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Abstract. Given a description of the quantitative information flow (qif)
for components, how can we determine the qif of a system composed from
components? We explore this fundamental question mathematically and
provide an answer based on a new composition operator. We investigate
its properties and prove that it generalises existing composition oper-
ators. We illustrate the results with a fresh look on Chaum’s dining
cryptographers. We show that the new operator enjoys various conve-
nient algebraic properties and that it is well-behaved under composition
refinement.

1 Introduction

In the area of quantitative information flow (qif) analysis, we concern ourselves
with measuring or deriving the amount of information leaking from systems. A
popular model of systems in qif is that of channel matrices which contain precise
descriptions of the probabilities of observing certain public outputs given certain
secret inputs.

We refer to the survey by Smith [27] for further motivation of this general direc-
tion in qif research. Compared to the literature, we use a slightly different defini-
tion of channels to prepare for the various composition operators later. Our change
is similar to a move from opaque states as they are common in automata theory
on the one hand to program states as mappings from variable names to values as
they are common in treatments of program semantics on the other hand.

In Sect. 2 we define our model including the new operator �� and argue that it
is a reasonable choice for a composition operator. We do so by showing firstly that
�� offers a new and arguably elegant decomposition of the well-known dining cryp-
tographers example. This decomposition uses simple laws from a channel algebra
for equality between channels. In Sect. 3 a more interesting algebra emerges when
replacing equality by composition refinement, a leakage-reducing notion of refine-
ment on channels. We prove that �� again enjoys interesting properties. We show
in Sect. 4 that �� subsumes various existing composition operators and that its
algebraic laws specialise to laws for the existing operators.

2 Mix Composition

Notation. We write B = {0, 1} for the Booleans. By [0, 1] we denote the closed
real interval between 0 and 1. For a, b ∈ N we define a..b = { x ∈ N | a ≤ x ≤ b }.
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We write f ↓S for the domain restriction λs : S.f(s) of function f by set S.
Our channels map named inputs to named outputs. These names correspond
to wires in circuits and variables in programs. Each name is associated with a
domain of possible values. To compose channels we require the names of their
wires/variables so we know which of their inputs and outputs hook up. Formally,
if Sk is a set for each k ∈ K, we write

⊗
k∈K Sk for the set of functions f : K −→⋃

k∈K Sk satisfying f(k) ∈ Sk for all k ∈ K. All our logarithms are base 2.
Binary operators that are commutative and associative such as our forthcoming
composition operator are implicitly lifted to indexed families of arguments, just
as + is lifted to

∑
, only that we don’t use a separate symbol.

Channels. Not surprisingly, functions in
⊗

k∈K Sk resemble states in program
semantics. Programs or system components transform states to states according
to their function. In qif research, programs and systems are commonly called
channels and they map (secret) input states to distributions of (observable)
output states.

We assume that secret inputs have some prior distribution which is known
to observers. A channel can then be understood as mapping each prior to a
posterior distribution on the outputs, which in turn can be understood as a
distribution of distributions of inputs. We also assume that the channel itself is
known to observers. We define channels formally.

Definition 1 (Channel). Let V be a set we call variables. Let X = (Xw)w∈V
be a family of nonvoid finite sets, the domains of variables. Given a set V of
variables, we denote their joint domain

⊗
v∈V Xv by d(V ).

A (V,X )-channel (I,O, c) (from inputs named I to outputs named O) con-
sists of a finite set I ⊆ V of input variables, a finite set O ⊆ V of output
variables, and a channel matrix c ∈ [0, 1]d(I)×d(O) such that each row adds up to
one, that is: ∀x ∈ d(I)

(∑
y∈d(O) cx,y = 1

)
.

Denote the set of (V,X )-channels from inputs named I to outputs named O
by CV,X (I,O). A channel is called deterministic when its matrix contains only
zeros and ones.

Note that I and O need not be disjoint. We often identify channels with their
channel matrices, assuming that the input and output names are understood.
Next we define a small set of basic channels that will be useful in later exam-
ples and algebraic laws. Write OI,O for the unit channel in CV,X (I,O) that maps
inputs named I to outputs named O in a uniform manner, i.e., (OI,O)x,y = 1

|d(O)|
for all x ∈ d(I) and y ∈ d(O). A special case are the unit channels where O = ∅.
They have no designated output variables. Hence their channel matrices are
column vectors full of ones. These are the only unit channels that are determin-
istic. Let IV denote the identity channel in CV,X (V, V ) with the matrix given
by (IV )x,y = δx,y where δ is the Kronecker delta. Identity channels are deter-
ministic. Renaming channels are a generalisation of identity channels. Firstly, as
the name suggests, renaming channels can rename the variables. Secondly, they
allow a widening of the output variables’ domains. More formally, if I,O ⊆ V
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and f : d(I) −→ d(O) is injective, we define the renaming channel (from I to
O using f) Rf

I,O ∈ CV,X (I,O) by (Rf
I,O)x,y = δf(x),y. We omit the injection if

it is the identity function. We write Rf
i,o for Rf

{i},{o}. We write injections f as
expressions in the variables.

