
Mirage: Toward a Stealthier and Modular
Malware Analysis Sandbox for Android

Lorenzo Bordoni, Mauro Conti, and Riccardo Spolaor(B)

University of Padua, Padua, Italy
lorenzo.bordoni@studenti.unipd.it,

{conti,riccardo.spolaor}@math.unipd.it

Abstract. Nowadays, malware is affecting not only PCs but also mobile
devices, which became pervasive in everyday life. Mobile devices can
access and store personal information (e.g., location, photos, and mes-
sages) and thus are appealing to malware authors. One of the most
promising approach to analyze malware is by monitoring its execution
in a sandbox (i.e., via dynamic analysis). In particular, most malware
sandboxing solutions for Android rely on an emulator, rather than a
real device. This motivates malware authors to include runtime checks
in order to detect whether the malware is running in a virtualized envi-
ronment. In that case, the malicious app does not trigger the malicious
payload. The presence of differences between real devices and Android
emulators started an arms race between security researchers and mal-
ware authors, where the former want to hide these differences and the
latter try to seek them out.

In this paper we present Mirage, a malware sandbox architecture for
Android focused on dynamic analysis evasion attacks. We designed the
components of Mirage to be extensible via software modules, in order
to build specific countermeasures against such attacks. To the best of
our knowledge, Mirage is the first modular sandbox architecture that is
robust against sandbox detection techniques. As a representative case
study, we present a proof of concept implementation of Mirage with a
module that tackles evasion attacks based on sensors API return values.

1 Introduction

In recent years, mobile devices like smartphones, tablets and smartwatches have
spread rapidly, thanks to their portability and their affordable price. These
devices became everyday multi-purpose tools and, consequently, a receptacle
for personal information. Among mobile operating systems, Android is the lead-
ing platform, with a market share of 86% in 2016 [12], and it is growing as a new
target for malware. The Android operating system uses a modified version of the
Linux kernel, where each app runs individually in a secured environment, which
isolates its data and code execution from other apps. The operating system medi-
ates apps’ access requests to sensitive user data and input devices (i.e., enforcing
a Mandatory Access Control). Without any permission, an app can only access
few system resources (e.g., sensors, device model and manufacturer) [3].
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 278–296, 2017.
DOI: 10.1007/978-3-319-66402-6 17



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 279

Although malware could escalate privileges by exploiting vulnerabilities in
the operating system, new threats arise also from apps that run unprivileged.
Malware for Android often harms users by abusing the permissions granted to
it. For example, malware can cause financial loss by leveraging features such as
telephony, SMS and MMS, while with access to camera, microphone, and GPS
it can turn a smartphone into an advanced covert listening device. Moreover,
the leak of confidential data, such as photos, emails and contacts, threatens
users privacy as never before [40]. Attackers usually spread malware infections
by repackaging an app to contain malicious code, and by uploading it to Google
Play (i.e., the official marketplace) or alternative marketplaces [42]. A possible
approach to reveal malicious Android apps consists of analyzing them one at a
time. However, this may be fighting a losing battle: Google Play counts more
than 2.2 million apps today [32]. Thus, in recent years, researchers attention
moved to the study of batch (i.e., non-interactive) analysis systems [17,34,35].

Malware analysts can examine suspicious apps through static analysis and
dynamic analysis. On one hand, static analysis consists of inspecting the
resources in the packaged app (e.g., manifest, bytecode) without executing it.
Unfortunately, an adversary can hinder static analysis by using techniques such
as obfuscation, encryption, and by updating code at runtime. On the other hand,
dynamic analysis consists in monitoring the execution of an app in a test system.
During such analysis, the sample (i.e., an app submitted for the analysis) runs
in a sandbox. A sandbox is an isolated environment where malware analysts can
execute and examine untrusted apps, without risking harm to the host system.

Academic and enterprise researchers independently developed many mal-
ware analysis systems for Android. For example, Google introduced Bouncer,
a dynamic analysis system that automatically scans apps uploaded to Google
Play [18]. Such analysis systems run long queues of batch analyses in parallel,
and typically do not rely on real devices but on Android emulators. Unfortu-
nately, emulators present some hardware and software differences (i.e., artifacts)
with respect to real devices, which can also be recognized at runtime by apps:
By detecting these artifacts, an app can easily recognize whether it is running
or not on a real device. A malicious app can exploit emulator detection to evade
dynamic analysis and show a benign behavior, instead of the malicious pay-
load. Relying on such mechanism, malware authors might spread a new gen-
eration of malicious apps, which they would be hardly detectable with current
dynamic analysis systems. While researchers keep improving dynamic analysis
techniques, they are overlooking the accuracy of virtualization. In current mal-
ware analysis services for Android, the coarseness of the underlying emulator
hinders researchers efforts.

