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Abstract. The Extended Access Control (EAC) protocol allows to cre-
ate a shared cryptographic key between a client and a server. While orig-
inally used in the context of identity card systems and machine readable
travel documents, the EAC protocol is increasingly adopted as a univer-
sal solution to secure transactions or for attribute-based access control
with smart cards. Here we discuss how to enhance the EAC protocol
by a so-called zero-round trip time (0RTT) mode. Through this mode
the client can, without further interaction, immediately derive a new
key from cryptographic material exchanged in previous executions. This
makes the 0RTT mode attractive from an efficiency viewpoint such that
the upcoming TLS 1.3 standard, for instance, will include its own 0RTT
mode. Here we show that also the EAC protocol can be augmented to
support a 0RTT mode. Our proposed EAC+0RTT protocol is compli-
ant with the basic EAC protocol and adds the 0RTT mode smoothly on
top. We also prove the security of our proposal according to the common
security model of Bellare and Rogaway in the multi-stage setting.

1 Introduction

The Extended Access Control (EAC) protocol establishes an authenticated key
between a client’s smart card (also called chip in this context) and a server
(or, terminal) over a public channel. For this, both parties run a sophisticated
Diffie-Hellman key exchange protocol in which either party deploys its certified
long-term key. While originally deployed in the German identity card systems
[10] and referenced by the International Civil Aviation Organization for machine
readable travel documents [24], the EAC protocol is increasingly adopted as a
potent solution in related scenarios, for example to secure transactions [29] and
for attribute-based physical access control with smart cards [28].

Especially for access control, if deployed in situations where user experience
hinges on fast response times, reducing the latency is important. A concrete
example, as discussed in a FIPS 201-2 workshop in 2015 [19], is turnstile access
in subway stations. This requirement has led for instance to the development of
the ISO/IEC 24727-6 and ANSI 504-1 standardized “Open Protocol for Access
Control Identification and Ticketing with privacY” (OPACITY) for smart cards
[33], which uses persistent binding for speeding up the key generation process.
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Unfortunately—and also underlining the importance of rigor—OPACITY has
been shown to display cryptographic weaknesses [15]. 1

In this paper we show that the EAC protocol can be augmented by a low-
latency mode, called zero round-trip time (0RTT). This mode enables efficient re-
establishment of secure channels for returning clients. A rigorous security proof
for the resulting augmented protocol completes the enhancement. We emphasize
that the design choices of the original EAC protocol are beyond our discussion
here. Our goal is to show that a 0RTT version can be implemented based on the
existing infrastructure.

1.1 Striving for Zero Round-Trip Time

The EAC protocol consists of two connected phases, the terminal authentication
(TA), followed by the chip authentication (CA). Both steps require only a small
number of message exchanges to establish a session key. At the same time, recent
efforts in the area of key exchange protocols aim at modes of operations which
allow for even faster data delivery. More precisely, it should be possible for a
party to re-use cryptographic data from a previous connection to derive a fresh
session key without further interaction, thus allowing the party to transmit data
immediately. Such a mode is called zero round-trip time (0RTT).

The first proposal for a 0RTT-supporting protocol came from Google with
its QUIC protocol [20]. The 0RTT mode allows the client to send data to a
known server without having to wait for the server’s response. This idea was then
quickly adopted for the drafts of the new TLS version 1.3, and has been included
in the latest drafts in various versions [30–32]. Even on a network layer level,
the Windows Networking Team recently announced to support 0RTT for TCP
connections in order to reduce latency (see [11] for TCP Fast Open description).

The rough idea of the approach taken by QUIC and TLS (for the Diffie-
Hellman version [30]) 2 is that, upon the first encounter, the server also sends
a semi-static public key gs as part of the authenticated key exchange. Unlike
an ephemeral key, which is used only within a single session, and a long-term
key which spans over a large amount of sessions, such a semi-static key is valid
for a very limited time only. This time period may range from a few seconds
to a couple of days. In particular, the semi-static key may be used in multiple
sessions.

The next time the client contacts the server, the client may combine a fresh
ephemeral key gc with the server’s semi-static key gs to immediately compute
a Diffie-Hellman key gcs and derive an intermediate session key. The client can
now send gc and already deliver data secured under the intermediate session key,

1 Remarkably, the publication of this analysis pre-dates the latest version of SP800-
73-4 [12], dated May 2015, which lists OPACITY as a suitable solution for key
establishment.