Example 2. Let V = {i, o} and Xi = Xo = B. A 1-bit copying channel from i
to o would be written as Ri,o. Its channel matrix is the identity matrix ( 1 0

0 1 ).
Next consider a channel A ∈ CV,X ({i}, {o}) given by the matrix

( 1/3 2/3
0 1

)
. For

instance, the probability of observing output o = 1 of channel A when the secret
input is i = 0 is A0,1 = 2/3.

Consider the distribution π = (1/4, 3/4) on the Booleans. Multiplying prior
π as a row vector with A’s channel matrix yields the posterior distribution
πA = (1/12, 11/12) which means that with π as prior we expect to observe the
output o = 1 with probability 11/12. Multiplying each cell of A’s matrix with
the prior probability of its row according to π yields the joint matrix

(
1/12 2/12
0 3/4

)
,

i.e., a distribution on input/output pairs. Normalising the columns results in(
1 2/11
0 9/11

)
. Its column labelled y = {o 	→ b} for b ∈ B can now be read as a

distribution on the secret input, given the output is y. For instance, if y(o) = 1,
the input must have been {i 	→ 0} with probability 2/11.

Next we define our new composition operator.

Definition 3 (Mix-composition). Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P ).
We call them ��-compatible if, for all x ∈ d(I ∪ J) there exists a y ∈ d(O ∪ P )
such that both Ax↓I ,y↓O

and Bx↓J ,y↓P
are positive. If A and B are ��-compatible

we define their mix-composition as the channel A �� B ∈ CV,X (I ∪ J,O ∪ P ) by

(A �� B)x,y =
Ax↓I ,y↓O

Bx↓J ,y↓P∑
z∈d(O∪P ) Ax↓I ,z↓O

Bx↓J ,z↓P

,

for all x ∈ d(I ∪ J) and y ∈ d(O ∪ P ).

Note that our mix composition unifies

– inputs of the same name to model components sharing input variables and
– outputs with the same name to model that two components collude on such

outputs. The components implicitly rule out contradicting observations with
��-compatibility ensuring that there is at least one consistent observation per
secret input.

In the remainder we typically assume ��-compatibility for our results.

Example 4. Let Xi = Xo = B. Consider the two 1-bit channels A = Ri,o and

B = R(o=¬i)
i,o ∈ CV,X ({i}, {o}). (The expression (o = ¬i) is shorthand for the

injection λb : d({i}).{o 	→ ¬b(i)}.) Their channel matrices are ( 1 0
0 1 ) and ( 0 1

1 0 ),

respectively. But their attempted �� composition matrix
(

A0,0B0,0 A0,1B0,1

A1,0B1,0 A1,1B1,1

)
=

( 0 0
0 0 ) indicates that they are not ��-compatible. Intuitively A and B attempt to

collude on outputs but fail to agree.
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We collect some sanity checks in1 our

Proposition 5. When channels are ��-compatible

1. mix composition is well-defined, commutative, and associative;
2. mix composition of deterministic channels is again deterministic;
3. mix composition is idempotent when restricted to deterministic channels.

Example 6. To see that mix composition is not necessarily idempotent on arbi-
trary channels, recall channel A from Example 2. We compute the channel matrix
of A �� A as

( 1/5 4/5
0 1

)
the top row of which is clearly different from A’s. The same

example demonstrates that in general row normalisation is required. Without it,
the “channel” matrix of A �� A had been

( 1/9 4/9
0 1

)
with row sum 5/9 for the top

row.

An exact version of Proposition 5.3 is

Proposition 7. Let A ∈ CV,X (I,O). Mix composition is idempotent on A iff
each row of A has a unique non-zero value:

A �� A = A ⇔ ∀x ∈ d(I) (∃v ∈ (0, 1] (∀y ∈ d(O) (Ax,y ∈ {0, v}))) .

Iterated self-composition of channels has limits that are non-trivial when the
condition for idempotence is not met. Roughly speaking, self-composition is a
form of amplification resembling established results in complexity theory such
as the amplification lemma for BPP. In the limit, only the maximal values in
each row survive—everything else becomes zero.

Proposition 8. Let A ∈ CV,X (I,O). Define A(k) = ��k
i=1 A for all k ∈ N. The

limit limk→∞ A(k) exists and is given by the channel matrix with cells

A(∞)
x,y =

{
1

|{ y′∈d(O) | Ax,y′=maxy′′∈d(O) Ax,y′′ }| if Ax,y = maxy′∈d(O) Ax,y′

0 otherwise.

In many practical cases, row normalisation is not required when computing mix
compositions.

