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Abstract. The large-scale deployment of modern phishing attacks relies
on the automatic exploitation of vulnerable websites in the wild, to max-
imize profit while hindering attack traceability, detection and blacklist-
ing. To the best of our knowledge, this is the first work that specifically
leverages this adversarial behavior for detection purposes. We show that
phishing webpages can be accurately detected by highlighting HTML
code and visual differences with respect to other (legitimate) pages
hosted within a compromised website. Our system, named DeltaPhish,
can be installed as part of a web application firewall, to detect the pres-
ence of anomalous content on a website after compromise, and even-
tually prevent access to it. DeltaPhish is also robust against adversar-
ial attempts in which the HTML code of the phishing page is carefully
manipulated to evade detection. We empirically evaluate it on more than
5,500 webpages collected in the wild from compromised websites, show-
ing that it is capable of detecting more than 99% of phishing webpages,
while only misclassifying less than 1% of legitimate pages. We further
show that the detection rate remains higher than 70% even under very
sophisticated attacks carefully designed to evade our system.

1 Introduction

In spite of more than a decade of research, phishing is still a concrete, widespread
threat that leverages social engineering to acquire confidential data from victim
users [1]. Phishing scams are often part of a profit-driven economy, where stolen
data is sold in underground markets [4,5]. They may be even used to achieve
political or military objectives [2,3]. To maximize profit, as most of the current
cybercrime activities, modern phishing attacks are automatically deployed on a
large scale, exploiting vulnerabilities in publicly-available websites through the
so-called phishing kits [4–8]. These toolkits automatize the creation of phishing
webpages on hijacked legitimate websites, and advertise the newly-created phish-
ing sites to attract potential victims using dedicated spam campaigns. The data
harvested by the phishing campaign is then typically sold on the black market,
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and part of the profit is reinvested to further support the scam campaign [4,5].
To realize the importance of such a large-scale underground economy, note that,
according to the most recent Global Phishing Survey by APWG, published in
2014, 59, 485 out of the 87, 901 domains linked to phishing scams (i.e., the 71.4%)
were actually pointing to legitimate (compromised) websites [8].

Fig. 1. Homepage (left), legitimate (middle) and phishing (right) pages hosted in a
compromised website.

Compromising vulnerable, legitimate websites does not only enable a large-
scale deployment of phishing attacks; it also provides several other advantages
for cyber-criminals. First, it does not require them to take care of registering
domains and deal with hosting services to deploy their scam. This also circum-
vents recent approaches that detect malicious domains by evaluating abnor-
mal domain behaviors (e.g., burst registrations, typosquatting domain names),
induced by the need of automatizing domain registration [9]. On the other hand,
website compromise is only a pivoting step towards the final goal of the phish-
ing scam. In fact, cyber-criminals normally leave the legitimate pages hosted in
the compromised website intact. This allows them to hide the presence of web-
site compromise not only from the eyes of its legitimate owner and users, but
also from blacklisting mechanisms and browser plug-ins that rely on reputation
services (as legitimate sites tend to have a good reputation) [4].

For these reasons, malicious webpages in compromised websites remain typ-
ically undetected for a longer period of time. This has also been highlighted
in a recent study by Han et al. [4], in which the authors have exposed vul-
nerable websites (i.e., honeypots) to host and monitor phishing toolkits. They
have reported that the first victims usually connect to phishing webpages within
a couple of days after the hosting website has been compromised, while the
phishing website is blacklisted by common services like Google Safe Browsing
and PhishTank after approximately twelve days, on average. The same authors
have also pointed out that the most sophisticated phishing kits include func-
tionalities to evade blacklisting mechanisms. The idea is to redirect the victim
to a randomly-generated subfolder within the compromised website, where the
attacker has previously installed another copy of the phishing kit. Even if the
victim realizes that he/she is visiting a phishing webpage, he/she will be likely
to report the randomly-generated URL of the visited webpage (and not that of
the redirecting one), which clearly makes blacklisting unable to stop this scam.
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To date, several approaches have been proposed for phishing webpage detec-
tion (Sect. 2). Most of them are based on comparing the candidate phishing
webpage against a set of known targets [10,11], or on extracting some generic
features to discriminate between phishing and legitimate webpages [12,14].

To our knowledge, this is the first work that leverages the adversarial behav-
ior of cyber-criminals to detect phishing pages in compromised websites, while
overcoming some limitations of previous work. The key idea behind our app-
roach, named DeltaPhish (or δPhish, for short), is to compare the HTML code
and the visual appearance of potential phishing pages against the corresponding
characteristics of the homepage of the compromised (hosting) website (Sect. 3).
In fact, phishing pages normally exhibit a much significant difference in terms
of aspect and structure with respect to the website homepage than the other
legitimate pages of the website. The underlying reason is that phishing pages
should resemble the appearance of the website targeted by the scam, while legit-
imate pages typically share the same style and aspect of their homepage (see,
e.g., Fig. 1).