2 The latest version of the TLS draft [32] focuses on a pre-shared key 0RTT version
and has for now dropped the Diffie-Hellman based version; the main EAC protocol
only supports a Diffie-Hellman based key exchange, though.
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without round trip. For both QUIC and TLS the parties then continue the key
exchange protocol to switch to full session keys.

It is obvious that the non-interactive derivation of the 0RTT session key
comes at a price in terms of security: Since the server cannot contribute to such
a key in a per-session manner, an adversary can replay the client’s protocol
message and data to the server. This is inevitable, but accepted by the designers
of QUIC and TLS 1.3 as worthwhile to achieve the desired level of efficiency.

1.2 Contribution

As briefly mentioned before, we show that the EAC protocol can also be aug-
mented to support a 0RTT mode. Interestingly, the extension can be added on
top with minimal changes to the original protocol. As in the proposal of QUIC
and TLS 1.3 we let the terminal include an additional semi-static key pksemi

T in
the regular EAC execution. The key is transmitted as part of the auxiliary data
field of the original EAC description, and is thus also authenticated through the
terminal’s signature in the TA phase.

In the full run of the EAC protocol the semi-static key is still ignored for the
session key derivation. Instead, and as in the original EAC description, the chip
then receives the terminal’s ephemeral key and derives a session key from its
certified long-term key and this ephemeral key. The client authenticates through
a message authentication code under the session key. In this regard, the slightly
modified protocol complies with the original EAC protocol, using the auxiliary
data field to transfer an additional key.

If a chip later wants to reconnect to a terminal for which it already holds
the semi-static key, it only runs the CA phase again. But instead of receiving
a fresh ephemeral key from the terminal, it uses the semi-static key to build
the session key. Note that the semi-static key is already authenticated through
the previous execution of the EAC protocol. Omitting the transmission of the
terminal’s ephemeral key turns this step into a non-interactive protocol.

A straightforward idea to improve efficiency further may be to use the ter-
minal’s ephemeral key once more for 0RTT, instead of using the semi-static key.
The downside is that the terminal would need to store all ephemeral keys in
a certain time frame. This is why, both we here as well as TLS [30], use semi-
static keys instead. Nonetheless we discuss some potential variations of our basic
designs in Sect. 4.

We then show that our EAC+0RTT protocol, which consists of the (aug-
mented) EAC protocol run followed by any number of subsequent 0RTT EAC
protocol executions, meets the common security properties of an authenticated
key exchange protocol.

But we, of course, need to account for the possibility of replay attacks on
the 0RTT data. Furthermore, it is convenient to model the possibly many 0RTT
EAC handshakes following a single EAC execution in a so-called multi-stage
setting. To this end we adopt the multi-stage extension of the Bellare-Rogaway
model in [17].
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The proof of security for the EAC+0RTT protocol does not rely on previous
results.Nevertheless,wewish tomention themany security analyses of theGerman
identity card protocols and certain eIDAS extensions [2–5,13,14,22,23,27].
Also, we remark that general approaches to build low-latency protocols such as
[21] cannot be applied in the context of the EAC protocol without major changes
to the protocol.

2 Protocol Description

We next present the Extended Access Control protocol and its extension to
support 0RTT. The 0RTT extension should be seen as a particular mode or sub
protocol which co-exists with the original EAC protocol. In particular, many
instances of 0RTT EAC may follow a single full EAC protocol run (until pksemi

T

changes, in which case the terminal will most likely reject).

2.1 The Extended Access Protocol

The Extended Access Control protocol establishes a secure channel between a
chip and a terminal. It is divided in two phases: the Terminal Authentication
(TA) and Chip Authentication (CA) as depicted in Fig. 1. We integrate the
0RTT EAC protocol to the existing EAC protocol smoothly by using the pre-
specified auxiliary data field in which any data can be sent in an authenticated
manner to the chip during the TA phase. The auxiliary data field has originally
been included to pass further information to the chip such as the current date,
and the original EAC protocol ignores any such data if sent under an unknown
object identifier. In our case, the terminal can utilize this field to transmit its
semi-static key pksemi

T to the chip to enable future 0RTT EAC executions.

