
Analyzing the Capabilities of the CAN Attacker

Sibylle Fröschle1(B) and Alexander Stühring2

1 OFFIS & University of Oldenburg, Oldenburg, Germany
froeschle@informatik.uni-oldenburg.de

2 University of Oldenburg, Oldenburg, Germany
alexander.stuehring@informatik.uni-oldenburg.de

Abstract. The modern car is controlled by a large number of Electronic
Control Units (ECUs), which communicate over a network of bus sys-
tems. One of the most widely used bus types is called Controller Area
Network (CAN). Recent automotive hacking has shown that attacks with
severe safety impact are possible when an attacker manages to gain access
to a safety-critical CAN. In this paper, our goal is to obtain a more sys-
tematic understanding of the capabilities of the CAN attacker, which can
support the development of security concepts for in-vehicle networks.

1 Introduction

The modern car is controlled by a large number of Electronic Control Units
(ECUs), which communicate over an internal network of bus systems. One of
the most widely used bus types is called Controller Area Network (CAN). Recent
automotive hacking [3,8,11] has shown that attacks with severe safety impact
are possible when an attacker manages to gain access to a safety-critical CAN.
Usually such an attack will require several stages. For example (c.f. Fig. 1): first,
the attacker gains remote code execution on the telematics ECU via its cellular
interface by exploiting a software vulnerability; this gives him access to the
infotainment CAN. Second, the attacker compromises the gateway ECU that
separates the infotainment CAN from the powertrain CAN. Third, he injects
cyber-physical messages into the powertrain CAN: e.g. he can abuse messages
that tell the power steering ECU to change the steering angle; such messages
are usually sent from the Park Assist ECU during automatic parking.

There is currently much activity on how to complement automotive safety
processes by security. Draft norms such as SAE J3061 prescribe a concept phase
in which a cybersecurity concept must be developed that shows how risk is
reduced to an acceptable level. In the example above, the cybersecurity concept
might take a security-in-depth approach where the telematics and gateway ECU
are hardened by traditional security mechanisms while the last stage is defended
by CAN-specific IDS and/or safety measures, which e.g. enforce that certain
commands (such as those that steer during automatic parking) are only executed
at low speed. Measures to prevent the worst at the last stage are desired since
they take weight from the outer layers concerning their safety integrity levels.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 464–482, 2017.
DOI: 10.1007/978-3-319-66402-6 27



Analyzing the Capabilities of the CAN Attacker 465

Fig. 1. Stages in automotive hacking

Thereby motivated, our focus here is on the last stage: once an attacker has
made it to the last stage, what exactly are his capabilities? And how can they
be captured in terms of abstract categories that can be used for a model-based
evaluation of an automotive security concept? Since CAN is a broadcast network
it is obvious that the attacker can eavesdrop and insert messages but less clear
whether he can also delete or modify messages (such as the Dolev-Yao attacker).

Our contributions are as follows: (1) We motivate and define a threat model
for the CAN attacker (Sect. 2.3). (2) We explore the capabilities of this CAN
attacker (Sect. 3). Inspired by [14] we started out by systematically exploring
whether and how the CAN attacker can realize the categories of the Dolev Yao
attacker. This led us to identifying 6 categories of attacks that seem best suited
for controller networks. Altogether, we show that by abusing error handling and
configuration options at controller level the attacker has considerable power: he
can silence or impersonate a target node as well as suppress and modify messages
under certain conditions. For each basic category we show concrete attacks and
demonstrate by experiment their feasibility. Many of our attacks are new. (3) We
discuss the implications of these capabilities for automotive vehicles (Sect. 4).
After presenting related work (Sect. 2.1) and the necessary background on CAN
(Sect. 2.2) we proceed according to these contributions.

2 Background and Problem Statement

2.1 Related Work

Attacks on CAN. Security threats to automotive CAN networks have first been
investigated by Hoppe et al. [5], based on automotive hardware in a lab. Koscher
et al. [8] provide a comprehensive security analysis of two types of modern auto-
mobiles, which demonstrated the first attacks on real CAN networks with severe
safety impact. While these attacks still required physical access to the cars via
e.g. the OBDII diagnosis port, in another paper [3] it was shown that such
attacks can also be done by hacking into the vehicle via its extensive attack sur-
face. Since then many more attacks have been demonstrated by security experts



466 S. Fröschle and A. Stühring

such as Miller and Valasek [11,20]. In [19] we have investigated what effect
injecting sensor data has on a driving assistance system. Klebeberger et al. have
pointed out in [7] that mechanisms implemented for safety, e.g. fault detection
mechanisms may be abused by an attacker. In a recent paper [4] Cho and Shin
have presented a bus-off attack, where similarly to one of our (independently
designed) attacks collisions force a target ECU into bus-off.

IDS for CAN. There are several suggestions of how IDS (Intrusion Detection
Systems) can be devised for in-vehicle networks. In [5] Hoppe et al. discuss IDS
based on message frequency, obvious misuse of message-IDs, and other communi-
cation characteristics. Other approaches are based on entropy-based anomalies in
the network [12], anomalies in the message frequency or other metrics [11,13,17],
or are specification-based [9]. It remains to be investigated whether reliable IDS
can be devised against attacks that are based on the generation of errors.

Crypto for CAN. The EVITA project has provided the first comprehensive secu-
rity architecture for in-vehicle networks. The architecture is anchored in hard-
ware security modules (HSMs), and realizes crypto-based security services such
as secure boot, secure storage, and secure communication between in-vehicle
components as well as for vehicle-to-x-communication [1]. Moreover, the hard-
ware components have been evaluated for their use in the real-time critical in-
vehicle environment [21]. By now most providers of automotive electronic com-
ponents offer embedded security solutions such as automotive controllers with
embedded HSMs or add-on security chips. Furthermore, cryptographic schemes
for lightweight authentication over CAN have been developed (c.f. [15] and ref-
erences therein).