Our approach is also robust to well-crafted manipulations of the HTML code
of the phishing page, aimed to evade detection, as those performed in [15] to mis-
lead the Google’s Phishing Pages Filter embedded in the Chrome web browser.
This is achieved by the proposal of two distinct adversarial fusion schemes that
combine the outputs of our HTML and visual analyses while accounting for
potential attacks against them. We consider attacks targeting the HTML code
of the phishing page as altering also its visual appearance may significantly affect
the effectiveness of the phishing scam. Preserving the visual similarity between
a phishing page and the website targeted by the scam is indeed a fundamental
trust-building tactic used by miscreants to attract new victims [1].

In Sect. 4, we simulate a case study in which δPhish is deployed as a module
of a web application firewall, used to protect a specific website. In this set-
ting, our approach can be used to detect whether users are accessing potential
phishing webpages that are uploaded to the monitored website after its com-
promise. To simulate this scenario, we collect legitimate and phishing webpages
hosted in compromised websites from PhishTank, and compare each of them
with the corresponding homepage (which can be set as the reference page for
δPhish when configuring the web application firewall). We show that, under
this setting, δPhish is able to correctly detect more than 99% of the phishing
pages while misclassifying less than 1% of legitimate pages. We also show that
δPhish can retain detection rates higher than 70% even in the presence of adver-
sarial attacks carefully crafted to evade it. To encourage reproducibility of our
research, we have also made our dataset of 1, 012 phishing and 4, 499 legitimate
webpages publicly available, along with the classification results of δPhish.

We conclude our work in Sect. 5, highlighting its main limitations and related
open issues for future research.
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2 Phishing Webpage Detection

We categorize here previous work on the detection of phishing webpages along
two main axes, depending on (i) the detection approach, and (ii) the features
used for classification. The detection approach can be target-independent, if it
exploits generic features to discriminate between phishing and legitimate web-
pages, or target-dependent, if it compares the suspect phishing webpage against
known phishing targets. In both cases, features can be extracted from the web-
page URL, its HTML content and visual appearance, as detailed below.

Target-independent. These approaches exploit features computed from the
webpage URL and its domain name [14,16–18], from its HTML content and
structure, and from other sources, including search engines, HTTP cookies, web-
site certificates [10,19–25], and even publicly-available blacklisting services like
Google Safe Browsing and PhishTank [26]. Another line of work has consid-
ered the detection of phishing emails by analyzing their content along with that
of the linked phishing webpages [27].

Target-dependent. These techniques typically compare the potential phishing
page to a set of known targets (e.g., PayPal, eBay). HTML analysis has also been
exploited to this end, often complemented by the use of search engines to identify
phishing pages with similar text and page layout [24,28], or by the analysis of the
pages linked to (or by) the suspect pages [29]. The main difference with target-
independent approaches is that most of the target-dependent approaches have
considered measures of visual similarity between webpage snapshots or embed-
ded images, using a wide range of image analysis techniques, mostly based on
computing low-level visual features, including color histograms, two-dimensional
Haar wavelets, and other well-known image descriptors normally exploited in the
field of computer vision [12,13,30,31]. Notably, only few work has considered the
combination of both HTML and visual characteristics [11,32].

Limitations and Open Issues. The main limitations of current approaches
and the related open research issues can be summarized as follows. Despite
target-dependent approaches are normally more effective than target-independent
ones, they require a-priori knowledge of the set of websites that may be poten-
tially targeted by phishing scams, or anyway try to retrieve them during oper-
ation by querying search engines. This makes them clearly unable to detect
phishing scams against unknown, legitimate services. On the other hand, target-
independent techniques are, in principle, easier to evade, as they exploit generic
characteristics of webpages to discriminate between phishing and legitimate
pages, instead of making an explicit comparison between webpages. In particu-
lar, as shown in [15], it is not only possible to infer enough information on how a
publicly-available, target-independent anti-phishing filter (like Google’s Phishing
Pages Filter) works, but it is also possible to exploit this information to evade
detection, by carefully manipulating phishing webpages to resemble the char-
acteristics of the legitimate webpages used to learn the classification system.
Evasion becomes clearly more difficult if visual analysis is also performed, as
modifying the visual appearance of the phishing page tends to compromise the
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Fig. 2. High-level architecture of δPhish.

effectiveness of the phishing scam [1]. However, mainly due to the higher compu-
tational complexity of this kind of analysis, only few approaches have combined
HTML and visual features for target-dependent phishing detection [11,32], and
it is not clear to which extent they can be robust against well-crafted adversarial
attacks. Another relevant limitation is that no dataset has been made publicly
available for comparing different detection approaches to a common benchmark,
and this clearly hinders research reproducibility.