Proposition 9. If A and B are deterministic and ��-compatible, or if their
output names are disjoint, then row normalisation is not required, that is, (A ��
B)x,y = Ax↓I ,y↓O

· Bx↓J ,y↓P
, for all x ∈ d(I ∪ J) and y ∈ d(O ∪ P ).

A simple distributivity result holds whenever a particular channel in the com-
position is deterministic.

Proposition 10. Let A ∈ CV,X (I,O) be deterministic. Let B ∈ CV,X (J, P ) and
C ∈ CV,X (K,Q). Then A �� (B �� C) = (A �� B) �� (A �� C).

1 Proofs are given in the Appendix.
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Example 11. To see that determinism of A is required in general for the distribu-
tivity result to hold, recall once again channel A from Example 2. In Example 6
we showed that A = A �� A. Next we note that A �� O{i},∅ = A and that
O{i},∅ �� O{i},∅ = O{i},∅. Clearly, A �� (O{i},∅ �� O{i},∅) = A = A �� A = (A ��
O{i},∅) �� (A �� O{i},∅).

Proposition 12. II �� IJ = II∪J

The other fundamental channel composition operator is sequential, or cascading,
composition.

Definition 13. For A ∈ CV,X (I,M) with channel matrix c and B ∈ CV,X (M,O)
with channel matrix d we define their sequential composition A;B ∈ CV,X (I,O)
by the channel matrix cd.

2.1 Example: Dining Cryptographers

Chaum [7] introduced the dining cryptographers problem and offered a protocol
as solution which has been studied to the extent that adding to the existing
body of analyses induces a considerable amount of guilt. Here we investigate a
slight variation of the problem insofar as we study the effect of collusion among
the n cryptographers.

Let us write ⊗ for exclusive-or, ⊕ and � for addition, resp., subtraction
modulo n.

A gaggle of n cryptographers named 0..n − 1 sit around a dinner table in
clockwise order. When it’s time to pay, the waiter informs them that the bill
has already been paid. Either exactly one of the cryptographers paid for the
dinner or the NSA did. The problem is to figure out whether the NSA paid or
not, without compromising the anonymity of the paying cryptographer if the
NSA didn’t.

Chaum’s protocol solves the problem as follows. Each cryptographer m
secretly flips a coin. The outcome cm is then shared only with the cryptog-
rapher m ⊕ 1 immediately to their left. Each cryptographer m then announces
the exclusive-or of three Boolean values: the two known coin values, cm and
cm	1, and whether m paid. The exclusive-or of all announcements is true if one
of the cryptographers paid and false if the NSA paid.

We begin by describing some of the variables and their domains. The coins
named c0, . . . , cn−1 ∈ V have Boolean domains, that is, Xcm = B for m ∈
0..n − 1. Who paid, named p ∈ V, ranges over Xp = 0..n, where the value n
denotes that the NSA paid. The announcements, named a0, . . . , an−1 ∈ V also
have Boolean domains. We model each cryptographer m as a channel C(m) ∈
CV,X ({p, cm	1, cm}, {am}) with the channel matrix given by

C(m)
x,y = δx(cm�1)⊗x(cm)⊗(x(p)=m),y(am) .

This matrix has 22(n + 1) rows and two columns. We note that C(m) is deter-
ministic. The view of an outside observer is

DCn =
n−1
��

m=0
C(m) ∈ CV,X ({p, c0, . . . , cn−1}, {a0, . . . , an−1}) .
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(See Fig. 1.) Its channel matrix has 2n(n+1) rows and 2n columns and, as a mix
composition of deterministic channels, is deterministic.

C(0)

a0

�� C(1)

a0

�� . . . �� C(n−1)

an−1

p
c0
c1...

...
cn−2

cn−1

Fig. 1. Dining cryptographers as mix composition.

Cryptographer i observes not only DCn but also the two coins ci and ci	1.
In other words, cryptographer i’s view of the situation is Ci = DCn �� I{ci,ci�1}.
(Technically, i also observes whether p = i but that’s already captured by the
exclusive-or of its own three outputs, ai, ci, and ci	1. An output that is a function
of other outputs can be safely omitted.)

(a) (b)

i

k

Fig. 2. Two colluding cryptographers i and k can eliminate one contiguous section, (a)
or (b), as potential payers.

When considering two colluding cryptographers who pool their knowledge,
we expect them to be able to divide the remaining cryptographers into two
groups: (a) those to the right of i and to the left of k and (b) those to the left
of i and to the right of k. (See Fig. 2.) The interesting result is that, in case
one of the remaining cryptographers paid, the colluding cryptographers acquire
(distributed) knowledge to which of the groups, (a) or (b), the payer belongs,
thereby eliminating all members of the other group from the possible payers.
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If one of the two groups is empty then it cannot contain the payer, meaning that
i and k learn less.