Terminal Authentication. The terminal authentication lets the chip C verify
the terminal T ’s identity and its permissions to access sensitive data. This is
achieved via the certificate certT held by T . This certificate contains not only the
terminal’s signed public key but also its granted access rights. We assume that
each certificate cert contains some unique identifier certID which can either be
the serial number or an identifier like CertID or CertUID, and that certID allows
to determine the user identity. Furthermore, as mentioned earlier, the terminal
authentication can be used to distribute the terminal’s public semi-static key to
the chip, thereby permitting future 0RTT EAC executions.

In a first step, the terminal sends its certificate for verification to the chip,
which can then either abort, in case of an invalid certificate, or proceed by
extracting the terminal’s public key pkT from the valid certificate. If the session
was not aborted by C, T generates its ephemeral key pair (epkT , eskT ) and sends
the compressed version of the ephemeral key epkT to C. This initiates a challenge-
response mechanism. The chip replies with a nonce rC chosen uniformly at ran-
dom. The terminal authentication is complete, if the chip can then successfully
verify the received signature sT ← Sig(skT , idC ||rC ||Compr(epkT )||pksemi

T ) over
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Fig. 1. Terminal Authentication (TA) and Chip Authentication (CA). All operations
are modulo q resp. over the elliptic curve. The gray part shows the 0RTT support
inserted in the (optional) auxiliary data field.

the chip’s identity, chosen nonce and the compressed ephemeral key. Depending
on whether the terminal offers support for 0RTT executions, the signature may
contain the terminal’s semi-static public key pksemi

T .

Chip Authentication. In the second part of the EAC protocol, the chip is
authenticated to the terminal and a session key for subsequent encrypted and
integrity-protected communications between chip and terminal is established.
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The chip transmits its credentials to the terminal and receives in response the
ephemeral public key epkT (if the terminal did not abort due to an invalid certifi-
cate). After checking epkT against the compressed value received during the TA
phase, the chip can compute the Diffie-Hellman value k from epkT and its own
long-term secret key skC . Together with a uniformly random value r′

C , the DH
value k is used to derive an encryption key Kenc, as well as two authentication
keys Kmac,K

′
mac.

3 For final authentication, the chip uses K ′
mac to compute a

tag τ over the ephemeral public key of the terminal. The tag is then transmit-
ted to the terminal, alongside the random value r′

C used in the key derivation.
The terminal is now able to derive the DH key k and subsequently the keys
(Kenc,Kmac,K

′
mac), where the session key K is given by (Kenc,Kmac). The ter-

minal aborts the CA phase prematurely if it is not able to verify τ . Otherwise
the session identifier and partner identifier are generated on both sides. If C has
received a semi-static key, it saves this key along with the terminal’s certificate
certT for further reference. The EAC protocol execution is completed successfully
if both parties terminate in accepting state.

2.2 The 0RTT EAC Protocol

Figure 2 shows the modified protocol supporting 0RTT between a chip C and a
terminal T . The chip now holds additional information in form of the semi-static
public key pksemi

T , which it obtained during a previous EAC protocol interaction
with T . In the 0RTT extension of the EAC protocol, C and T perform the
following actions, corresponding to a non-interactive version of the CA protocol
since the pksemi

T is used instead of epkT . Thus, the extra communication round in
the CA protocol in which T sends the (uncompressed) ephemeral key becomes
obsolete.

At first, the chip C picks a random nonce r′′
C and computes the DH shared

value k = DHDC
(skC , pksemi

T ). Using these two values, C then derives the keys
(Kenc,Kmac,K

′
mac) where, as in the EAC protocol, K ′

mac is an additional authen-
tication key used internally in the 0RTT EAC key exchange (see [14] for a discus-
sion). The session key is then given by K = (Kenc,Kmac). Finally, C computes
the MAC-value over the semi-static public key

τ = MAC(K ′
mac, pk

semi
T )

and sends its first (and only) flight of data to T consisting of

– the authentication token τ ,
– the previously chosen nonce r′′

C ,
– its public key pkC , as well as its certificate certC ,
– the domain parameter DC , and
– early application data encrypted under the previously derived key.

3 For the necessity of K′
mac in a proof in the Bellare-Rogaway-style we refer to the

discussion in [14].
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Upon receiving the chip’s message, T verifies the validity of pkC and certC , and
aborts if the verification is unsuccessful. Otherwise, T uses the public key, its
semi-static secret sksemi

T and the random nonce r′′
C to derive K ′

mac and the 0RTT
EAC session key K. T can then check the validity of the authentication token τ
and aborts if the tag cannot be verified. If τ is valid, T decrypts the attached
early application data. This completes the 0RTT EAC execution.