Our approach overcomes many of the aforementioned limitations. First, it
does not require any knowledge of legitimate websites potentially targeted by
phishing scams. Although it may be thus considered a target-independent app-
roach, it is not based on extracting generic features from phishing and legitimate
webpages, but rather on comparing the characteristics of the phishing page to
those of the homepage hosted in the compromised website. This makes it more
robust than other target-independent approaches against evasion attempts in
which, e.g., the HTML code of the phishing webpage is obfuscated, as this
would make the phishing webpage even more different from the homepage. Fur-
thermore, we explicitly consider a security-by-design approach while engineering
our system, based on explicitly accounting for well-crafted attacks against it.
As we will show, our adversarial fusion mechanisms guarantee high detection
rates even under worst-case changes in the HTML code of phishing pages, by
effectively leveraging the role of the visual analysis. Finally, we publicly release
our dataset to encourage research reproducibility and benchmarking.

3 DeltaPhish

In this section we present DeltaPhish (δPhish). Its name derives from the fact
that it determines whether a certain URL contains a phishing webpage by eval-
uating HTML and visual differences between the input page and the website
homepage. The general architecture of δPhish is depicted in Fig. 2. We denote
with x ∈ X either the URL of the input webpage or the webpage itself, inter-
changeably. Accordingly, the set X represents all possible URLs or webpages.
The homepage hosted in the same domain of the visited page (or its URL) is
denoted with x0 ∈ X . Initially, our system receives the input URL of the input
webpage x and retrieves that of the corresponding homepage x0. Each of these
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URLs is received as input by a browser automation module (Sect. 3.1), which
downloads the corresponding page and outputs its HTML code and a snapshot
image. The HTML code of the input page and that of the homepage are then
used to compute a set of HTML features (Sect. 3.2). Similarly, the two snapshot
images are passed to another feature extractor that computes a set of visual
features (Sect. 3.3). The goal of these feature extractors is to map the input
page x onto a vector space suitable for learning a classification function. Recall
that both feature sets are computed based on a comparison between the char-
acteristics of the input page x and those of the homepage x0. We denote the
two mapping functions implemented by the HTML and by the visual feature
extractor respectively with δ1(x) ∈ R

d1 and δ2(x) ∈ R
d2 , being d1, d2 the dimen-

sionality of the two vector spaces. For compactness of our notation, we do not
explicitly highlight the dependency of δ1(x) and δ2(x) on x0, even if it should be
clear that such functions depend on both x and x0. These two vectorial-based
representations are then used to learn two distinct classifiers, i.e., an HTML- and
a Snapshot-based classifier. During operation, these classifiers will respectively
output a dissimilarity score s1(x) ∈ R and s2(x) ∈ R for each input page x,
which essentially measure how different the input page is from the correspond-
ing homepage. Thus, the higher the score, the higher the probability of x being
a phishing page. These scores are then combined using different (standard and
adversarial) fusion schemes (Sect. 3.4), to output an aggregated score g(x) ∈ R.
If g(x) ≥ 0, the input page x is classified as a phish, and as legitimate otherwise.

Before delving into the technical implementation of each module, it is worth
remarking that δPhish can be implemented as a module in web application fire-
walls, and, potentially, also as an online blacklisting service (to filter suspicious
URLs). Some implementation details that can be used to speed up the processing
time of our approach are discussed in Sect. 4.2.

3.1 Browser Automation

The browser automation module launches a browser instance using Selenium1

to gather the snapshot of the landing web page and its HTML source, even if
the latter is dynamically generated with (obfuscated) JavaScript code. This is
indeed a common case for phishing webpages.

3.2 HTML-Based Classification

For HTML-based classification, we define a set of 11 features, obtained by com-
paring the input page x and the homepage x0 of the website hosted in the same
domain. They will be the elements of the d1-dimensional feature vector δ1(x)
(with d1 = 11) depicted in Fig. 2. We use the Jaccard index J as a similarity
measure to compute most of the feature values. Given two sets A,B, it is defined
as the cardinality of their intersection divided by the cardinality of their union:

J(A,B) = |A ∩ B|/|A ∪ B| ∈ [0, 1] . (1)
1 http://docs.seleniumhq.org.

http://docs.seleniumhq.org
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If A and B are both empty, J(A,B) = 1. The 11 HTML features used by our
approach are described below.
(1) URL. We extract all URLs corresponding to hyperlinks in x and x0 through
the inspection of the href attribute of the <a> tag,2 and create a set for each
page. URLs are considered once in each set without repetition. We then compute
the Jaccard index (Eq. 1) of the two sets extracted. For instance, let us assume
that x and x0 respectively contain these two URL sets:

Ux : {https://www.example.com/p1/, https://www.example.com/p2/,
https://support.example.com/}

Ux0 : {https://support.example.com/p1, https://www.example.com/p2/,
https://support.example.com/en-us/ht20}