As a channel, i and k together have the view Ci �� Ck. Note that if i and k
are adjacent (and n > 2) then they observe three coins—otherwise they observe
four coins. Intuitively, this already implies that the information leaked in the
former situation is less than that leaked in the latter. Using Proposition 5 we
simplify as follows.

Ci �� Ck = DCn �� I{ci,ci�1} �� DCn �� I{ck,ck�1}
= DCn �� I{ci,ci�1} �� I{ck,ck�1}

which, with Proposition 12, simplifies to

= DCn �� I{ci,ci�1,ck,ck�1} .

3 Channel Refinement with Mix Composition

We briefly recall the relevant definitions of leakage-related notions. Details and
pointers to their origin can again be found e.g. in [27]. The (multiplicative)
min-capacity of a channel A ∈ CV,X (I,O), denoted ML(A), is the maximum
min-entropy leakage of A over all priors π: supπ log(V [π,A]

V [π] ). As proved by Braun
et al. [6], the min-capacity of A can be computed as the logarithm of the sum of
the column maximums of A, and it is always realised on a uniform prior π, so
we have ML(A) = log

∑
y∈d(O) maxx∈d(I) Ax,y.

Example 14 (Dining Cryptographers cont’d). Returning to the example in
Sect. 2.1, we compute the min-capacities of various channels in case the number
of cryptographers is n = 4.

Each individual cryptographer’s channel has the same ML(C(m)) � 1.0
because the channel is deterministic and has two columns. As a determinis-
tic channel with 24 non-zero columns, the channel DC4 has the min-capacity
4.0. Once we add, say, cryptographer 1’s observation we obtain ML(DC4 ��
I{c0,c1}) � 5.58. Adding a second adjacent cryptographer’s observation (as
on the left of Fig. 3), say cryptographer 2’s, the min-capacity goes up to
ML(DC4 �� I{c0,c1,c2}) = 6.0 whereas with a second cryptographer sitting oppo-
site (as on the right of Fig. 3) ML(DC4 �� I{c0,c1,c2,c3}) goes up to approx. 6.32.

A more general notion of the leakage of channels is that of g-leakage [2]. We
recall the relevant definitions here, adapted to our channels.

Definition 15. Given a non-void set W of guesses and a finite set of inputs I,
a gain function is a function g : W ×d(I) −→ [0, 1]. The value g(w, x) represents
the gain of the attacker when the secret value is x and he makes a guess w on
x. Given a gain function g and a prior π on d(I), the prior g-vulnerability
is Vg(π) = maxw∈W

∑
x∈d(I) π(x)g(w, x). Given A ∈ CV,X (I,O), the poste-

rior g-vulnerability is Vg(π,A) =
∑

y∈d(O) maxw∈W
∑

x∈d(I) π(x)Ax,yg(w, x).
The prior and posterior g-entropy is Hg(π) = − log Vg(π), resp., Hg(π,A) =
− log Vg(π,A). The g-leakage is their difference Lg(π,A) = Hg(π) − Hg(π,A).
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Fig. 3. Different seating arrangements of otherwise equal cryptographers result in dif-
ferent leakage from the collusion.

Example 16 (Dining Cryptographers cont’d). Continuing on from Example 14,
we compute the g-leakage of various channels. An adversary curious about who
paid observes just cryptographer m. We assume a uniform prior, guesses W =
0..n, and a gain function given by g(w, x) = δw,x(p): the adversary gains 1 iff
she guesses the payer exactly. That observing just one cryptographer is futile is
indicated by Lg(π,C(m)) = 0. This remains unchanged if the model is modified
such that the adversary only guesses whether the NSA paid or not, using W = B

and gB(w, x) = δw,x(p)=n. With that goal the adversary is better off observing
all n cryptographers. Assuming again a uniform prior we obtain VgB

(π) = n/n+1

and VgB
(π,DCn) = 1 which results in LgB

(π,DCn) = log(n+1/n). Returning to
the task of guessing who paid, but removing the gain in case it was the NSA, we
consider W = 0..n−1 and calculate again that this is futile: Lg(π,DCn) = 0. This
remains unchanged when we also remove the gain for cryptographer m and study
what leaks to m about who paid (other than him and the NSA): with W = 0..n−
1 \ {m} we have Lg(π,Cm) = 0. Even if two adjacently seated cryptographers
collude (as on the left of Fig. 3), we still have Lg(π,Cm �� Cm⊕1) = 0 if n > 3
and both are removed from the guesses. If, however, they are separated on both
sides by at least one cryptographer (as on the right of Fig. 3) then we find that
Lg(π,Cm �� Cm⊕2) > 0.

This completes the illustration of the fact that there’s no obvious way to calculate
relevant vulnerability measures of ��-composed systems from the vulnerabilities
of their components. We follow McIver et al. [21] in defining a robust leakage
order on channels with the same inputs. The order is based on another familiar
composition operator, sequential composition.