If the terminal does not support 0RTT, or the semi-static key provided by
the chip is outdated or otherwise invalid, the process is aborted and the chip
must initiate a fresh execution of the full EAC protocol in order to establish
an authenticated secure channel with the terminal. There are, of course, sev-
eral conceivable ways to recover from failures in the 0RTT handshake. Possible
alternatives are described in Sect. 4.3.

Fig. 2. 0RTT EAC. All operations are modulo q resp. over the elliptic curve. Note that
the fields sid and pid are used within the security proof and describe partnered sessions
and intended communication partners.

2.3 Discussion

As mentioned before, the design choices of the original EAC protocol are beyond
our discussion here. We demonstrated that a 0RTT version can be implemented
based on the existing infrastructure. In particular, it is important that such a
solution is “non-invasive” in the sense that it does not require major changes
to the existing protocol but is added “on top”. Of course, any extension brings
some modifications, e.g., in our case both the chip and the terminal must now
implement the 0RTT EAC protocol and store semi-static keys. Yet, our proposal
for the augmented EAC protocol complies with the original EAC description by
using the auxiliary data field for the semi-static key. Furthermore, the 0RTT
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mode is identical to the plain execution of the CA phase, only that the semi-
static key identifier is used instead of the one for the ephemeral key.

We also stress that we do not comment on the security-efficiency trade-off
concerning 0RTT modes, but rather offer the option to have such a mode for the
EAC protocol in principle. Whether chips and terminals eventually support this
mode and tolerate for example the replay problem, is case dependent. Still, the
examples of QUIC and TLS 1.3 indicate that, from an engineering perspective,
the desire to have such modes exists, and we provide a potential technical solution
for EAC.

Finally, let us point out that 0RTT transfers inherently include the small
risk that the transmitted data cannot be recovered by the receiver, e.g., if the
receiver has switched the semi-static key in the meantime. For common client-
server scenarios the client may thus have to re-transmit the data. This problem
is often outweighed by the efficiency gain in the regular cases. For smart card
applications it may be preferable to have the terminal first signal its support
of 0RTT and to communicate the current identifier of the semi-static key, thus
saving the card from performing unnecessary operations. This can be done with
the transmission of the certificate in the first step of the TA protocol, allowing the
card to decide which mode to execute. Strictly speaking, this would effectively
support a “lightweight 1RTT” protocol mode, still with significant efficiency
advantages.

3 Overview over Security Analysis

Due to space restrictions we only give a brief overview over our security results.
A comprehensive description of the model and the complete security proofs are
available in the full version [6].

3.1 Game-Based Approach

The main theorem (Theorem 2) is proven by a technique commonly referred
to as game-hopping. The proof is organized as a finite sequence of games
G0, G1, . . . , Gk which are played between a challenger and an adversary. Infor-
mally, the transitions from one game to the next are small changes to the envi-
ronment in which the adversary is situated, leading from a position where the
winning probability of the attacker is unknown (game G0) to a situation where
this probability can be determined (game Gk). The overall goal is to bound the
adversary’s advantage in winning the original security game G0 by the inverse
of any polynomial in the security parameter.

3.2 Security Model

The security model is situated within the game-based approach of Bellare and
Rogaway (BR model) [1] in which an adversary with full control over the network,
must be able to distinguish real session keys from independently drawn keys.
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To this end, the adversary can interact with protocol participants and instances
via oracles. Details on these queries follow shortly.

A single execution of EAC between a chip and a terminal may be followed
by multiple 0RTT handshakes between the parties. To model this situation, we
adopt the notion of multi-stage key exchange as originally introduced in the
related QUIC analysis of Fischlin and Günther [17]. This extension of the BR
model allows for multiple keys to be established within a single session. As
opposed to the multi-stage setting encountered in e.g. QUIC, we can make use
of a simplified setting here, since no key derived within a session is used to secure
communications in further stages of the same session. Thus, all keys derived in
a single session can be seen as independent.