In this case, since only one element is exactly the same in both sets (i.e., https://
www.example.com/p2/), the Jaccard index is J(Ux, Ux0) = 0.2.
(2) 2LD. This feature is similar to the previous one, except that we consider
the second-level domains (2LDs) extracted from each URL instead of the full
link. The 2LDs are considered once in each set without repetition. Let us now
consider the example given for the computation of the previous feature. In this
case, both Ux and Ux0 will contain only example.com, and, thus, J(Ux, Ux0) = 1.
(3) SS. To compute this feature, we extract the content of the <style> tags
from x and x0. They are used to define style information, and every webpage
can embed multiple <style> tags. We compare the similarity between the sets
of <style> tags of x and x0 using the Jaccard index.
(4) SS-URL. We extract URLs from x and x0 that point to external style sheets
through the inspection of the href attribute of the <link> tag; e.g., http://
example.com/resources/styles.css. We create a set of URLs for x and another
for x0 (where every URL appears once in each set, without repetition), and
compute their similarity using the Jaccard index (Eq. 1).
(5) SS-2LD. As for the previous feature, we extract all the URLs that link
external style sheets in x and x0. However, in this case we only consider the
second-level domains for each URL (e.g., example.com). The feature value is
then computed again using the Jaccard index (Eq. 1).
(6) I-URL. For this feature, we consider the URLs of linked images in x and
in x0, separately, by extracting all the URLs specified in the <img src=...>
attributes. The elements of these two sets are image URLs;
e.g., http://example.com/img/image.jpg, and are considered once in each set
without repetition. We then compute the Jaccard index for these two sets (Eq. 1).
(7) I-2LD. We consider the same image URLs extracted for I-URL, but
restricted to their 2LDs. Each 2LD is considered once in each set without repe-
tition, and the feature value is computed using again the Jaccard index (Eq. 1).
(8) Copyright. We extract all significant words, sentences and symbols found
in x and x0 that can be related to copyright claims (e.g., c©, copyright, all rights
2 Recall that the <a> tag defines a hyperlink and the href attribute is its destination.

https://www.example.com/p1/
https://www.example.com/p2/
https://support.example.com/
https://support.example.com/p1
https://www.example.com/p2/
https://support.example.com/en-us/ht20
https://www.example.com/p2/
https://www.example.com/p2/
http://example.com/resources/styles.css
http://example.com/resources/styles.css
http://example.com/img/image.jpg
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reserved), without repetitions, and excluding stop-words of all human languages.
The feature value is then computed using the Jaccard index.
(9) X-links. This is a binary feature. It equals 1 if the homepage x0 is linked in
x (accounting for potential redirections), and 0 otherwise.
(10) Title. This feature is also computed using the Jaccard index. We create
the two sets to be compared by extracting all words (except stop-words) from
the title of x and x0, respectively, without repetitions. They can be found within
the tag <title>, which defines the title of the HTML document, i.e., the one
appearing on the browser toolbar and displayed in search-engine results.
(11) Language. This feature is set to 1 if x and x0 use the same language,
and to 0 otherwise. To identify the language of a page, we first extract the
stop-words for all the human languages known from x and x0, separately, and
without repetitions. We then assume that the page language is that associated
to the maximum number of corresponding stop-words found.

Classification. The 11 HTML features map our input page x onto a vector space
suitable for classification. Using the compact notation defined at the beginning
of this section (see also Fig. 2), we denote the d1-dimensional feature vector cor-
responding to x as δ1(x) (being d1 = 11). We then train a linear Support Vector
Machine (SVM) [33] on these features to classify phishing and legitimate pages.
For each input page, during operation, this classifier computes a dissimilarity
score measuring how different the input page is from its homepage:

s1(x) = wT
1 δ1(x) + b1 . (2)

The feature weights w1 ∈ R
d1 and the bias b1 ∈ R of the classification function

are optimized during SVM learning, using a labeled set of training webpages [33].

3.3 Snapshot-Based Classification

To analyze differences in the snapshots of the input page x and the corresponding
homepage x0, we leverage two state-of-the-art feature representations that are
widely used for image classification, i.e., the so-called Histogram of Oriented
Gradients (HOGs) [34], and color histograms. We have selected these features
since, with respect to other popular descriptors (like the Scale-Invariant Feature
Transform, SIFT), they typically achieve better performance in the presence of
very high inter-class similarities. Unlike HOGs, which are local descriptors, color
histograms give a representation of the spatial distribution of colors within an
image, providing complementary information to our snapshot analysis.

We exploit these two representations to compute a concatenated (stacked)
feature vector for each snapshot image, and then define a way to compute
a similarity-based representation from them. The overall architecture of our
snapshot-based classifier is depicted in Fig. 3. In the following, we explain more
in detail how HOG and color histograms are computed for each snapshot image
separately, and how we combine the stacked feature vectors of the input page x
and of the homepage x0 to obtain the final similarity-based feature vector.
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Fig. 3. Computation of the visual features in δPhish.

Fig. 4. δPhish image tiling extracts visual features retaining spatial information.

Image Tiling. To preserve spatial information in our visual representation of
the snapshot, we extract visual features not only from the whole snapshot image,
but also from its quarters and sixteenths (as depicted in Fig. 4), yielding (1 ×
1) + (2 × 2) + (4 × 4) = 21 tiles. HOG descriptors and color histograms are
extracted from each tile, and stacked, to obtain two vectors of 21 × 300 = 6, 300
and 21 × 288 = 6, 048 dimensions, respectively.