Definition 17. Let A ∈ CV,X (I,O) and B ∈ CV,X (I,M). We say that A refines
B (written B � A) if there exists a (post-processing) channel C ∈ CV,X (M,O)
such that A = B;C. We write A ≡ B whenever A and B refine each other.

As shown by MvIver et al. [21]2, A � B iff the g-leakage of A is never smaller
than that of B, for any prior π and gain function g.

We list some immediate consequences of these definitions.

2 and then discovered by Geoffrey Smith to be already contained in [5].
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Proposition 18. Unit channels are the top elements in the refinement order
and the neutral elements of mix composition. Identity channels are the bottom
elements in the refinement order and weak zeros of mix composition. More for-
mally, let A ∈ CV,X (I,O). Let Q ⊆ V be finite. Let J ⊆ I.

II � A (1)
A � OI,Q (2)
II ≡ II �� A (3)

OJ,Q �� A ≡ A (4)

More interestingly, we have that �� is monotone w.r.t. composition refinement if
no outputs are fused.

Theorem 19. If A � A′ and B � B′ and neither A and B nor A′ and B′ share
output names, then A �� B � A′ �� B′.

Example 20. To see that �� is in general not �-monotone when output names
are shared, recall channel A from Example 2. Let B ∈ CV,X ({i}, {p}) = A; Ro,p.
Clearly A ≡ B. Let us compare A �� A to A �� B =

( 1/9 2/9 2/9 4/9
0 0 0 1

)
. Both ��

compositions are defined, that is, A is compatible with itself and B. Solving
(A �� A);X = A �� B for X yields the unique solution X =

( 1/3 2/3 2/3 −2/3
0 0 0 1

)
,

which is not a channel matrix because −2/3 /∈ [0, 1]. Hence A �� A � A �� B.

The equation (A �� B);X = A �� A is solved by X =

(
9/25 16/25
9/25 16/25
9/25 16/25
0 1

)

, which is

a channel matrix, hence A �� B � A �� A.

Combining Theorem 19 with Proposition 18. (2) yields

Corollary 21. Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P ). Then

A �� B � A �� OJ\I,∅ ,

provided O ∩ P = ∅.
Refining a channel to a mix composition means that the former refines to each
of the components of the latter when a little care is taken with extra inputs.

Theorem 22. Let A ∈ CV,X (I,O), B ∈ CV,X (J, P ), and C ∈ CV,X (K,Q) such
that I = J ∪ K. Then

A � B �� C ⇒ A � B �� OI\J,∅ ∧ A � C �� OI\K,∅ ,

provided P ∩Q = ∅. The converse implication holds if, moreover, A is determin-
istic.
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4 Operator Comparison

In this section we compare mix composition to a number of composition opera-
tors studied in the literature. Mix composition generalises the parallel composi-
tion operators, ‖ and × defined, e.g., by Kawamoto et al. [16]. We rephrase their
definition, adapted to our channels.

Definition 23. Given A ∈ CV,X (I,O), B ∈ CV,X (I, P ), and C ∈ CV,X (J, P )
with I ∩ J = O ∩ P = ∅ define the

– parallel composition with shared inputs A‖B ∈ CV,X (I,O ∪ P ) of A and B
by (A‖B)x,y = Ax,y↓O

Bx,y↓P
, and

– the parallel composition (with distinct inputs) A × C ∈ CV,X (I ∪ J,O ∪ P ) of
A and C by (A × C)x,z = Ax↓I ,z↓O

Cx↓J ,z↓P
.

From this definition it is obvious that we have

Corollary 24. – Parallel composition with shared inputs ‖ is �� restricted to
channels with the same input names and disjoint output names.

– Parallel composition (with distinct inputs) × is �� restricted to channels with
disjoint input names and disjoint output names.

Oftentimes, the operators ‖ and × are sufficient and more convenient to use than
��. Technically, they always are sufficient unless outputs are fused, as we show
next.

Proposition 25. If A and B have disjoint output names then

A �� B = (A × OJ\I,∅)‖(B × OI\J,∅) .

The results proved for �� above specialise to the following.

Corollary 26. Let A ∈ CV,X (I,O), B ∈ CV,X (I, P ), C ∈ CV,X (I,Q), D ∈
CV,X (J,R), E ∈ CV,X (K,S) such that I, J , K, O, P , Q, and S are pair-wise
disjoint.

A ≡ A‖OI,∅ A ≡ A × O∅,∅
A‖B ≡ B‖A A × D ≡ D × A

(A‖B)‖C ≡ A‖(B‖C) (A × D) × E ≡ A × (D × E)
A‖B � A A × D � A × OJ,∅

A � A′ ∧ B � B′ ⇒ A‖B � A′‖B′

A � A′ ∧ D � D′ ⇒ A × D � A′ × D′

A � A1‖A2 ⇒ A � A1 ∧ A � A2

A � D1 × D2 ⇒ A � D1 × OI\X,∅ ∧ A � D2 × OI\Y,∅

If A is also deterministic we have:

A � A1 ∧ A � A2 ⇒ A � A1‖A2

A � D1 × OI\X,∅ ∧ A � D2 × OI\Y,∅ ⇒ A � D1 × D2
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While mix composition subsumes the two parallel composition operators, ‖ and
×, there are compositions that cannot be expressed with �� alone. The obvious
example is sequential composition. But those two together are rather powerful.