Adversarial Interaction. To initiate a new session the adversary can call the
NewSession oracle, which takes a label to determine which of the two modes
(full EAC or 0RTT EAC) to execute. The adversary can query the Send oracle
to send protocol message to an instance, immediately getting the party’s reply
in return. The adversary is furthermore permitted to learn the long-term secret
keys of parties through a Corrupt oracle. Leakage of session keys and semi-static
secret keys, which are used to derive 0RTT session keys, is modeled through
Reveal and RevealSemiStaticKey queries, respectively.

To engage with the BR game (cf. Definition 2), the adversary may perform
Test queries for some session(s) of the protocol, resulting in either the receipt of
the corresponding session key or of an independently and uniformly chosen key,
the choice made at random. In order to win the game, the adversary must now
distinguish which kind of key it received.

Freshness of Session Keys. In order to avoid trivial attacks, some restric-
tions concerning the Test queries apply. Foremost, the party of a tested session
must not be corrupt, or else the adversary is trivially able to compute the ses-
sion key. Analogously, neither the tested session key may have been revealed to
the adversary nor the party’s semi-static secret key in case of the 0RTT mode.
Since both communication parties are supposed to derive the same session key
in a key exchange protocol, we must also rule out similar trivial attacks on the
communication partner of a tested session. To keep track if one of these cases
has occurred, a flag lost is introduced with initial value false. Here, communica-
tion partners are usually identified through session identifiers which determine
sessions belonging together.

Security Definitions. We follow the approach of Brzuska et al. [8,9], and
Fischlin and Günther [17], and separate the required security properties intoMatch
security and BR security. The conditions onMatch security guarantee that the ses-
sion identifiers enable the correct identification of partnered sessions, while partner
identifiers pid reflect the correct intended communication partners.Multi-Stage BR
security refers to Bellare-Rogaway-like key secrecy as discussed above, demanding
that for each stage, session keys appear to be fresh random keys.
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The subsequent analysis of the EAC+0RTT protocol is based on the following
security notions as described in [16] and adapted to our particular setting:

Definition 1 (Match security). Let n be the security parameter. Furthermore
let KE be a key exchange protocol and let A be a PPT adversary interacting with
KE in the following game GMatch

KE,A (n):

Setup. The challenger generates long-term public/private-key pairs with certifi-
cates for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to the
queries NewSession, NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey,
and Corrupt.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A (n) = 1, if at least one of the

following conditions holds:

1. There exist two labels label, label′ and stages i, j ∈ {1, . . . , M} such that
(label, i) �= (label′, j) but sidi = sid′

j �= ⊥, label.stage ≥ i, label′.stage ≥ j
and stexec,i �= rejected, and stexec,j ′ �= rejected, but Ki �= K′

i. (Different session
keys in partnered sessions, either within the same session at different stages
or across two sessions.)

2. There exist two labels label, label′ such that sidi = sid′
j �= ⊥ for some stages

i, j ∈ {1, . . .M}, role = initiator, and role′ = responder, but label.ownid �=
label′.pid or label.pid �= label′.ownid. (Different intended partner.)

3. There exist at least three labels label, label′ and label′′ and stages i, j, k such
that (label, i), (label′, j), (label′′, k) are pairwise distinct, but sidi = sid′

j =
sid′′

k �= ⊥ and for any two of the three sessions with role responder and mode
0RTT it holds that the owners are distinct. (More than two sessions share a
session id for some stage and this event was not caused by a simple replay
attack on the 0RTT protocol for the same responder.)

We say KE is Match-secure if for all PPT adversaries A the following advantage
function is negligible in the security parameter n: AdvMatch

KE,A := Pr
[
GMatch

KE,A (n) = 1
]
.

Definition 2 (BR Key Secrecy). Let n be the security parameter. Further-
more let KE be a key exchange protocol with key distribution D and let A be a
PPT adversary interacting with KE in the following game GBR,D

KE,A(n):

Setup. The challenger generates long-term public/private-key pairs and certifi-
cate for each participant U ∈ U , chooses the test bit btest

$←− {0, 1} at random,
and sets lost ← false.

Query. The adversary A receives the generated public keys and has access to the
queries NewSession, NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey,
Corrupt, and Test.

Guess. At some point, A stops and outputs a guess bguess.
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Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two (not
necessarily distinct) labels label, label′ and stages i, j ∈ {1, . . . ,M} such that
sidi = sid′

j, label.stkey,i = revealed, and label′.testedj = true. (Adversary has
tested and revealed the key in a single session or in two partnered sessions.)