HOG features. We compute the HOG features for each of the 21 input image
tiles following the steps highlighted in Fig. 5 and detailed below, as in [34]. First,
the image is divided in cells of 8× 8 pixels. For each cell, a 31-dimensional HOG
descriptor is computed, in which each bin represents a quantized direction and
its value corresponds to the magnitude of gradients in that direction (we refer
the reader to [34–36] for further details). The second step consists of considering
overlapping blocks of 2×2 neighboring cells (i.e., 16×16 pixels). For each block,
the 31-dimensional HOG descriptors of the four cells are simply concatenated to

Fig. 5. Computation of the 300 HOG features from an image tile.



DeltaPhish: Detecting Phishing Webpages in Compromised Websites 379

form a (31 × 4) 124-dimensional stacked HOG descriptor, also referred to as a
visual word. In the third step, each visual word extracted from the image tile is
compared against a pre-computed vocabulary of K visual words, and assigned
to the closest word in the vocabulary (we have used K = 300 visual words in our
experiments). Eventually, a histogram of K = 300 bins is obtained for the whole
tile image, where each bin represents the occurrence of each pre-computed visual
word in the tile. This approach is usually referred to as Bag of Visual Words
(BoVW) [37]. The vocabulary can be built using the centroids found by k-means
clustering from the whole set of visual words in the training data. Alternatively,
a vocabulary computed from a different dataset may be also used.

Color features. To extract our color features, we first convert the image from
the RGB (Red-Green-Blue) to the HSV (Hue-Saturation-Value) color space, and
perform the same image tiling done for the extraction of the HOG features
(see Fig. 4). We then compute a quantized 3D color histogram with 8, 12 and
3 bins respectively for the H, S and V channel, corresponding to a vector of
8 × 12 × 3 = 288 feature values. This technique has shown to be capable of
outperforming histograms computed in the RGB color space, in content-based
image retrieval and image segmentation tasks [38].

Both the HOG descriptor and the color histogram obtained from each image
tile are normalized to sum up to one (to correctly represent the relative fre-
quency of each bin). The resulting 21× 300 HOG descriptors and 21 × 288 color
histograms are then stacked to obtain a feature vector consisting of d2 = 12, 348
feature values, as shown in Fig. 3. In the following, we denote this feature vector
respectively with p and p0 for the input page x and the homepage x0.

Similarity-based Feature Representation. After computing the visual fea-
tures p for the input page x and p0 for the homepage x0, we compute the
similarity-based representation δ2(x) (Figs. 2 and 3) from these feature vec-
tors as:

δ2(x) = min(p,p0) (3)

where min here returns the minimum of the two vectors for each coordinate.
Thus, the vector δ2(x) will also consists of d2 = 12, 348 feature values.

Classification. The similarity-based mapping in Eq. (3) is inspired to the his-
togram intersection kernel [39]. This kernel evaluates the similarity between two
histograms u and v as

∑
i min(ui, vi). Instead of summing up the values of δ2(x)

(which will give us exactly the histogram intersection kernel between the input
page and the homepage), we learn a linear SVM to estimate a weighted sum:

s2(x) = wT
2 δ2(x) + b2 , (4)

where, similarly to the HTML-based classifier, w2 ∈ R
d2 and b2 ∈ R are the

feature weights and bias, respectively. This enables us to achieve better perfor-
mances, as, in practice, the classifier itself learns a proper similarity measure
between webpages directly from the training data. This is a well-known practice
in the area of machine learning, usually referred to as similarity learning [40].
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3.4 Classifier Fusion

The outputs of the HTML- and of the Snapshot-based classifiers, denoted in the
following with a two-dimensional vector s = (s1(x), s2(x)) (Eqs. 2–4), can be
combined using a fixed (untrained) fusion rule, or a classifier (trained fusion).
We consider three different combiners in our experiments, as described below.

Maximum. This rule simply computes the overall score as:

g(x) = max (s1(x), s2(x)) . (5)

The idea is that, for a page to be classified as legitimate, both classifiers should
output a low score. If one of the two classifiers outputs a high score and classifies
the page as a phish, then the overall system will also classify it as a phishing
page. The reason behind this choice relies upon the fact that the HTML-based
classifier can be evaded by a skilled attacker, as we will see in our experiments,
and we aim to avoid that misleading such a classifier will suffice to evade the
whole system. In other words, we would like our system to be evaded only if both
classifiers are successfully fooled by the attacker. For this reason, this simple rule
can be also considered itself a sort of adversarial fusion scheme.