Contribution. The contribution of this paper is a step towards the development
of a stealthier malware analysis sandbox for Android, which reproduces as much
as possible the characteristics of real devices. Our goal is to show malware the



280 L. Bordoni et al.

characteristics of an execution environment that appear to be real but are not
actually there.1 In this paper, we make the following contributions:

– We define six requirements to design a sandbox that can cope with current
evasion attacks, and is easy to evolve in response to novel detection tech-
niques.

– We propose Mirage, an architecture that fulfills all these requirements.
Researchers can use Mirage to implement more effective malware analysis
sandboxes for Android.

– We describe our proof of concept implementation of Mirage.
– We evaluate the effectiveness and the modularity of Mirage by tackling a

specific and representative case: address sandbox detection techniques that
exploit sensors capabilities and events.

– We show that Mirage, with our sensors module, can cope with most evasion
attacks based on sensors that affect current dynamic analysis systems.

Organization. The rest of the paper is organized as follows. We start by present-
ing related work in Sect. 2. In Sect. 3, we define six requirements that we believe
are essential to develop a malware analysis sandbox for Android. In Sect. 4, we
present the components of Mirage. As a representative case study, in Sect. 5, we
describe our proof of concept implementation of Mirage which addresses evasion
attacks based on sensors. In Sect. 6, we compare our system with state of the
art malware analysis services and we discuss its effectiveness in Sect. 7. Finally,
Sect. 8 concludes the paper.

2 Related Work

Security researchers put a lot of effort in detecting PC virtualization [26,29].
However, in the era of cloud computing, a desktop or server operating system
running inside a virtual machine is no longer a sign that dynamic analysis is
taking place. Regarding mobile devices, nowadays malware analysts mainly rely
on emulators, so malware can use emulator detection to evade dynamic analysis.
Therefore, we strongly believe that evasion attacks on mobile emulators will be
a hot topic for researchers in the years to come.

In what follows, we report the work related to the domain of sandbox detec-
tion. In [36], Vidas et al. described four classes of techniques to evade dynamic
analysis systems for Android. The authors categorize such techniques with
respect to differences in behavior (e.g., Android API artifacts, emulated network-
ing), in CPU and graphical performances, in hardware and software components
(e.g., CPU bugs), and in system design. Similarly, Petsas et al. in [28] presented
evasion attacks against Android virtual devices. Jing et al. in [15] introduced
Morpheus, a software that automatically extracts and rank heuristics to detect
Android emulators. Morpheus retrieves artifacts from real and virtual devices,

1 Like a mirage in a sand(box) desert, and this motivates the name of our proposed
solution.



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 281

and it compares the retrieved artifacts to generate heuristics. Morpheus derived
10,632 heuristics from three out of thirty-three sources of artifacts. Maier et al.
in [19] presented a tool for Android called Sand-Finger, which is able to collect
information from sandboxes that malware can use to evade dynamic analysis.

Some industry presentations examined the sandbox detection problem as
well. Strazzere, in [33], proposed detection techniques based on system proper-
ties, QEMU pipes and content in the device, which he embedded in an app for
Android. Oberheide et al., in [24], and Percoco et al., in [27], showed that Google
Bouncer is not resilient against evasion attacks, and an attacker can bypass it
to distribute malware via Google Play marketplace. In addition to fingerprint-
ing Bouncer, the former managed to launch a remote connect-back shell in its
infrastructure.