However, it is not clear yet how the available components will be configured
and employed as part of a comprehensive in-vehicle security concept that is
economical, real-time suitable, and usable. Steps towards this are put forward
in [10], and pursued by the SeSaMo project for embedded systems [16].

2.2 CAN - Controller Area Network

Controller Area Network (CAN) [2,6] is a bitstream-oriented broadcast bus with
a maximal bit rate of 1 Mbit/s. The CAN protocol covers the physical layer and
the data link layer. The physical layer can have one of two values: dominant or
recessive. If two or more nodes transmit dominant and recessive bits at the same
time then the resulting bus level will be dominant. This is for example realized
by a wired-AND implementation. Hence, the dominant level is represented by
a logical 0, and the recessive level by a logical 1. This electrical characteristic
plays an important role for arbitration and error signalling.

Message Transfer. Each sender transmits their message without a destination
address; rather every message contains an identifier (ID), which indicates the
meaning of the message. All nodes connected to the bus receive the message and
decide by filtering on its ID whether the message is to be ignored or processed.
The ID also assigns a priority to the message: the message with the smallest
value of the ID has the highest priority.



Analyzing the Capabilities of the CAN Attacker 467

Fig. 2. A CAN network

Fig. 3. Format of a data frame in extended format

CAN defines four different types of messages, called frames. The following
two are particularly relevant here: a Data Frame carries data with a payload
between 0 and 8 bytes; an Error Frame is transmitted to signal a bus error.
Figure 3 depicts the format of a Data Frame (in Extended Format). The frame
starts with the Start of Frame (SOF) Field, which is a single dominant bit. Then
follows the Arbitration Field, which consists of a 29 bit Identifier and fixed-form
fields. The Control Field contains the Data Length Code (DLC), which records
the number of bytes in the Data Field. Then follows the Data Field with 0 to 8
bytes of data. The CRC Field contains a cyclic redundancy check code calculated
over the previous fields; followed by the CRC Delimiter : a single recessive bit. All
receivers will acknowledge the successful receipt of the message. This is realized
by the Ack Field : the transmitter sends a recessive bit in the Ack Slot while a
receiver acknowledges a message by superscribing the Ack Slot by a dominant
bit. The frame is concluded with the End of Frame consisting of 7 recessive bits.

Data Frames are always preceded by an Interframe Space (IFS). The IFS
consists of a fixed period of 3 recessive bits, called Intermission, in which no
node is allowed to transmit a new frame, and is followed by a period Bus Idle of
arbitrary length. In the latter any node can start to transmit a message (unless
it is in an error state).

To resolve contention when more than one node wants to transmit, CAN uses
bitwise arbitration: during transmission of the Arbitration Field every transmit-
ter monitors the signal on the bus and compares it to the value of the bit it
has transmitted itself. If the values are equal then the node will continue to
send. If the node has sent a recessive bit but monitors a dominant bit on the



468 S. Fröschle and A. Stühring

ECU 1 011 000 0 0 1 1 0 0

11 000 1 Receive ModeECU 2

Identi fierSOF

Bus 011 000 0 0 1 1 0 0

Collision

Fig. 4. Bitwise arbitration

Error
Active

start Error
Passive

Bus
Off

REC > 127 or

TEC > 127

REC ≤ 127 and

TEC ≤ 127

T
E
C
>

25
5NormalModeRequest

and 128 occurrences of

11 consecutive recessive bits

Fig. 5. Fault confinement

bus, it will withdraw from sending and become a receiver. Since the value 0 is
represented by a dominant level thereby the conflict is resolved according to the
priority - without losing information or time. An example is provided in Fig. 4.
Frames that have lost arbitration or frames that are corrupted by errors will
usually be retransmitted automatically (according to bitwise arbitration) until
the transmission is successful.

To ensure that the nodes remain synchronized during the transmission of
a message CAN uses the method of bit stuffing : after five consecutive bits of
identical value are transmitted a complementary bit is inserted to enforce a
change of signal level to synchronize on. Stuff bits are automatically inserted
and removed by the transmitting and receiving controllers.

Error Handling and Fault Confinement. CAN provides several mechanisms
for error detection, and distinguishes between five error types. The following
three will be relevant later. When a node transmits a bit it also monitors the
bus; a node detects a bit error when the monitored bit is different from the
transmitted bit. (There are some exceptions as e.g. during arbitration.) All nodes
also check whether bit stuffing is observed, and whether the form of fixed-form
bit fields is observed. This will lead to a stuff, and form error respectively.

A node can be in one of three error states: error-active, error-passive, or
bus-off. Figure 5 depicts the transitions between these error states. The transi-
tions are governed by two error counters that CAN nodes keep: the Transmit
Error Counter (TEC) and the Receive Error Counter (REC). The counters are
increased and decreased according to 12 rules specified in the CAN standard.
Roughly, a node will increase its TEC by 8 when it detects an error during
transmission, and decrease it by 1 after a successful transmission. A node will
increase its REC by 1 when it detects an error during receiving, and further by 8
when it becomes clear (during error signalling) that it detected the error earlier
than the other nodes. Decreasing is similarly as for transmission.