Trained Fusion. To implement this fusion mechanism, we use an SVM with
the Radial Basis Function (RBF) kernel, which computes the overall score as:

g(x) =
∑n

i=1 yiαik(s, si) + b , (6)

where k(s, si) = exp (−γ‖s − si‖2) is the RBF kernel function, γ is the kernel
parameter, and s = (s1(x), s2(x)) and si = (s1(xi), s2(xi)) are the scores pro-
vided by the HTML- and Snapshot-based classifiers for the input page x and
for the n pages in our training set D = {xi, yi}ni=1, being yi ∈ {−1,+1} the
class label (i.e., −1 and +1 for legitimate and phishing pages). The classifier
parameters {αi}ni=1 and b are estimated during training by the SVM learning
algorithm, on the set of scores S = {si, yi}ni=1, which can be computed through
stacked generalization (to avoid overfitting [41]) as explained in Sect. 4.1.

Adversarial Fusion. In this case, we consider the same trained fusion mech-
anism described above, but augment the training scores by simulating attacks
against the HTML-based classifier. In particular, we add a fraction of samples
for which the score of the Snapshot-based classifier is not altered, while the score
of the HTML-based classifier is randomly sampled from a uniform distribution
in [0, 1]. This is a straightforward way to account for the fact that the score
of the HTML-based classifier can be potentially decreased by a targeted attack
against that module, and make the combiner aware of this potential threat.

Some examples of the resulting decision functions are shown in Fig. 7. Worth
remarking, when using trained fusion rules, the output scores of the HTML- and
Snapshot-based classifiers are normalized in [0, 1] using min-max normalization,
to facilitate learning (see Sect. 4.1 for further details).
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4 Experimental Evaluation

In this section we empirically evaluate δPhish, simulating its application as
a module in a web application firewall. Under this scenario, we assume that
the monitored website has been compromised (e.g., using a phishing kit), and
it is hosting a phishing webpage. The URLs contacted by users visiting the
website are monitored by the web application firewall, which can deny access to a
resource if retained suspicious (or which can stop a request if retained a potential
attack against the web server). The contacted URLs that are not blocked by the
web application firewall are forwarded to δPhish, which detects whether they are
substantially different from the homepage (i.e., they are potential phishing pages
hosted in the monitored website). If δPhish reveals such a sign of compromise,
the web application firewall can deny user access to the corresponding URL.

We first discuss the characteristics of the webpages we have collected from
legitimate, compromised websites (hosting phishing scams) to build our dataset,
along with the settings used to run our experiments (Sect. 4.1). We then report
our results, showing that our system can detect most of the phishing pages with
very high accuracy, while misclassifying only few legitimate webpages (Sect. 4.2).
We have also considered an adversarial evaluation of our system in which the
characteristics of the phishing pages are manipulated to evade detection of the
HTML-based classifier. The goal of this adversarial analysis is to show that
δPhish can successfully resist even to worst-case evasive attempts. Notably, we
have not considered attacks against the Snapshot-based classifier as they would
require modifying the visual aspect of the phishing page, thus making it easier
for the victim to recognize the phishing scam.

4.1 Experimental Setting

Dataset. Our dataset has been collected from October 2015 to January 2016,
starting from active phishing URLs obtained online from the PhishTank feed.3

We have collected and manually validated 1, 012 phishing pages. For each phish-
ing page, we have then collected the corresponding homepage from the hosting
domain. By parsing the hyperlinks in the HTML code of the homepage, we have
collected from 3 to 5 legitimate pages from the same website, and validated
them manually. This has allowed us to gather 1, 012 distinct sets of webpages,
from now on referred to as families, each consisting of a phishing page and some
legitimate pages collected from the same website. Overall, our dataset consists
of 5, 511 distinct webpages, 1, 012 of which are phishing pages. We make this
data publicly available, along with the classification results of δPhish.4

In these experiments, we consider 20 distinct training-test pairs to average
our results. For a fair evaluation, webpages collected from the same domain
(i.e., belonging to the same family) are included either in the training data or
in the test data. In each repetition, we randomly select 60% of the families for

3 https://www.phishtank.com.
4 http://deltaphish.pluribus-one.it/.

https://www.phishtank.com
http://deltaphish.pluribus-one.it/
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training, while the remaining 40% are used for testing. We normalize the feature
values δ1(x) and δ2(x) using min-max normalization, but estimating the 5th and
the 95th percentile from the training data for each feature value, instead of the
minimum and the maximum, to reduce the influence of outlying feature values.

This setting corresponds to the case in which δPhish is trained before deploy-
ment on the web application firewall, to detect phishing webpages independently
from the specific website being monitored. It is nevertheless worth pointing out
that our system can also be trained using only the legitimate pages of the mon-
itored website, i.e., it can be customized depending on the specific deployment.

Classifiers. We consider the HTML- and Snapshot-based classifiers (Sects. 3.2
and 3.3), using the three fusion rules discussed in Sect. 3.4 to combine their
outputs: (i) Fusion (max.), in which the max rule is used to combine the two
outputs (Eq. 5); (ii) Fusion (tr.), in which we use an SVM with the RBF kernel
as the combiner (Eq. 6); and (iii) Fusion (adv.), in which we also use an SVM
with the RBF kernel as the combiner, but augment the training set with phishing
webpages adversarially manipulated to evade the HTML-based classifier.