A wins the game, denoted by GBR,D
KE,A = 1, if bguess = btest and lost = false. We say

that Multi-Stage BR key secrecy holds for KE if for all PPT adversaries A the
advantage function

AdvBR,D
KE,A(n) := Pr

[
GBR,D

KE,A(n) = 1
]

− 1
2

is negligible in the security parameter n. A key exchange protocol KE is further
called Multi-Stage BR-secure if KE is both Match-secure and BR key secrecy for
KE holds.

We note that the winning conditions are independent of the forward secrecy
property of the KE protocol. Forward secrecy is already taken into account in
the formulation of the Reveal and Corrupt queries and the finalization step of the
game.

3.3 Cryptographic Assumptions

In the following we will provide definitions of the basic cryptographic assump-
tions underlying the security proof of the EAC+0RTT protocol. In particular,
we introduce a double-sided (or symmetric) variant of the PRF-ODH assump-
tion, further referred to as mmPRF-ODH. We start by recalling what it means for
signatures and certificates to be existentially unforgeable under chosen message
attacks:

Definition 3 (EUF-CMA assumption). Let n be the security parameter. Fur-
thermore let S = (SKG,Sig,SVf) be a signature scheme and let A be a PPT
algorithm. We define the following EUF-CMA security game GEUF-CMA

Sig,A (n):

Setup. Generate a key pair (pk, sk) $←− SKG(1n) and give pk to the adversary A.
Query Phase. In the next phase A can adaptively query messages

m1,m2, . . . ,mq ∈ {0, 1}∗ with q ∈ N arbitrary, which the signing oracle
answers with σ1 ← Sig(sk,m1), σ2 ← Sig(sk,m2), . . . , σq ← Sig(sk,mq).

Output. At some point, A outputs a message m∗ and a potential signature σ∗.
Output 1 iff SVf(pk,m∗, σ∗) = 1 and m∗ �= mi for all i = 1, 2, . . . , q.

We define the advantage function

AdvEUF-CMA
S,A (n) := Pr

[
GEUF-CMA

Sig,A (n) = 1
]

We say that a signature scheme S is EUF-CMA secure, if for any A the advantage
function is negligible (as a function in n).
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The definitions for certification schemes work analogously. That is, a certifi-
cation scheme consists of three algorithms C = (CKG,CA,CVf) for creating the
authority’s key pair, the certification of a public key, and for verifying a public
key with respect to a certificate. We allow for multiple certifications of the same
public key but assume that each certification requests is accompanied by an
identifier id which will be included in certID. Then we can define unforgeability
as for signatures, implying that the adversary cannot forge a valid certificate for
a new public key or for a previously certified key under a new identity. We write
AdvEUF-CMA

C,A for the advantage of an adversary in the EUF-CMA game against a
certification scheme. In the EAC protocol the authority’s public key is given by
pkCVCA and the key generation, certificate creation and certificate verification
are often described implicitly only.

Furthermore, we can define message authentication codes (MACs) M =
(MKG,MAC,MVf) analogously, except that the key generation algorithm only
outputs a single secret key and the adversary does not receive any initial input
in the attack. We write AdvEUF-CMA

M,A for the advantage of an adversary A in this
game.

Finally, we need that the compression function Compr is collision-resistant.
That is, for an adversary A it should be infeasible to find group elements X �= Y
such that Compr(X) = Compr(Y ). We write AdvCRCompr,A to denote the advantage
of such an adversary A. We remark that we actually need a weaker requirement
from Compr, resembling second preimage resistance, namely that for a random
group element X it should be hard to find a colliding different Y , when given
the discrete logarithm of X with respect to the group.

Next, we define our version of the PRF-ODH assumption as a slight extension
to the original definition given in [25,26]. In accordance with the systematic
study of the PRF-ODH assumption by Brendel et al. [7], we term our notion
mmPRF-ODH, which corresponds to the strongest variant with multiple queries
to both ODH oracles.

Definition 4 (mmPRF-ODH assumption). Let G = 〈g〉 be a cyclic group of
prime order q with generator g, and let PRF : G×{0, 1}∗ → {0, 1}n be a pseudo-
random function with keys K ∈ G, input strings x ∈ {0, 1}∗, and output strings
y ∈ {0, 1}n, i.e., y ← PRF(K,x).