When an error-active node detects an error then it signals this by 6 dominant
bits (Active Error Flag). This deliberately violates bit stuffing so that the other
nodes will also detect an error. An error-passive node signals an error by 6
recessive bits, and then waits for 6 bits of equal polarity on the bus (Passive
Error Flag). The violation of bit stuffing will only be noticed by other nodes
when the error-passive node is a transmitter, otherwise the passive error flag



Analyzing the Capabilities of the CAN Attacker 469

will not disturb the bus. Both error-active and error-passive nodes complete
their Error Frame with the Error Delimiter of 8 recessive bits. (C.f. Fig. 6.)

Fig. 6. Active error frame. A passive error frame is similar only that the superposition
field can be longer than 12 bits: the node will wait for 6 bits of equal polarity

Moreover, after an error-passive node has been in the role of a transmitter
it will extend the Intermission period by a Suspend Transmission period of 8
recessive bits before transmitting a further message (while it can receive).

2.3 Threat Model and Problem Statement

As motivated in Sect. 1 we are concerned with an attacker who has already
compromised a node, say NA, (such as the gateway ECU) in a safety-critical
target CAN, say CT , (such as the powertrain CAN). The goal of this attacker is
not to hack into other nodes on CT but rather to induce them to perform cyber-
physical actions conveyed via CT from his node NA. Hence, we assume: (1) The
CAN attacker can host his own code on the compromised node NA. However, we
assume platform integrity for all other nodes of the target CAN.

Moreover, we assume that the CAN attacker has compromised NA remotely,
and thus: (2) The CAN attacker has no physical access to the vehicle instances
that will be affected by his attack. He will launch his attack via malware on NA

(which might be remotely controlled or not).
However, the attacker can prepare his attack with full access to a vehicle

of the type he wishes to target. Security experts have demonstrated that in-
depth knowledge about in-vehicle networks can be obtained by buying a car and
reverse-engineering it. Stuxnet is also a point in case for sophisticated attack
preparation. Hence, an automotive security concept should be based on the fol-
lowing overapproximation: (3) The CAN attacker can prepare his attack off-line
under a white box assumption and access to an instance of the vehicle type he
wishes to attack. We assume he has full knowledge of message scheduling and
architecture of the in-vehicle network.

Automotive hacking so far has injected messages from a task layer (c.f. Fig. 2).
However, if an attacker has compromised an ECU he usually also has access to
lower software layers such as the interface to the CAN controller and config-
uration. So unless NA is equipped with special security features, we assume:
(4) The attacker code can contain any command that controls CAN communica-
tion. This includes the basic functions for sending and receiving CAN messages
but also standard functionality for controlling configuration and status registers.
Hence, we assume the CAN attacker can make full use of the interface provided
by the CAN controller of NA.



470 S. Fröschle and A. Stühring

We consider the following problem: Given a target CAN CT with a compro-
mised node NA and any number of honest nodes, which capabilities does the
CAN attacker have apart from eavesdropping and inserting messages?

3 Attacker Capabilities

We now analyse the capabilities of the CAN attacker starting out from straight-
forward denial-of-service attacks to more targeted attacks. A detailed descrip-
tion of the experiments, the data, and a market analysis on features of CAN
controllers is available on https://vhome.offis.de/pi/downloads/esorics2017/.

1. Blocking Messages by Priority. Similarly to a standard network attacker,
the CAN attacker can disturb the target network by flooding it with messages.
However, since CAN is priority-based the impact of flooding depends on the
priorities of the messages involved.

Attack 1 (Flood to Block). Let M be a message such that M is not sent by
any honest node, and let LP(M) be the set of all messages with priority lower
than M . Then the attacker can block all messages in LP(M): he simply floods
the bus with the message M from his node NA.

When message M is flooded M will be ready for arbitration every time
the bus becomes idle. Hence, messages by honest nodes can only win arbitra-
tion if they have a priority higher than M . Flooding with a message that is
already allocated and regularly sent by an honest node would lead to bit errors
(c.f. Sect. 3(4)). Our experiments show that the blocking indeed works reliably.
Note that by flooding the bus with M such that ID(M) = 0x0 the attacker can
block all messages of honest nodes (provided that 0x0 is not already allocated).

2. Disrupting the Target Network. If the CAN attacker seeks to disrupt all
behaviour on the target bus he can make use of functions that change the oper-
ating mode or the configuration of the CAN controller. Most CAN controllers
have a feature that allows the attacker to induce a stream of dominant bits on
the bus.

Example 1 (Test Mode). Many CAN controllers can be operated in a Test Mode,
in which the state of the Rx pin of the CAN controller is clocked onto the Tx
pin (c.f. Fig. 2). This mode is intended for testing the controller during circuit
development. Invoking the Test Mode on a controller that is connected via a
transceiver to a running CAN bus has a simple effect: once a dominant bit is
received the transceiver continuously applies the dominant level on the bus.

Example 2 (GPIO Configuration). Usually, the Rx and Tx pins connecting the
built-in CAN controller on the microcontroller to the transceiver are GPIO (Gen-
eral Purpose Input/Output) pins. They can either be assigned to a component

https://vhome.offis.de/pi/downloads/esorics2017/


Analyzing the Capabilities of the CAN Attacker 471

Fig. 7. Typical course of Attack 2, where NT is a transmitter, and NH is a receiver.
Key to error codes: 0 × 82 is a stuff error in bit 28–21 of the Identifier Field; 0 × 53 is
a form error due to “dominant for more than 7 bit times after active error flag”

such as the CAN controller or driven manually. The CAN attacker can access
the GPIO configuration, disconnect the CAN controller from the IO pins, and
interface directly with the CAN transceiver. This allows him to continuously
send a dominant bit to the transceiver.

Our market analysis has shown that out of 23 microcontroller series with in-
built CAN controller only one does not provide one of these features (7 support
Test Mode, 18 GPIO configuration). We formulate and implement the attack
based on the Test Mode, but the GPIO technique could be employed similarly.

