
addresses as subdomains of registered domain names. Top-level onion addresses
will still be important, particularly for sites without registered domain names.
And this does not automatically require ‘onion’ to be part of the name, but
the address should be self-authenticating as onion addresses are and should
have adequate encoding properties to preclude confusion with subdomain names
not intended to provide this property. Whether or not that will require stan-
dardization or regulation along the lines of RFC 7686 will need to wait for
more details than I present herein. But, as a strawman illustration, imagine
3g2upl4pq6kufc4m.onion replaced by 3g2upl4pq6kufc4m.onion.duckduckgo.com.
This would have numerous positive prospects.

First, this is not a top-level onion address as in RFC 7686. Thus non-Tor
browsers can resolve and reach this address. As long as the site has content there,
the browser should be able to load it. There will not be a self-authentication
check or other security protections that the Tor Browser adds, nor the routing
security that comes by accessing the service via Tor. Assuming no adversary
shenanigans, however, nothing will break. This should make it appealing to site
owners wanting to minimize overhead and duplicated effort.

Second, because the onion address is simply a subdomain of a registered
domain, it can be covered by a DV cert from any certificate authority that allows
wildcards or the issuing of certs for multiple subdomains. Thus, the address can
be human-meaningful, self-authenticating (if appropriate checks are done), and
still give users the familiar indications that the connection is secure (lock icon
indicating a valid cert from a recognized CA). I will return to this below.

Third, it leverages existing human-meaningful names in a way similar to
other things sites currently do. Whatever user-education component is needed
to engender understanding of the security advantages, there is little or no need
for an established domain to create a campaign to explain a surprising address
change in the URL bar to its users.

Further, it would now be easy for a site to offer multiple subdomain onion
addresses that are automatically tied to one another via their primary domain
name. These could be to offer different services at different places or to different
users, but it is also an easy way to do expiry or revocation without needing
to interact with CRLs or possibly even keep track of user accounts. One can
route multiple onion subdomains to the same page. If one wants to revoke or
expire access for the users reaching the content or service via a particular onion
subdomain, one can simply throw the relevant private key away. Also, one can
do self-certification for some content within a certified domain, for example to



The Once and Future Onion 25

do load balancing and content distribution. Finally, a site that provides a plat-
form for its users to host individual pages or content and that has a wildcard
certificate, e.g., Facebook, could allow users to set up their own onionsites on the
hosting site with the user’s onion key “certified” by the host’s onion key. This
would allow users much more direct control over authentication of and access to
their content, while still providing TLS certification of the host and host “certi-
fication” of the user’s onionsite. There are many details and limitations for some
of these to be practical, but this should give an inkling of the potential.

5 Onions Everywhere

Subdomain onion addresses should be eligible for DV cert issuance just like any
other subdomain. But to get full security advantages, issuance protocols will
need to make sure that relevant checks for possession of the domain, the private
TLS key, and the private onion-service key all properly validate each other. They
should also be checked, e.g., to verify that it is not possible to interleave one type
of expired key or proof of access with still-valid keys of another type, resulting
in an extension or escalation of authorization. In short, there is some research
to be done, even without getting into questions of performance.

Relatedly, a Tor-Browser connection to a subdomain onion service should
provide all the security advantages of current Tor-based access to the onion ser-
vice, together with the protections provided by certified TLS. (It should after the
client software and onion-service directory system have been updated to handle
such addresses.) And as noted above, subdomain onion services will be back-
wards compatible in that a browser knowing nothing about Tor will be able to
reach and interact with the service. But intermediate levels of protection are also
enabled by this approach. Browsers not configured to access Tor could still have
plugins or modifications that check for possession of the appropriate private key
associated with an onion address. Though not offering the routing protection of
connecting via Tor, resistance to DNS hijack and certificate hijack is significantly
improved since it would be necessary to overcome the self-authentication at the
same time.

An adversary could in principle do all the relevant lookup, routing, and cer-
tificate hijacks, coupled with a phished or otherwise insinuated doppelganger
onion address. Even this could be countered by building the right onion address
into the HTTPS Everywhere ruleset. HTTPS Everywhere is a free and open
browser extension that checks for a TLS-protected equivalent to a requested
HTTP connection and then substitutes the appropriate protected connection
request. The need for a ruleset is both because not every site offers an HTTPS
version, and because simply adding an “S” to “HTTP” will not always take the
user to the equivalent site, which depends on the configuration and policies of
the site in question. The equivalent encrypted content may be at a slightly dif-
ferent address, and an HTTPS connection to the URL as requested may go to
a different page within the domain. If one adds onion addresses to the HTTPS
Everywhere ruleset for Tor Browser and other browsers configured to parse and



26 P. Syverson

check onion authentication, then this too would have to be overcome for such
attacks to succeed.

Furthermore, with existing onion addresses, ruleset redirection would again
raise user-surprise concern if a request for a given URL yields a completely
different-looking and not-apparently-related address in the URL bar. With sub-
domain onions, the redirection is much more along the lines of existing HTTPS
Everywhere switches. User surprise should thus be comparable to the current
status quo.

User-friendly onionsite set up: Let’s Encrypt is a certificate authority that
allows anyone to obtain a free DV cert for her site. But it is more than that. Let’s
Encrypt strives to make certificate issuance as quick, automatic, and transparent
as possible, so that site owners have as painless an experience as possible setting
up a TLS-protected version of their site. Once the above mentioned systems
and protocols are in place, it would be natural for Let’s Encrypt to facilitate an
onion-protected version of a site just as they do now for TLS protection.

6 Conclusion

I hope the nature, history, and prospects for onion services are now well alliu-
minated for you. I hope also that you are enthusiastic to see subdomain onion
addresses researched, specified, implemented, and deployed as sketched above.
In such a future, individual, business, and government websites and services can
all be set up to offer much more secure access than is now possible.