A first example is the non-standard sequential composition operator defined
by Barthe and Köpf [3] called adaptive composition by Espinoza and Smith [10].
It differs from the usual sequential composition in that the second component
receives not only the output but also the input of the first as input.

Definition 27. Let A ∈ CV,X (I,M) and B ∈ CV,X (I ∪ M,O). Provided I ∩
M = ∅, define the adaptive composition A � B ∈ CV,X (I,O) by (A � B)i,o =∑

m∈d(M) Ai,mBi∪m,o, for all i ∈ d(I) and o ∈ d(O).

Another operator mentioned in [10] models repeated independent runs of a chan-
nel. To prevent the copies of the channel from colluding we need to disambiguate
their output names with distinct tags, e.g., numbers.

Definition 28. Let A ∈ CV,X (I,O) and n ∈ N such that (i, o) ∈ V and X(i,o) =
Xo, for all i ∈ 1..n and o ∈ O.

Define the n repeated independent runs of A channel A(n) ∈ CV,X (I, 1..n×O)
by (A(n))x,y =

∏n
i=1 Ax,λo:O.y(i,o), for all x ∈ d(I) and y ∈ d(1..n × O).

Adaptive composition can be expressed using “;”, “‖” and identity channels.
To express n repeated independent runs we require n renaming channels to
disambiguate the copies of the output names.

Proposition 29. A � B = (II‖A);B and A(n) = ‖n
i=1(A;RO,{i}×O).

5 Related Work

In their seminal paper Goguen and Meseguer lamented that

Most of the models given in the literature [. . .] are not mathematically
rigorous enough to support meaningful determinations of the kind needed;
some do not support a sufficiently general view of security (for example,
they may fail to handle breaches of security by cooperating multiple users).
[12, p. 12]

We argue that �� is better at modelling colluding adversaries by allowing
selectively shared inputs and outputs—a feature absent in the usual definitions
of ‖ and ×.

Gray and Syverson [13] extended with temporal operators the epistemic logic
with probabilities of Halpern and Tuttle [15] to lay the foundation for a rigorous
analysis of probabilistic channels. Their work is however concerned only with
perfect security, that is, no leakage whatsoever.

In possibilistic settings, some recent works have presented preliminary find-
ings for notions of refinement that preserve information-flow security properties
[20,26]. For probabilistic systems McIver et al. [25] present rely-guarantee rules.
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Kawamoto et al. [16] explain how to decompose channels using ‖ and × to
then compute upper and lower bounds on measures of leakage such as g-leakage
and min-entropy from the corresponding measures of the component channels.
At the time of writing, the most recent version of this paper [17] mentions a
connection to refinement including our Theorem 19 albeit without proof and
based on a different (faulty) definition of �.

The abstract channels as introduced by McIver et al. [24] are too abstract
for our purposes. After abstracting from the names of outputs, we can no longer
model fused outputs as we did, e.g., when describing two colluding neighbours in
the dining cryptographers example. The programs considered in [22,23] lack any
form of parallel composition although ‖ is defined and discussed in the appendix
of the latter.

All these concurrent composition operators resemble the distributed knowl-
edge of two agents observing different channels as described e.g. in [11] but in a
probabilistic setting. The literature on knowledge in probabilistic worlds however
appears to have gone in different research directions. Halpern and O’Neill [14]
characterised notions of perfect secrecy for various classes of systems including
ones with probabilistic choice. Clarkson et al. [8,9] incorporate how an attacker’s
beliefs can change over time while observing intermediate outputs.

6 Future Work and Conclusion

Future directions for this line of work include:

– investigating further the role of collusion, that is, common output names.
So far these clashes are typically either a nuisance or a triviality. Do they
make for a more powerful or more elegant algebra similar to how predicate
transformers that ignore Dijkstra’s healthiness conditions make for a cleaner
refinement algebra of sequential programs?

– exploring the concept of channel algebra further. Our channel model and
�� composition may be steps in the right direction but are these the only
necessary ingredients?

– finding bounds on various leakage measures for �� compositions similar to the
results in [16] for ‖ and ×.

– lifting channel algebra to the level of a programming language, resulting in
leakage-sensitive refinement laws for programs.

– mechanising channel algebra in a theorem prover to facilitate evaluation on
less trivial examples. We wrote a simple implementation of channels and
operations on them, and used it for all our examples, but this library is not
yet hooked up with a theorem prover for algebraic reasoning. The companion
project for possibilistic compositional refinement is much more progressed in
that respect [26]. Some of the infrastructure of that project could be recycled
for the qif version.