Attack 2 (Disrupt by Dominant Bits). Say the attacker wishes to disrupt
the target CAN so that no messaging is possible at all. He simply invokes the Test
Mode on his node NA. He can stop the attack at any time by setting the operating
mode back to normal. The bus communication will immediately be restored, but
typically one node will be bus-off, and therefore remain silent.

Once the attacker has invoked the Test Mode on NA, and once one of the
honest nodes has transmitted a dominant bit the behaviour on the bus will be
reduced to a stream of dominant bits. A valid CAN frame can never contain
more than 5 consecutive dominant bits: this either violates bit stuffing or the
format of fixed-form fields. Hence, after at most 5 dominant bits each honest
node will detect an error, and send an error frame. An error frame is completed
with the Error Delimiter, which consists of 8 recessive bits. Since there are only
dominant bits on the bus CAN fault confinement kicks in: after each additional 8
consecutive dominant bits each node will increase its error counter by 8. Hence,
all honest nodes will quickly become error-passive (when their REC or TEC
reaches 128). Nodes that were acting as transmitters when they first detected an



472 S. Fröschle and A. Stühring

error will further go into bus-off (when their TEC reaches 256). Although there
can be several transmitters during arbitration and it is possible that several nodes
become bus-off in a well-scheduled CAN system with a usual load of about 80%
one would expect that typically one node will be bus-off.

In each of the 10 experiments we conducted the receivers reach error-passive
at 501+

−1 us after occurrence of the first error. The one transmitter either goes
error-passive at the same time or after another 32+

−1 us. The latter applies when
the transmitter detects a stuff error during arbitration; in this case the error
counter is not increased as usual due to an exception of the CAN protocol [2].
Bus-off is reached by the transmitter after another 509+

−2 us. (Note that 512 ∼
16×8 bit-time.) Figure 7 shows a typical course of the attack. After the attacker
resets to normal operating mode the error-passive nodes will be able to transmit
their messages (at most subject to a suspension period of 8 bits) while the bus-off
node will remain silent.

3. Silencing a Target Node by Dominant Bits. The disrupt attack is
straightforward to implement and typically forces one node into the bus-off state
in ≈ 1 ms (or 260 bit-time). However, the attack neither directs which node nor
whether any node will become bus-off. Say the attacker wishes to silence a target
node NT . If he manages to synchronize the activation of the stream of dominant
bits with the transmission of a message by NT then he can force NT bus-off in
a targeted fashion. It turns out that there are several techniques to synchronize
the attack with the transmission of a particular message.

Example 3 (ID Ready). Many CAN controllers have a feature called ID Ready
Interrupt : an interrupt that is triggered as soon as the ID of a frame has been
received while the rest of the frame is still in transit. Once the interrupt is raised
the ID can be read from a register and compared to that of a target message, say
MT . A subsequent action of the attacker such as switching on the Test Mode will
take effect while the rest of the message is still being transmitted. Our market
analysis shows that 5 series of microcontrollers of 23 in total offer this feature.

Example 4 (Scheduling). If the CAN controller does not provide the ID Ready
Interrupt he can make use of CAN message scheduling: CAN messages are typ-
ically sent with a fixed periodicity. Say message MT has a period of t ms. The
attacker waits to receive an instance of MT , and can now predict that the next
MT will arrive after t ms plus some jitter. This will only work if the scheduling
is precise up to the length of MT .

Example 5 (Preceded IDs [4]). In [4] Cho and Shin define a preceded ID of a
message MT as the ID of a message that has completed its transmission right
before the start of MT . The attacker waits to receive the preceded ID message,
and can now predict that MT will be sent after 3 bit of Intermission. They also
show that in real automotive CAN traffic preceded IDs often exist. Moreover,
they show that preceded IDs can be fabricated when a target message MT does
not have them. This technique allows them to synchronize very precisely on the
first bit of a target message.



Analyzing the Capabilities of the CAN Attacker 473

We formulate and implement the attack based on ID Ready and Test Mode.

Attack 3 (Silence Target by Dominant Bits). Say the attacker wishes
to silence a target node, say NT . He can achieve this as follows. He chooses a
message MT that is sent by NT . In the task on NA the attacker enables the ID
Ready Interrupt, and programs the ISR that handles the interrupt as follows:
the ISR compares whether the received ID matches ID(MT ). If this is true then
the Test Mode will be invoked for ca. 280 bit-time. Then the operating mode is
switched back to normal operation.

In all of our 10 experiments NT goes bus-off at 1010+
−1 us (or 253 bit-time)

after occurrence of the first error. The course of the attack is similar to that
depicted in Fig. 7 but without the offset due to the exception of stuff errors
during arbitration: the first error is consistently a bit error in the DLC field.

4. Silencing a Target Node by Collisions. Arbitration in CAN is based on
the assumption that it won’t happen that two nodes send a data frame with the
same ID at the same time: they would both win arbitration, and an error would
occur in the DLC or Data Field unless they contain exactly the same payload.
More precisely, letting i be the first bit position where the two frames differ,
a bit error will be detected by the node that sends the frame with a recessive
bit at position i. Figure 8 gives an example. In a real CAN system messages are
allocated so that each ID is mapped to a unique node, from which messages
with this ID will be sent. However, collisions can be deliberately caused by an
attacker to force a target node into bus-off.

Fig. 8. The frames mT and mA will lead to a collision when they are transmitted at
the same time. The sender of mT will detect a bit error at the 4th bit of the DLC Field

Attack 4 (Silence Target by Collisions). Say the attacker wishes to silence
target node NT . He picks a message mT that NT sends in a regular interval. He
composes a message mA such that sending mA and mT at the same time will
raise a bit error at NT . Hence, the attacker chooses mA such that mA has the
same ID as mT and there is a first bit position i at which mA differs from mT in
that mA has a dominant bit while mT has a recessive bit. (This must necessarily
be in the DLC or Data Field.) He then floods mA from his node NA.