We define the following mmPRF-ODH security game GmmPRF-ODH
PRF,A between a

challenger C and a probabilistic polynomial-time (PPT) adversary A.:

Setup. The challenger C samples u $←− Zq and provides G, g, and gu to the
adversary A.

Query Phase 1. A can issue arbitrarily many queries to the following ora-
cle ODHu.
ODHu oracle. On a query of the form (A, x), the challenger first checks if

A /∈ G and returns ⊥ if this is the case.
Otherwise, it computes y ← PRF(Au, x) and returns y.

Challenge. Eventually, A issues a challenge query x�. On this query, C sam-
ples v $←− Zq and a bit b $←− {0, 1} uniformly at random. It then computes
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y�
0 = PRF(guv, x�) and samples y�

1
$←− {0, 1}n uniformly random. The chal-

lenger returns (gv, y�
b ) to A.

Query Phase 2. Next, A may issue (arbitrarily many and interleaved) queries
to the following oracles ODHu and ODHv.
ODHu oracle. On a query of the form (A, x), the challenger first checks if

A /∈ G or (A, x) = (gv, x�) and returns ⊥ if this is the case. Otherwise,
it computes y ← PRF(Au, x) and returns y.

ODHv oracle. On a query of the form (B, x), the challenger first checks if
B /∈ G or (B, x) = (gu, x�) and returns ⊥ if this is the case. Otherwise,
it computes y ← PRF(Bv, x) and returns y.

Guess. Eventually, A stops and outputs a bit b′.

We say that the adversary wins the mmPRF-ODH game if b′ = b and define
the advantage function

AdvmmPRF-ODH,G
PRF,A (n) := 2 ·

(
Pr[b′ = b] − 1

2

)

and, assuming a sequence of groups in dependency of the security parame-
ter, we say that a pseudorandom function PRF with keys from (Gn)n provides
mmPRF-ODH security if for any A the advantage AdvmmPRF-ODH

PRF,A (n) is negligible
in the security parameter n.

3.4 Analysis

Under the assumptions described above we can show that the EAC+0RTT pro-
tocol satisfies the required security properties:

Theorem 1. The EAC+0RTT protocol is Match-secure. For any efficient
adversary A we have

AdvMatch
EAC,A ≤ q2p · min{2−|nonce|, 1

q }
where qp is the maximum number of sub protocol executions, |nonce| is the bit-
length of each of the nonces rC , r′

C , r′′
C , and q is the order of the group from

which (ephemeral) keys are chosen.

Similarly, we can show key secrecy, and even argue forward secrecy with
respect to subsequent terminal corruptions. We note that forward secrecy with
respect to chip corruptions is impossible to achieve for EAC since the chip does
not generate ephemeral keys for executions but rather uses the long-term secrets:

Theorem 2. The EAC+0RTT protocol provides key secrecy (with responder for-
ward secrecy). That is, for any efficient adversary A there exist efficient adver-
saries B3,B4,B5,B10/11 such that

AdvBR,D
KE,A(n) ≤ 3q2p · max{2−|nonce|, 1

q } + AdvCRCompr,B3

+ AdvEUF-CMA
C,B4

+ qT · AdvEUF-CMA
S,B5

+ 4qp · qC · max{qp, qsskid} · AdvmmPRF-ODH
B10/11
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where qp is the maximum number of sub protocol executions, qs is the maximal
number of sessions, qC is the maximal number of chips, qT is the maximal num-
ber of terminals, |nonce| is the bit-length of each of the nonces rC , r′

C , r′′
C , and q

is the order of the group from which (ephemeral) keys are chosen.

Remark 1. It may come as a surprise that the unforgeability of the MAC does
not enter the security bound. This is due to the fact that we are “only” interested
in key secrecy in the above theorem, stating that at most the intended partner
can compute the session key and that seeing other session keys does not facilitate
this task. The former is ensured by the certification of the chip’s long-term key
and the fact that one cannot corrupt the chip. The latter is already captured by
the mmPRF-ODH assumption, which states that learning related values of the
PRF does not help to distinguish the challenge value from random.

Remark 2. Note that our analysis does not provide any form of key confirmation
nor entity authentication. In fact, the final MAC can be seen as providing exactly
these properties [18].

4 Variations

There exist several alternatives to implement 0RTT executions. For example,
the 0RTT keys may be established either in the fashion of a Diffie-Hellman key
exchange or—forgoing forward secrecy— rather from pre-shared keys (derived as
additional key material in the previous round). It is also interesting to investigate
different ways of handling negotiation failures in the 0RTT case. In the following,
we therefore present different choices for the 0RTT flow.