Researchers proposed many dynamic malware analysis systems for Android
that rely on an emulator. Few examples of such systems are CopperDroid [34],
CuckooDroid [6], DroidBox [16] and DroidScope [41]. Other systems such as
AASandbox [5], Andrubis [17], Mobile-Sandbox [31], SandDroid [30] and Trace-
Droid [35] perform dynamic analysis on an emulator as well, but they also use
static analysis to improve their performances. In addition to performing both sta-
tic and dynamic analysis, authors in [37] proposed to analyze samples using an
emulator that they enhanced to tackle some evasion attacks. Although authors
in [37] focus on how to perform malware analysis, it presents some interest-
ing ideas against sandbox detection techniques. An interesting idea is to use a
mixed infrastructure composed of real and virtual devices. Mutti et al. in [22]
presented BareDroid, a malware analysis system based on real devices, instead
of emulators, which consequently is more robust to evasion attacks. The authors
estimated that a BareDroid infrastructure would cost almost two times the cost
of a system based on emulators with the same capabilities. However, a virtual
infrastructure is more elastic when compared to a cluster composed only of phys-
ical devices, which may suffer from under or over-provisioning.

To the best of our knowledge, the work by Gajrani et al. [10] is the most
similar to our proposal. After giving a general overview on emulator detection
methods, the authors present DroidAnalyst, a dynamic analysis system that is
resilient against some of them. Their system can hinder evasion attacks based on
device properties, network, sensors, files, API methods and software components.
We share a common goal with the authors of [10]: the development of a malware
sandbox for Android resilient against evasion attacks. However, we identified
in [10] the following limitations (that we instead overcome with our proposal):

– Their analysis about artifacts in Android sensors API is not exhaustive. For
example, they do not take some of our findings (see Sect. 5.2) into considera-
tion.

– They propose a solution that consists of a set of patches to their analysis
system based on QEMU. Therefore, it is not a general architecture like our
proposal.

– DroidAnalyst uses an approach based on emulator binary and system image
refinement, which does not allow the same emulator to impersonate two



282 L. Bordoni et al.

different real devices, unless they are modified again and restarted. Con-
versely, the requirements of Mirage (presented in Sect. 3) discourage any mod-
ification to the emulator, since the sandbox would be less flexible and hard
to maintain.

To evaluate the effectiveness of our sandbox detection heuristics based on sensors,
we tried to submit to DroidAnalyst our sample, i.e., the SandboxStorm app (see
Sect. 6). Unfortunately, the DroidAnalyst dynamic analysis subsystem was under
maintenance, and is still not available at the time of writing.

3 Sandbox Requirements

After studying state of the art sandbox detection techniques [15,19,28,36], we
define six key requirements that we believe are essential to develop a malware
analysis sandbox for Android. Our goal is to derive the design of an architecture
from the requirements, which can consist of one or more parts (i.e., components).
We formulate the first three requirements on the basis of desired features to cope
with the evasion attacks described in the aforementioned work (see Sect. 2).
Moreover, we formulate three additional requirements taking into account that
the sandbox should be flexible. The requirements are:

– Stealthiness of sandbox components: The components of the sandbox
shall be unnoticeable by malware. Otherwise, an adversary could recognize
a component of the sandbox, and evade dynamic analysis. This may seem a
trivial requirement, but it serves as a cornerstone for our work. Nowadays,
virtualized environments are not realistic and easily detectable [20,26,28,29].
Unfortunately, adding new countermeasures in such environments to achieve
stealthiness produces new artifacts (e.g., processes and files). Such artifacts
allow malware authors to fingerprint the whole system, causing the ineffec-
tiveness of the countermeasures in place to make the virtualized environment
stealthy. If the sandbox is not fully undetectable, it should be able to hide its
imperfections, hiding them to the samples.

– Consistency of bogus data: The sandbox shall provide realistic and consis-
tent information to the sample throughout the analysis. Otherwise, an adver-
sary could detect the sandbox by exploiting the discrepancies in information
that comes from different sources. To hide the artifacts in the emulator, the
sandbox must produce a large amount of fake data. In this case, random gen-
eration is not an option, since it is prone to introduce discrepancies in data.
For example, telephone numbers in contacts shall be composed of a country
calling code plus a fixed number of digits [36]. A possible solution could be
to use data collected from real mobile devices. In addition to that, the mod-
ules in the sandbox that inject such data must coordinate with each other to
mimic a realistic environment.

– Monitor known evasion attempts: The sandbox should be able to notice
whenever a sample is likely exploiting known detection techniques. Even
if some artifacts are obvious but not fixable with nowadays technologies,



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 283

it is worth to log all the suspicious attempts and act in an alternative way.
However, when an app looks for artifacts, it does not strictly means that that
app is trying to evade the analysis.