474 S. Fröschle and A. Stühring

Fig. 9. Typical course of Experiment 4. Key to error codes: 0x0B is a bit error in the
DLC Field; 0x57 is a form error in the Error Delimiter

Fig. 10. Special situation of a form error in the Error Delimiter of NT

The course of this attack is more complex, and goes over several stages. We
explain the course of the attack when the TECs of NA and NT are initially 0.

Stage 1: Initially, both NA and NT are in the error-active state. Then as soon
as NT tries to transmit mT there will be a collision (due to flooding of mA). NT

will detect a bit error at position i as intended, and signal an active error flag.
As a consequence all other bus nodes, including NA, will also detect an error
and signal error flags. Both NA and NT will increase their TECs by 8. After
the Intermission period of 3 recessive bits NA and NT will try to retransmit
mA, and mT respectively. This will again lead to a collision. This continues until
both NA and NT go into error-passive (when their TECs reach ≥128, i.e. after
16 transmission attempts).

Stage 2: Both NA and NT are error-passive. They will both try to retransmit
mA and mT at the same time, possibly after a Suspend Transmission period.
Again NT will detect a bit error. But this time NT will signal a passive error flag.
NA’s transmission will continue to dominate the bus, and neither NA nor any
other node will detect an error. NA will transmit mA successfully, and decrease
its TEC by 1. In contrast, NT will increase its TEC by 8.



Analyzing the Capabilities of the CAN Attacker 475

Stage 3: NA is now error-active again. NT remains error-passive, and tries to
complete its passive error flag while NA is still transmitting mA. The attacker
can now profit from a “blind spot” of the CAN protocol [22] when the bus load
is 100%. By how error signalling is defined NT can complete its passive error
flag only when it first detects 6 consecutive equal bits on the bus. This will only
happen with the 5th bit of the EOF Field of mA. As a consequence mA (or
a message of higher priority) will start to be transmitted while NT is still in
the field Error Delimiter of 8 recessive bits. This will cause a form error at NT .
(C.f. Fig. 10) Moreover, due to the flooding of mA this situation will occur again
and again whenever NT tries to complete the next error frame. Hence, NT will
quickly go bus-off: when its TEC reaches ≥256, i.e. after 15 such form errors.

We have conducted 10 experiments (with the TECs NA and NT initially 0)
that confirm that a target node can be forced bus-off in this way. In the 10
experiments the time from the first collision to bus-off of NT ranges from 8,8 ms
to 13,9 ms. The variation results from how many and which regular messages of
the other nodes are interspersed. However, modulo the pattern of interspersed
messages all experiments follow exactly the course explained above. Figure 9
shows the precise course of one of the experiments.

If the initial value of the TECs of NA and NT is not 0 the stages of the
attack can be slightly different. However, Attack 4 is robust: we have confirmed
by experiment that it works even in the worst initial situation when TEC (NA) �
TEC (NT ). The flooding of mA could easily be spotted by an IDS. However, the
attack can be optimized to proceed more covertly: assume or ensure (by resetting
TEC (NA) to 0) that TEC (NA) ≤ TEC (NT ); use the technique of preceded IDs
to precisely synchronize on the arrival of mT rather than flooding to cause the
first collision. Send one mA synchronized with mT . After mA has finally been
transmitted successfully send another mA followed by a stream of messages that
are as inconspicuous as possible but keep the bus busy until NT is bus-off. The
second mA is only necessary when TEC (NA) < TEC (NT ): when NA finally
manages to transmit the first mA, NT might receive it successfully while in
Suspend Transmission.

5. Suppressing a Target Message. In the previous two attacks the attacker
deliberately causes an error while a target message MT is being transmitted by
a node NT . Although this has the effect of suppressing this instance of MT , the
CAN features automatic retransmission and failure confinement together make
it impossible to suppress MT with a long-lasting effect while keeping NT alive:
either the automatic retransmission of MT will be successful or NT will accu-
mulate errors and go bus-off. However, the newest version of the CAN standard
[6] makes automatic retransmission optional: it may be disabled, or limited to a
certain number of attempts. This can be exploited in the following attack:

Attack 5 (Suppress a Target Message). Say the attacker wishes to suppress
a target message MT . Provided that the honest node that sends MT , say NT ,
has disabled automatic retransmission, he can achieve this as follows. In the
task on NA the attacker enables the ID Ready Interrupt, and programs the ISR



476 S. Fröschle and A. Stühring

that handles the interrupt as follows: the ISR compares whether the received ID
matches ID(MT ). If this is true the Test Mode will be invoked for ca. 6 bit times.
Then the operating mode is switched back to normal.

The attack proceeds exactly as Attack 3 apart from that now the Test Mode
is invoked for only a few bits: just enough to prevent the successful transmission
of MT . Without retransmission the bus behaviour will be immediately back to
normal. When the next MT arrives it will again be captured by the ID Ready
Interrupt and suppressed. NT will increase its TEC with every suppression,
and might go bus-off after a number of intervals. The exact number of intervals
depends on how precise the suppression is, and on the number of messages (other
than MT ) successfully sent by NT : every successful transmission will decrease
the TEC by 1. In every of our 10 experiments we manage to suppress 50 intervals
of MT . NT goes bus-off only after 1000+

−0, 6 ms from the first arrival MT . Other
variants of this attack not based on configuration features seem also possible;
e.g. use the technique of preceded IDs to precisely synchronize on MT and a
collision to suppress it.