4.1 Diffie-Hellman Variant

The 0RTT EAC extension presented in Sect. 2.2 is based on a Diffie-Hellman
style key agreement. Similar implementations can also be found in Google’s
QUIC protocol and in earlier draft versions of TLS 1.3 (draft 12 [30] and earlier).

4.2 Pre-shared Key Variant

From draft 13 [31] onward, TLS 1.3 replaces the DH-based variant of 0RTT
handshakes by a pre-shared key (PSK) alternative. The pre-shared key is estab-
lished either out of band or, more commonly, in a preceding interaction between
server and client. Once a full handshake has been completed, the client receives
a so-called PSK identity from the server. The PSK was derived in the initial
handshake and can then be used by the client to derive keys for future (0RTT)
handshakes. To initiate a 0RTT handshake, the client simply incorporates the
early data and pre shared key extension in the ClientHello, followed by the
application data. After the successful processing of the data, the server then
responds with the ServerHello and a forward-secret key is then derived as in
the ordinary handshake.
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In principle, one could also imagine a similar approach for the EAC protocol,
using the pre-shared keying material instead of the shared Diffie-Hellman key.
Note, however, that this may require further changes to the EAC protocol (for
the additional keying material) and that, unlike the Diffie-Hellman version, this
does not provide any (terminal) forward secrecy.

4.3 Error Handling

Zero round-trip time may not be supported by all servers, or there may occur
errors in trying to decrypt the early data. Here we discuss how such problems
are dealt with in other settings, and how one can proceed in the EAC case.

Google’s QUIC Protocol. From a design perspective, all handshakes in QUIC
are also 0RTT handshakes, of which some may fail. The server replies with a
ServerHello if all necessary information to complete the handshake was con-
tained in the preceding ClientHello. If this was not the case, the server sends
a rejection message encompassing information that allows the client to make
progress in a next handshake attempt. The type and extent of information sent
along with the rejection message can be chosen individually by the server but
must not prevent clients from establishing a valid handshake within a reasonable
time frame.

TLS 1.3 Draft 20. Upon receiving a 0RTT handshake request with encrypted
early data, the server can answer in three ways: It may either disregard the 0RTT
extension and return no response, causing the client to fall back to the standard
1RTT handshake. Or it may return the empty extension, thereby signalling
to the client that prior validation checks were successful and that the server
intends to process the received early data. Furthermore, the server may send a
HelloRetryRequest to the client asking it to send a ClientHello without the
early data extension.

0RTT EAC. In case of failure, we expected the client to fall back to a full EAC
protocol execution consisting of terminal and chip authentication. This may seem
like an expensive step in view of performance, especially if the semi-static key
used by the client is simply outdated. If the terminal does not support 0RTT,
fall back to full EAC is clearly inevitable.

Furthermore, we emphasize that it is in general not possible for terminals to
identify outdated keys. In order for a terminal to detect this (i.e., to distinguish
unknown keys from outdated keys), it must keep at least the last used value of
pksemi

T when updating to a new value pksemi
T

′
. Keeping state is commonly seen

as not recommendable, if not infeasible, in most use cases. However, we note
that a chip receives all the data it needs to initiate future 0RTT handshakes
with a 0RTT-supporting terminal during the terminal authentication phase of
the EAC protocol. Therefore, it is sufficient for the chip to carry out the TA
phase before the 0RTT handshake can be re-tried. In light of this, it is also
conceivable for terminals to proceed similarly to the mechanism deployed in the
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QUIC protocol and to reply with the current authenticated semi-static key, i.e.,
to send certT , pksemi

T , sT where sT ← Sig(skT , pksemi
T ).

5 Conclusion

The Extended Access Control (EAC) protocol is a universal solution for key
establishment between two parties. In this work, we presented a 0RTT mode
for the EAC protocol which allows to reduce the latency of recurring connec-
tions. It is noteworthy that this 0RTT mode can be added as an extension with
minimal changes to the original protocol. We further showed that EAC+0RTT
can be proven secure in the multi-stage setting of the Bellare-Rogaway model.
Thus, the modified protocol still achieves the common security properties of an
authenticated key exchange protocol.
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4. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04474-8 3
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