Parameter tuning. For HTML- and Snapshot-based classifiers, the only para-
meter to be tuned is the regularization parameter C of the SVM algorithm.
For SVM-based combiners exploiting the RBF kernel, we also have to set
the kernel parameter γ. In both cases, we exploit a 5-fold cross-validation
procedure to tune the parameters, by performing a grid search on C, γ ∈
{0.001, 0.01, 0.1, 1, 10, 100}. As the trained fusion rules require a separate train-
ing set for the base classifiers and the combiner (to avoid overfitting), we run a
two-level (nested) cross-validation procedure, usually referred to as stacked gen-
eralization [41]. In particular, the outer 5-fold cross validation splits the training
data into a further training and validation set. This training set is used to tune
the parameters (using an inner 5-fold cross validation as described above) and
train the base classifiers. Then, these classifiers are evaluated on the valida-
tion data, and their outputs on each validation sample are stored. We normalize
these output scores in [0, 1] using min-max normalization. At the end of the outer
cross-validation procedure, we have computed the outputs of the base classifiers
for each of the initial training samples, i.e., the set S = {si, yi}ni=1 (Sect. 3.4).
We can thus optimize the parameters of the combiner on this data and then
learn the fusion rule on all data. For the adversarial fusion, we set the fraction
of simulated attacks added to the training score set to 30% (Sect. 3.4).

4.2 Experimental Results

The results for phishing detection are shown in Fig. 6 (left plot), using Receiver-
Operating-Characteristic (ROC) curves. Each curve reports the average detec-
tion rate of phishing pages (i.e., the true positive rate, TP) against the fraction
of misclassified legitimate pages (i.e., the false positive rate, FP).

The HTML-based classifier is able to detect more than 97% of phishing web-
pages while misclassifying less than 0.5% of legitimate webpages, demonstrating
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Fig. 6. ROC curves (left) and adversarial evaluation (right) of the classifiers.

the effectiveness of exploiting differences in the HTML code of phishing and legit-
imate pages. The Snapshot-based classifier is not able to reach such accuracy
since in some cases legitimate webpages may have some different visual appear-
ance, and the visual learning task is inherently more complex. The visual classi-
fier is indeed trained on a much higher number of features than the HTML-based
one. Nevertheless, the detection rate of the Snapshot-based classifier is higher
than 80% at 1% FP, which is still a significant achievement for this classification
task. Note finally that both trained and max fusion rules are able to achieve
accuracy similar to those of the HTML-based classifier, while the adversarial
fusion performs slightly worse. This behavior is due to the fact that injecting
simulated attacks into the training score set of the combiner causes an increase
of the false positive rate (see Fig. 7). This highlights a tradeoff between system
security under attack and accuracy in the absence of targeted attacks against
the HTML-based classifier.
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Fig. 7. Examples of decision functions (in colors) for maximum (left), trained fusion
(center), and adversarial fusion (right), in the space of the base classifiers’ outputs.
Blue (red) points represent legitimate (phishing) pages. Decision boundaries are shown
as black lines. Phishing pages manipulated to evade the HTML-based classifier will
receive a lower score (i.e., the red points will be shifted to the left), and most likely
evade only the trained fusion. (Color figure online)

Processing time. We have run our experiments on a personal computer
equipped with an Intel(R) Xeon(R) CPU E5-2630 0 operating at 2.30 GHz and
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4 GB RAM. The processing time of δPhish is clearly dominated by the browser
automation module, which has to retrieve the HTML code and snapshot of the
considered pages. This process typically requires few seconds (as estimated, on
average, on our dataset). The subsequent HTML-based classification is instanta-
neous, while the Snapshot-based classifier requires more than 1.2 s, on average,
to compute its similarity score. This delay is mainly due to the extraction of
the HOG features, while the color features are extracted in less than 3 ms, on
average. The processing time of our approach can be speeded up using paral-
lel computation (e.g., through the implementation of a scalable application on
a cloud computing service), and a caching mechanism to avoid re-classifying
known pages.

Adversarial Evasion. We consider here an attacker that manipulates the
HTML code of his/her phishing page to resemble that of the homepage of the
compromised website, aiming to evade detection by our HTML-based classifier.
We simulate a worst-case scenario in which the attacker has perfect knowledge of
such a classifier, i.e., that he/she knows the weights assigned by the classifier to
each HTML feature. The idea of this evasion attack is to maximally decrease the
classification score of the HTML module while manipulating the minimum num-
ber of features, as in [42]. In this case, an optimal attack will start manipulating
features having the highest absolute weight values. For simplicity, we assume a
worst case attack, where the attacker can modify a feature value either to 0 or
1, although this may not be possible for all features without compromising the
nature of the phishing scam. For instance, in order to set the URL feature to 1
(see Sect. 3.2), an attacker has to use exactly the same set of URLs present in
the compromised website’s homepage. This might require removing some links
from the phishing page, compromising its malicious functionality.