6. Modification Attacks. So far, we have only seen denial-of-service attacks
against the target bus, a target node, as well as blocking and suppression of mes-
sages. However, the attacker is also capable of composite modification attacks:

Attack 6 (Impersonate Target Node). Say the attacker wishes to imper-
sonate a target node NT . He can achieve this in two phases: first, he silences
NT by one of the ‘Silence Target Node’ attacks. Second, he injects the pattern of
messages usually sent by NT but modified by forged values.

Naturally, Attack 6 can also be used when the attacker wishes to modify a
particular message. Another way to achieve message modification, which does
not require NT to be forced bus-off, is this:

Attack 7 (Modify Target Message by Suppress and Inject). Say the
attacker wishes to modify a target message MT . Provided that the node that
sends MT has disabled automatic retransmission, he can achieve this as follows:
he runs one of the ‘Suppress Target Message’ attacks against MT and after each
suppression he injects a new instance of MT with his own forged payload.

In [19] we have employed yet another way to modify messages. Messages with
data such as a particular sensor value are often not read on each arrival by higher
layers but rather periodically from a dedicated receive buffer; it is allowed that
a message can be overwritten by a new one with the latest sensor reading. But
then a message MT can be modified by deliberate buffer overwrite: the attacker
hooks a new instance of MT with his own payload onto the real instance of MT .
The disadvantage (for the attacker) is that this method will lead to messages
with conflicting values on the bus, which can be detected by an IDS.



Analyzing the Capabilities of the CAN Attacker 477

Summary and Attacker Model. We provide a summary in Fig. 11. For each
attack we record time (how fast can the attack goal be reached?) or duration
(how long can the effect be sustained?), which traces it leaves on the bus (in
view of IDS), and which conditions are necessary to implement it. Most of our
attacks only leave error traces on the bus, and it remains an open problem
whether an IDS can be constructed to detect them reliably. This will require
more research into which error patterns typically occur in real CAN systems. One
further challenge is that our attacks can be varied so that the error patterns they
produce will be less regular than the fastest or most straightforward versions we
have discussed here.

Cat. Attack t or d traces on bus conditions

B 1 Block any d flooding suitable M

D 2 Disrupt any d errors only config

SN 3 Dominant Bits t ≈ 260 bit-t errors only config & synch-M

SN 4∗ Collisions t ≈ 16 msg-t ≤ 16 errors synch-B

SM 5 Dominant Bits d ≈ 32 periods periodic errors config & synch-M & rt-off

SM 5’ Collisions d ≈ 32 periods periodic errors synch-B & rt-off

IN 6 3 & Inject d ≈ 260 bit-t errors only config & synch-M

IN 6∗ 4∗ & Inject t ≈ 16 msg-t ≤ 16 errors synch-B

MM 7 5 & Inject d ≈ 32 periods periodic errors config & synch-M & rt-off

MM 7’ 5’ & Inject d ≈ 32 periods periodic errors synch-B & rt-off

MB 8 [19] Buffer any d conflicting MT buffer overwrite

d . . . duration t . . . time to achieve bit-t . . . bit-time mesg-t . . . time of a message
config . . . access to configuration synch-B . . . synchronization on first bit of message
synch-M . . . synchronization on message rt-off . . . retransmission off

Fig. 11. Overview. 4∗ is the optimal variant of 4; 5′ is the collision variant of 5

The impersonation attacks can easily be detected by the target node itself:
while NT cannot transmit messages while in bus-off it can receive messages, and
hence, recognize when another node sends messages allocated to itself. How-
ever, NT has no way of signalling this to other nodes unless there is an addi-
tional uncompromised channel available. This is similar for the (MM) modifi-
cation attacks: although NT could try to send a warning over the target CAN
the attacker could suppress the respective message. Altogether, we derive the
abstract model for the CAN attacker shown in Fig. 12. Finally, note that (I),
(IN), (MM), and (MB) can be prevented by securing the messages (i.e. the pay-
load) cryptographically but this is not possible for the other attacks.



478 S. Fröschle and A. Stühring

1. Eavesdrop on all messages transmitted on the target CAN (E). IDS? No.
2. Insert any message into the target CAN at any time (I). (But transmission will be

subject to arbitration.) IDS? No, if injection follows the usual message pattern.
3. Block a set of target messages LP(M) for any duration, where M is a message not

sent by honest nodes (B). IDS? Yes, can detect flooding of M on bus.
4. Disable the target CAN for any duration (D). IDS? Open (only errors).
5. Silence a target node NT (SN). IDS? Open (only/mainly errors).
6. Suppress any target message MT up to ≈ 32 intervals if automatic retransmission

is disabled on NT (SM). IDS? Open (only errors).
7. Impersonate a target node NT (IN). IDS? Open (only/mainly errors); or by sig-

nalling from NT if an additional uncompromised channel is available.
8. Modify any target message MT up to ≈ 32 intervals if automatic retransmission is

disabled on NT (MM). IDS? open (only errors); or by signalling from NT if an
additional uncompromised channel is available.

9. Modify any target message MT if buffer overwrite is possible (MB). IDS? Yes,
can detect conflicting messages on bus.

Fig. 12. Capabilities of the CAN attacker

4 Cyber-Physical Implications

We now discuss the implications of our attacks for automotive vehicles. For this
we make use of the insights gained by automotive hacking for real vehicles: for
the Ford Escape 2010 and Toyota Prius 2010 [11], the Jeep Cherokee [20], and
the vehicle of [8]. It turns out that the Jeep and the Toyota both use a Renesas
V850ES/FJ3-uController, which has the GPIO reconfiguration option, for at
least some of their ECUs. We focus on cyber-physical attacks that manipulate
steering and braking.