– investigating how stages of verified compilers such as CompCert [19] and
CakeML [18] affect leakage and how to enforce leakage bound preservation
by compilation with the help of code transformations [1,4].
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We feel that we have so far only scratched the surface of the possibilities opened
up by the slight change of channel model and the addition of the �� operator.
The latter appears to be a better parallel composition operator, generalising all
existing ones and allowing for selective sharing, compared to the all-or-nothing
of ‖ and ×. This paper attempts to make a case for adopting the channel model
and the �� operator, thereby expressing little more than the author’s prefer-
ences. To the best of our knowledge, some of the results are new, including
Theorem 22, or correctly stated and proved for the first time in this generality,
such as Theorem 19. Besides the dining cryptographers, we have analysed a few
more examples such as the combined leakage of two C bit masking assignments,
all of which benefit from the new model and ��.

Acknowledgement. For helpful discussions and comments on preliminary versions
of this paper I would like to thank Carroll Morgan and Ron van der Meyden. I thank
the anonymous referees for their detailed and most useful comments.

A Proofs

Proof (of Proposition 5). Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P ) be ��-
compatible.

1. For well-definedness of A �� B it suffices to see that the denominator Dx =∑
z∈d(O∪P ) Ax↓I ,z↓O

Bx↓J ,z↓P
is non-zero, for all x ∈ d(I ∪ J). It is then clear

that it normalises each row vector to sum one. Let x ∈ d(I ∪ J). For the
denominator to be zero it is required that Ax↓I ,z↓O

Bx↓J ,z↓P
= 0, for all z ∈

d(O ∪ P ). But that contradicts our assumption of ��-compatibility.
Commutativity and associativity of �� follow from the same properties of
multiplication.

2. If A and B are both deterministic then there’s exactly one 1 in each of their
rows, which, together with ��-compatibility implies that there is exactly one
z ∈ d(O ∪ P ) for which Ax↓I ,z↓O

= Bx↓J ,z↓P
= 1. Whence A �� B is also

deterministic.
3. Each channel is ��-compatible with itself. If A is also deterministic, then we

have Ax,y = A2
x,y = (A �� A)x,y. ��

Proof (of Proposition 7). If there are two different non-zero cells in a row of A,
then the smaller one will decrease in A �� A by the normalisation involved. On
the other hand, if there’s just one such non-zero value, then the normalisation
has no effect on that row.

��
Proof (of Proposition 8). This follows on from the observation in the previous
proof. The limit must satisfy A(∞) �� A(∞) = A(∞).

��
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Proof (of Proposition 9). Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P ). For the first
claim, suppose A and B are deterministic and ��-compatible. As per Proposi-
tion 5. 2, A �� B is deterministic, too. This implies that row normalisation is
not required.

Finally, in case A’s and B’s output names are disjoint, i.e., O ∩ P = ∅ holds
(*), we check that A and B are ��-compatible and that the denominator is one
whenever the row sums of A and B are.

∑

z∈d(O∪P )

Ax↓I ,z↓O
· Bx↓J ,z↓P

(*)
=

∑

c∈d(O)

∑

d∈d(P )

Ax↓I ,c · Bx↓J ,d

=
∑

c∈d(O)

⎛

⎝Ax↓I ,c

∑

d∈d(P )

Bx↓J ,d

⎞

⎠

=
∑

c∈d(O)

Ax↓I ,c = 1 ��

Proof (of Proposition 10). By associativity and commutativity of ��, as well as
idempotence on deterministic channels, we have that A �� (B �� C) = A �� A ��
B �� C = (A �� B) �� (A �� C). ��
Proof (of Proposition 12). Let x, y ∈ d(I ∪ J).

(II �� IJ )x,y = (II)x↓I ,y↓I
(IJ )x↓J ,y↓J

= δx↓I ,y↓I
δx↓J ,y↓J

= δx↓I∪x↓J ,y↓I∪y↓J

= δx,y = (II∪J )x,y ��
Proof (of Proposition 18). Each proof requires finding one or two post-processing
channels. We provide them in the following table.

claim � �
(1) A
(2) OO,Q

(3) II �� A II �� OO\I,∅
(4) IO �� OQ\O,∅ IO �� O∅,Q\O

E.g., for the “�”-direction of claim (3), we propose to use the post-processing
channel II �� A, that is, we claim that II ; (II �� A) = II �� A and hence
II � II �� A. ��
Proof (of Theorem 19). Let I, J,O, P,O′, P ′ ⊆ V such that O∩P = O′ ∩P ′ = ∅.
Let A ∈ CV,X (I,O), A′ ∈ CV,X (I,O′), B ∈ CV,X (J, P ), and B′ ∈ CV,X (J, P ′)
such that A � A′ and B � B′. Let D ∈ CV,X (O,O′) and E ∈ CV,X (P, P ′) such
that A;D = A′ and B;E = B′. Let x ∈ d(I ∪ J) and z ∈ d(O′ ∪ P ′). We show
that ((A �� B); (D �� E))x,z = (A′ �� B′)x,z. Note that, by Proposition 5, none
of the three mix compositions requires row normalisation.