Acknowledgments. More people have helped shape the work and ideas I have
described above than could be acknowledged here. Specific thanks to Richard Barnes
for conversations that led to the ideas for subdomain onions, and to Matt Traudt and
Ryan Wails for helpful comments on a draft of this paper.

References

1. Anderson, R.: The eternity service. In: 1st International Conference on the Theory
and Applications of Cryptology (Pragocrypt 1996), pp. 242–252. Czech Technical
University Publishing House, Prague, Czech Republic, September/October 1996

2. Appelbaum, J., Muffett, A.: The .onion special-use domain name (2015). https://
tools.ietf.org/html/rfc7686

3. Biryukov, A., Pustogarov, I., Weinmann, R.P.: Trawling for Tor hidden services:
detection, measurement, deanonymization. In: IEEE Symposium on Security and
Privacy (SP) (2013)

4. Brown, T.W., Brooks, J., Johnson, A., Jansen, R., Kadianakis, G., Syverson, P.,
Dingledine, R.: Rendezvous single onion services, Tor proposal 252 (2015). https://
gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt

5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, August 2004

6. Goldberg, I., Wagner, D.: TAZ servers and the Rewebber network: enabling anony-
mous publishing on the World Wide Web. First Monday 3(4) (1998)

https://tools.ietf.org/html/rfc7686
https://tools.ietf.org/html/rfc7686
https://gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt


The Once and Future Onion 27

7. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996). doi:10.1007/3-540-61996-8 37

8. Goulet, D., Johnson, A., Kadianakis, G., Loesing, K.: Hidden-service statistics
reported by relays. Tor Technical report 2015–04-001, The Tor Project, April 2015

9. Goulet, D., Kadianakis, G.: Random number generation during Tor voting, (Tor
proposal 250) (2015). https://gitweb.torproject.org/torspec.git/tree/proposals/
250-commit-reveal-consensus.txt

10. Jansen, R.: Onionperf. https://github.com/robgjansen/onionperf
11. Jansen, R., Johnson, A.: Safely measuring Tor. In: Proceedings of the 23rd ACM

Conference on Computer and Communications Security (CCS 2016) (2016)
12. Jansen, R., Tschorsch, F., Johnson, A., Scheuermann, B.: The sniper attack: anony-

mously deanonymizing and disabling the Tor network. In: Proceedings of the Net-
work and Distributed Security Symposium - NDSS 2014. IEEE, February 2014

13. Kadianakis, G., Perry, M.: Defending against guard discovery attacks using van-
guards, (Tor proposal 247) (2015). https://gitweb.torproject.org/torspec.git/tree/
proposals/247-hs-guard-discovery.txt

14. Mathewson, N.: Next-generation hidden services in Tor (Tor proposal 224).
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt

15. Muffett, A.: How to get a company or organisation to implement an onion site, i.e. a
Tor hidden service, October 2015. https://www.facebook.com/notes/alec-muffett/
how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-
hidden-/10153762090530962

16. Muffett, A.: 1 million people use Facebook over Tor, April 2016. https://www.
facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/
865624066877648

17. Onion service traffic metrics site. https://metrics.torproject.org/hidserv-rend-
relayed-cells.html

18. Onionshare. https://onionshare.org/
19. Øverlier, L., Syverson, P.: Locating hidden servers. In: 2006 IEEE Symposium on

Security and Privacy (S& P 2006), Proceedings, pp. 100–114. IEEE CS, May 2006
20. Øverlier, L., Syverson, P.: Valet services: improving hidden servers with a personal

touch. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 223–244.
Springer, Heidelberg (2006). doi:10.1007/11957454 13

21. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Proxies for anonymous routing. In:
Twelfth Annual Computer Security Applications Conference, pp. 95–104. IEEE
CS Press (1996)

22. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Protocols using anonymous connec-
tions: mobile applications. In: Christianson, B., Crispo, B., Lomas, M., Roe, M.
(eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 13–23. Springer, Heidelberg
(1998). doi:10.1007/BFb0028156

23. Ricochet. https://ricochet.im/
24. Shackleton, W.: Improved sharing of .onion links on Facebook (2017). https://

www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-
facebook/1196217037151681/

25. Tor: Hidden Services Protocol. https://www.torproject.org/docs/hidden-services.
html.en

26. Tor network size. https://metrics.torproject.org/networksize.html
27. Tor Rendezvous Specification. https://gitweb.torproject.org/torspec.git/tree/

rend-spec.txt

http://dx.doi.org/10.1007/3-540-61996-8_37
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://github.com/robgjansen/onionperf
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://onionshare.org/
http://dx.doi.org/10.1007/11957454_13
http://dx.doi.org/10.1007/BFb0028156
https://ricochet.im/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en
https://metrics.torproject.org/networksize.html
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt


28 P. Syverson

28. The Tor Project. https://www.torproject.org/
29. Victors, J., Li, M., Fu, X.: The onion name system: Tor-powered decentralized DNS

for Tor onion services. Proc. Priv. Enhancing Technol. 2017(1), 21–41 (2017)
30. Waldmen, M., Rubin, A.D., Cranor, L.F.: Publius: A robust, tamper-evident,

censorship-resistant web publishing system. In: Proceedings of the 9th USENIX
Security Symposium, August 2000

https://www.torproject.org/

	The Once and Future Onion
	1 Introduction
	1.1 Predecessors to Onion Services
	1.2 Basic Overview of Tor Design and Onion Services

	2 The Alliuminated Web
	3 Evolution of Onion Services
	4 John Jacob Onionheimer Schmidt
	5 Onions Everywhere
	6 Conclusion
	References