Steering has been manipulated based on Advanced Driving Assistance Sys-
tems (ADAS) such as Park Assist. Park Assist mainly involves two ECUs: the
Park Assist Module (PAM) and the Electric Power Steering Module (EPSM),
which controls the servo motor attached to the steering wheel. When park assis-
tance is activated the PAM calculates the steering movement based on sensor
inputs and sends messages over the in-vehicle network that ask the EPSM to
realize the steering motion. These messages typically specify directly the required
steering wheel angle. Some safety measures might be in place that prevent the
EPSM from executing the request in any context.

For example, the EPSM of the Toyota only accepts requests to change the
steering angle when the vehicle is in reverse gear and at low speed. Data such as
current gear and speed are typically broadcast in regular intervals on the CAN
bus to make sensor readings accessible to ECUs such as PAM and EPSM. It
turns out that the EPSM of the Toyota obtains the data for the safety checks
via the same CAN bus as the steering commands. Miller and Valasek managed
to override these checks as follows: a forged message for current gear was hooked
in front of the steering message while forged speed values had to be continuously
injected. This led to some ECUs become unresponsive. (C.f. [11].)



Analyzing the Capabilities of the CAN Attacker 479

Example 6 (Steer Toyota covertly at any speed: avoid flooding). A more subtle
attack could make use of the ‘Impersonate Node’ attack: the attacker silences the
ECU responsible for broadcasting the current gear, and the ECU for broadcast-
ing the current speed respectively. He then injects forged gear and speed packets
that mimic the usual patterns of sending them. It is plausible that the impact of
silencing these ECUs is no worse than the ECUs becoming unresponsive in the
attack by Miller & Valasek (which was perhaps due to collisions). Moreover, if
these ECUs do not use automatic retransmission for the gear and speed packets
a ‘Modify Message’ attack is also possible, which might avoid any side effects.

The PAM of the Jeep Cherokee sends a CAN message with the following
information: status, i.e. park assist on or off, torque to be applied, and a counter
value. The message is not only sent when Park Assist is active but in a regular
interval. This allows the EPSM to recognize when messages are injected that are
conflicting with those sent by the real PAM, in which case Park Assist will go
offline. Valasek and Miller have subverted this safety measure as follows: they
first start a diagnosis session with the PAM, which will stop it from sending
messages. However, since a diagnosis session can only be opened at low speed
this restricts their attack to a speed of no higher than 5 mph. (C.f. [20].)

Example 7 (Steer Jeep at any speed: without diagnosis session). The attack
can be improved by employing one of the ‘Impersonate Node’ attacks. This will
silence the PAM without having to open a diagnosis session. Hence, the speed
constraint does not apply (unless there are further checks), and the attack will
remain covertly when IDS against diagnostic messages is used.

One of the most severe attacks against a vehicle is to disable its brakes while
driving. Most vehicles have a diagnostic command that induces the ABS ECU
to bleed or release the brakes with the effect that the driver cannot apply the
brakes at all. ‘Disabling brakes’ has first been realized in [8], and also against
the Ford [11] and the Jeep Cherokee [20] based on such commands. In the Ford
and the Jeep this only works at low speed, enforced by the diagnostic session
that needs to be opened first.

Example 8 (ABS: protected by direct line to sensor). It seems plausible at first
that ‘disabling brakes’ can be leveraged to full speed by forging speed packets
by means of an ‘Impersonate Node’ or ‘Modify Message’ attack as discussed in
Example 6. However, it seems unlikely that this is possible: the wheel speed
sensor is usually directly connected to the ABS ECU, and speed packets are
broadcast from there to other ECUs. Hence, one would expect that the ABS
ECU itself cannot be fooled by wrong speed packets forged over CAN.

Another potentially severe attack is to suddenly engage the brakes while
driving. This has also been implemented based on diagnostic messages [8,11].
Another way to realize this is to exploit cyber-physical messages that are part
of Collision Prevention Systems (CPS) [11,20]. Such systems can send messages
to the ABS ECU that induce it to brake. This has been demonstrated against



480 S. Fröschle and A. Stühring

both the Toyota and the Jeep. The Jeep has a safety measure analogous to that
for Park Assist: the CPS module sends a message regularly, and the ABS ECU
checks whether there are conflicting messages, in which case the ABS turns off
CPS entirely. Valasek and Miller override this safety feature as before, by putting
the CPS ECU into a diagnostic session, which restricts the attack to low speed.

Example 9 (Sudden brakes for Jeep at full speed). Analogously to Example 7
this attack could be improved by an ‘Impersonate Node’ Attack: to work with-
out speed constraint and only based on messages that are used during normal
operation.

Messages that are part of CPS have to work at any speed, and hence, a safety
measure based on speed checks is not an option here. The same is true for Lane
Keep Assist (LKA). Lane Keep Assist will detect when the vehicle is in danger
to veer from the lane, and intervene in the steering to correct this. This system
involves the LKA module, a camera that detects the lines of the lane, and the
EPSM. Similarly to Park Assist the LKA module transmits a steering request
to the EPSM. While the Toyota’s camera is directly connected to the driving
support ECU the Jeep’s Forward Facing Camera Module (FFCM) is a node on
the CAN bus. The following demonstrates that even if cyber-physical messages
are cryptographically protected one still has to guard against indirect attacks
based on sensor data transmitted over a bus.

Example 10 (Steer Jeep by Faking the Environment). Silence the FFCM by a
bus-off attack. Then play in a pattern of FFCM messages that mimic the values
sent when the vehicle ventures off the lane. The LKA system will “correct” the
steering correspondingly.