((A �� B); (D �� E))x,z =
∑

y∈d(O∪P )

(A �� B)x,y(D �� E)y,z
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=
∑

a∈d(O)

∑

b∈d(P )

Ax↓I ,aBx↓J ,bDa,z↓O′ Eb,z↓P ′

=
∑

a∈d(O)

∑

b∈d(P )

Ax↓I ,aDa,z↓O′ Bx↓J ,bEb,z↓P ′

=
∑

a∈d(O)

Ax↓I ,aDa,z↓O′ ·
∑

b∈d(P )

Bx↓J ,bEb,z↓P ′

= (AD)x↓I ,z↓O′ · (BE)x↓J ,z↓P ′

= A′
x↓I ,z↓O′ · B′

x↓J ,z↓P ′ = (A′ �� B′)x,z

We conclude that (A �� B); (D �� E) = A′ �� B′ and hence A �� B � A′ �� B′.��
Proof (of Theorem 22). “⇒:” follows by two applications of Theorem 19 once
we realise that B �� OI\J,∅ = B �� OK,∅ and C �� OI\K,∅ = C �� OJ,∅.

“⇐:” For the converse, suppose A is deterministic, A � B �� OI\J,∅, and A �
C �� OI\K,∅. Let E ∈ CV,X (O,P ) and F ∈ CV,X (O,Q) satisfy A;E = B �� OI\J,∅
and A;F = C �� OI\K,∅. Define D ∈ CV,X (O,P ∪ Q) by Do,z = Eo,z↓P

Fo,z↓Q
.

Let x ∈ d(I); let z ∈∈ d(P ∪ Q). Define p = z ↓P and q = z ↓Q. We show that
(A;D)x,z = (B �� C)x,z.

(A;D)x,z =
∑

o∈d(O)

Ax,oDo,z =
∑

o∈d(O)

Ax,oEo,z↓P
Fo,z↓Q

using that Ax,o = A2
x,o, which follows from Ax,o ∈ {0, 1}:

=
∑

o∈d(O)

A2
x,o · Eo,z↓P

Fo,z↓Q

using that Ax,o = 0 or Ax,o′ = 0 for all o′ = o:

=
∑

o∈d(O)

Ax,o

∑

o′∈d(O)

Ax,o′Eo,z↓P
Fo′,z↓Q

=

⎛

⎝
∑

o∈d(O)

Ax,oEo,z↓P

⎞

⎠
∑

o∈d(O)

Ax,oFo,z↓Q

= (A;E)x,z↓P
· (A;F )x,z↓Q

= (B �� OI\J,∅)x,z↓P
· (C �� OI\K,∅)x,z↓Q

= Bx↓J ,z↓P
· (OI\J,∅)x↓(I\J),∅ · Cx↓K ,z↓Q

· (OI\K,∅)x↓(I\K),∅
= Bx↓J ,z↓P

· Cx↓K ,z↓Q
= (B �� C)x,z

It follows that A;D = B �� C and hence A � B �� C. ��
Proof (of Proposition 25).

(A �� B)x,y = Ax↓I ,y↓O
· Bx↓J ,y↓P
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= Ax↓I ,y↓O
· (OJ\I,∅)x↓(J\I),∅ · Bx↓J ,y↓P

· (OJ\I,∅)x↓(I\J),∅
= (A × OJ\I,∅)x,y↓O

· (B × OJ\I,∅)x,y↓P

= ((A × OJ\I,∅)‖(B × OJ\I,∅))x,y ��

Proof (of Proposition 29). First let x ∈ d(I) and y ∈ d(O).

(A � B)x,y =
∑

m∈d(M)

Ax,mBx∪m,y

=
∑

m∈d(M)

Ax,mBx∪m,y

=
∑

m′∈d(I∪M)

δx,m′↓I
Ax,m′↓O

Bm′,y

=
∑

m′∈d(I∪M)

(II)x,m′↓I
Ax,m′↓O

Bm′,y

=
∑

m′∈d(I∪M)

(II‖A)x,m′Bm′,y = ((II‖A);B)x,y

Now let y ∈ d(1..n × O).

(A(n))x,y =
n∏

i=1

Ax,λo:O.y(i,o)

=
n∏

i=1

∑

m∈d(O)

Ax,mδm,λo:O.y(i,o)

=
n∏

i=1

∑

m∈d(O)

Ax,m(RO,{i}×O)m,y↓{i}×O

=
n∏

i=1

(A; RO,{i}×O)x,y↓{i}×O
= ‖n

i=1(A; RO,{i}×O)x,y ��
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