The distribution of the feature weights (and bias) for the HTML-based classi-
fier (computed over the 20 repetitions of our experiment) is shown in the boxplot
of Fig. 8, highlighting two interesting facts. First, features tend to be assigned
only negative weights. This means that each feature tends to exhibit higher
values for legitimate pages, and that the attacker should increase its value to
mislead detection. Since the bias is generally positive, a page tends to be clas-
sified generally as a phish, unless there is sufficient “evidence” that it is similar
to the homepage. Second, the most relevant features (i.e., those which tend to
be assigned the lowest negative weights) are Title, URL, SS-URL, and I-URL.
This will be, in most of the cases, the first four features to be increased by the
attacker to evade detection, while the remaining features play only a minor role
in the classification of phishing and legitimate pages.

The results are reported in Fig. 6 (right plot). It shows how the detection
rate achieved by δPhish at 1% FP decreases against an increasing number of
HTML features modified by the attacker, for the different fusion schemes and the
HTML-based classifier. The first interesting finding is about the HTML-based
classifier, that can be evaded by modifying only a single feature (most likely,
URL). The trained fusion remains slightly more robust, although it exhibits a
dramatic performance drop already at the early stages of the attack. Conversely,



DeltaPhish: Detecting Phishing Webpages in Compromised Websites 385

URL
2L

D SS

SS-U
RL

SS-2
LD

I-U
RL

I-2
LD

Cop
yr

igh
t

X-lin
ks

Title

La
ng

ua
ge

b

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

HTML-based classifier's weights (w) and bias (b)
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the detection rate of maximum and adversarial fusion rules under attack remains
higher than 70%. The underlying reason is that they rely more upon the output
of the Snapshot-based classifier with respect to the trained fusion. In fact, as
already mentioned, such schemes explicitly account for the presence of attacks
against the base classifiers. Note also that the adversarial fusion outperforms
maximum when only one feature is modified, while achieving a similar detection
rate at the later stages of the attack. This clearly comes at the cost of a worse
performance in the absence of attack. Thus, if one retains that such evasion
attempts may be very likely in practice, he/she may decide to trade accuracy in
the absence of attack for an improved level of security against these potential
manipulations. This tradeoff can also be tuned in a more fine-grained manner by
varying the percentage of simulated attacks while training the adversarial fusion
scheme (which we set to 30%), and also by considering a less pessimistic score
distribution than the uniform one (e.g., a Beta distribution skewed towards the
average score assigned by the HTML-based classifier to the phishing pages).

5 Conclusions and Future Work

The widespread presence of public, exploitable websites in the wild has enabled a
large-scale deployment of modern phishing scams. We have observed that phish-
ing pages hosted in compromised websites exhibit a different aspect and structure
from those of the legitimate pages hosted in the same website, for two main rea-
sons: (i) to be effective, phishing pages should resemble the visual appearance
of the website targeted by the scam; and (ii) leaving the legitimate pages intact
guarantees that phishing pages remain active for a longer period of time before
being blacklisted. Website compromise can be thus regarded as a simple pivoting
step in the implementation of modern phishing attacks.

To the best of our knowledge, this is the first work that leverages this aspect
for phishing webpage detection. By comparing the HTML code and the visual
appearance of a potential phishing page with the homepage of the correspond-
ing website, δPhish exhibits high detection accuracy even in the presence of
well-crafted, adversarial manipulation of HTML code. While our results are
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encouraging, our proposal has its own limitations. It is clearly not able to detect
phishing pages hosted through other means than compromised websites. It may
be adapted to address this issue by comparing the webpage to be classified
against a set of known phishing targets (e.g., PayPal, eBay); in this case, if
the similarity exceeds a given threshold, then the page is classified as a phish.
Another limitation is related to the assumption that legitimate pages within
a certain website share a similar appearance/HTML code with the homepage.
This assumption may be indeed violated, leading the system to misclassify some
pages. We believe that such errors can be limited by extending the comparison
between the potential phishing page and the website homepage also to the other
legitimate pages in the website (and this can be configured at the level of the
web application firewall). This is an interesting evaluation for future work.

Our adversarial evaluation also exhibits some limitations. We have considered
an attacker that deliberately modifies the HTML code of the phishing page to
evade detection. A more advanced attacker might also modify the phishing page
to evade our snapshot-based classifier. This is clearly more complex, as he/she
should not compromise the visual appearance of the phishing page while aiming
to evade our visual analysis. Moreover, the proposed adversarial fusion (i.e., the
maximum) already accounts for this possibility, and the attack can be successful
only if both the HTML and snapshot-based classifiers are fooled. We anyway
leave a more detailed investigation of this aspect to future work, along with
the possibility of training our system using only legitimate data, which would
alleviate the burden of collecting a set of manually-labeled phishing webpages.

Finally, it is worth remarking that we have experimented on more than 5, 500
webpages collected in the wild, which we have also made publicly available for
research reproducibility. Despite this, it is clear that our data should be extended
to include more examples of phishing and legitimate webpages, hopefully through
the help of other researchers, to get more reliable insights on the validity of
phishing webpage detection approaches.
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