5 Conclusions

We have derived an abstract model for the CAN attacker, and demonstrated
its usefulness by a discussion of potential implications for real cars. In future
we will employ this model in our model-based safety and security analysis [18].
We do not consider this model to be static. In particular, it has to be extended
by cryptographic mechanisms that might be available and timing information.
Also, we expect there will be more Disrupt Attacks, e.g. based on a change of
bit rate or polarity. However, we hope that the categories are stable.

Our analysis has revealed new attacks: all our attacks are new apart from the
obvious ‘Flood to Block’. Bus-off by collisions has also been shown in [4]. How-
ever, our (independently designed) Attack 4 works much faster: it only needs one
interval compared to approx. 17 in [4]. The analysis has shown several directions
for further experimental exploration such as a more systematic understanding of
synchronization, and how real error traces look like in view of IDS. We will also
explore whether small changes to CAN such as removing the ‘blind spot’ would
make it easier to detect some types of attacks.



Analyzing the Capabilities of the CAN Attacker 481

Acknowledgement. This work is supported by the Niedersächsisches Vorab of the
Volkswagen Foundation and the Ministry of Science and Culture of Lower Saxony
as part of the Interdisciplinary Research Center on Critical Systems Engineering for
Socio-Technical Systems.

References

1. Apvrille, L., El Khayari, R., Henniger, O., Roudier, Y., Schweppe, H., Seudié, H.,
Weyl, B., Wolf. M.: Secure automotive on-board electronics network architecture.
In: FISITA 2010 World Automotive Congress, vol. 8 (2010)

2. Bosch. CAN Standard. Bosch (1991)
3. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,

Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: 20th USENIX Security, SEC 2011, p. 6
(2011)

4. Cho, K.-T., Shin, K.G.: Error handling of in-vehicle networks makes them vulner-
able. In: 2016 ACM SIGSAC Computer and Communications Security, CCS 2016,
pp. 1044–1055. ACM (2016)

5. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks
– practical examples and selected short-term countermeasures. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87698-4 21

6. ISO. Road vehicles controller area network (can) – Part 1: Data link layer and
physical signalling. ISO 11898-1:2015 (2015)

7. Kleberger, P., Olovsson, T., Jonsson, E.: Security aspects of the in-vehicle network
in the connected car. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 528–
533 (2011)

8. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security
analysis of a modern automobile. In: IEEE Security and Privacy (2010)

9. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack
detection for in-vehicle networks. In: 2008 IEEE Intelligent Vehicles Symposium,
pp. 220–225. IEEE (2008)

10. Lima, A., Rocha, F., Völp, M., Esteves-Veŕıssimo, P.: Towards safe and secure
autonomous and cooperative vehicle ecosystems. In: Cyber-Physical Systems Secu-
rity and Privacy, CPS-SPC 2016, pp. 59–70. ACM (2016)

11. Miller, C., Valasek, C.: Adventures in automotive networks and control
units (2013) http://www.ioactive.com/pdfs/IOActive Adventures in Automotive
Networks and Control Units.pdf

12. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In:
Intelligent Vehicles Symposium, pp. 1110–1115. IEEE (2011)

13. Müter, M., Groll, A., Freiling, F.C.: A structured approach to anomaly detection
for in-vehicle networks. In: Information Assurance and Security (IAS) 2010, pp.
92–98. IEEE (2010)

14. Pöpper, C., Tippenhauer, N.O., Danev, B., Capkun, S.: Investigation of signal
and message manipulations on the wireless channel. In: Atluri, V., Diaz, C. (eds.)
ESORICS 2011. LNCS, vol. 6879, pp. 40–59. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23822-2 3

http://dx.doi.org/10.1007/978-3-540-87698-4_21
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://dx.doi.org/10.1007/978-3-642-23822-2_3
http://dx.doi.org/10.1007/978-3-642-23822-2_3


482 S. Fröschle and A. Stühring

15. Radu, A.-I., Garcia, F.D.: A lightweight authentication protocol. In: Askoxylakis,
I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part II. LNCS,
vol. 9879, pp. 283–300. Springer, Cham (2016). doi:10.1007/978-3-319-45741-3 15

16. Sojka, M., Krec, M., Hanzálek, Z.: Case study on combined validation of safety &
security requirements. In: SIES 2014, pp. 244–251. IEEE (2014)

17. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the analy-
sis of time intervals of CAN messages for in-vehicle network. In: Information Net-
working (ICOIN) 2016, pp. 63–68. IEEE (2016)

18. Strathmann, T., Fröschle, S.: Towards a model-based safety and security analysis.
In: Model-Based Development of Embedded Systems (MBEES) (2017)

19. Stühring, A., Ehmen, G., Fröschle, S.: Analyzing the impact of manipulated sensor
data on a driver assistance system using OP2TiMuS. In: Design, Automation and
Test in Europe (DATE 2016) (2016)

20. Valasek, C., Miller, C.: Remote exploitation of an unaltered passenger vehicle,
August 2015. http://illmatics.com/Remote%20Car%20Hacking.pdf

21. Wolf, M., Gendrullis, T.: Design, implementation, and evaluation of a vehicular
hardware security module. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp.
302–318. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31912-9 20

22. Yang, F.: A bus off case of can error passive transmitter. EDN Technical paper
(2009)

http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://dx.doi.org/10.1007/978-3-642-31912-9_20

	Analyzing the Capabilities of the CAN Attacker
	1 Introduction
	2 Background and Problem Statement
	2.1 Related Work
	2.2 CAN - Controller Area Network
	2.3 Threat Model and Problem Statement

	3 Attacker Capabilities
	4 Cyber-Physical Implications
	5 Conclusions
	References