– Modularity of sandbox components: The components of the sandbox
shall be modular with respect to detection techniques that malware exploits.
We believe this is a key requirement, since researchers keep reporting cutting-
edge [15,19,28,36] evasion attacks every year. Researchers shall have the
opportunity to develop, customize and publish new parts in a modular fash-
ion, to keep up with the state of the art. A system designed to be open to
new contributions makes it also improvable, in order to cope with emerg-
ing threats. Furthermore, since the Android operating system and its SDK
change rapidly, sometimes new features break the compatibility with old ones
that were available in previous versions. Hence, it is necessary to divide the
components internally into modules. This allows to redesign and implement
again just the modules that the changes affect.

– No modifications to the Android source code: The sandbox should
not require any change of the Android source code. Although it would pos-
sible to alter APIs by modifying the operating system, compiling Android
requires a significant amount of computational resources. In fact, a single
build of an Android version newer than Froyo (2.2.x) requires more than two
hours on a 64-bit consumer PC, plus at least 250 GB (including 100 GB for
a checkout) of free disk space [1]. Even with the necessary resources and a
semi-automated workflow, maintaining several versions simultaneously would
be an overwhelming task.

– No modifications to the Android emulator: The sandbox should not
require significant modifications to the emulator. Researchers are using differ-
ent hypervisors and virtual machines for dynamic malware analysis, therefore
we cannot focus on a specific technology. For example, systems like Copper-
Droid [34] use virtual machine introspection to reconstruct the behaviors of
malware, hence such systems are potentially adaptable to any emulator. Forc-
ing the scientific community to port the existing software to meet a modified
emulator would likely lead to failure in the adoption.

4 Mirage: Our System Architecture

In this section we present Mirage, our architecture for a malware analysis sand-
box robust against evasion attacks. One of the key feature of Mirage is that it
is composed of processes that execute inside the operating system, and software
that runs outside the emulator. This feature allows Mirage to be not tied to a
specific analysis system.

In Fig. 1, we illustrate the four main components of Mirage which are the
Methods Hooking Layer (Sect. 4.1), the Events Player (Sect. 4.2), the Coordina-
tor and Logger (Sect. 4.3), and the Data Collection App (Sect. 4.4).



284 L. Bordoni et al.

Coordinator 
and Logger

Methods 
Hooking Layer

Sample

Android virtual device
Mirage

Component name

Legend

Events Player

Data 
Collection App

Communication

Component name

Communication 
and interception

Malware 
analysis 
system

Android 
API

Component of Mirage

Not part of Mirage

Fig. 1. Mirage architecture, highlighting its components and their interactions.

4.1 Methods Hooking Layer

The first component of Mirage architecture is the Methods Hooking Layer. This
component executes as a process in the Android operating system. The main
function of Methods Hooking Layer is to intercept calls to methods of Android
API and manipulate their return value. Such manipulation occurs just whenever
the original returned value may reveal the presence of the underlying emulator.
Relying on this component, we can address the majority of behavioral differ-
ences. As an example, we can return a well-formed telephone number when a
sample asks for TelephonyManager.getLine1Number(), instead of the default
one (which in an emulator always begin with 155552155, followed by two random
digits). Since it is possible to predict which artifacts the Methods Hooking Layer
introduces, we can use such component to hide them as well. Moreover, hooked
methods should perform minimal computation to reduce the risk of detection
via computational timing attacks.

The code of the Methods Hooking Layer executes directly on a compiled oper-
ating system image. Hence, such code is debuggable without modifying and com-
piling every time the Android source code. In compliance with the modularity of
sandbox components requirement (see Sect. 3), the modular sub-architecture of
the Methods Hooking Layer makes it flexible with respect to changes. The Meth-
ods Hooking Layer divide hooks by target artifacts, thus they are editable with-
out touching the other hooks. Moreover, such sub-architecture allows researchers
to share their proof of concepts or mature modules in a common framework. How-
ever, system constants expose some artifacts as well (e.g., the ones contained in
android.os.Build).

4.2 Events Player

Real mobile devices generate many events in response to external stimuli, hence
hooking methods calls and manipulation their return value is not enough to
simulate such asynchronous behavior. In order to make our runtime environment
as realistic as possible, we need the Events Player replay recorded or generated
streams of events in the emulator. Besides the touch screen, the main sources of
events are sensors (e.g., accelerometer, thermometer) and multimedia interfaces
(e.g., camera, microphone).

The Events Player replays tidily the streams of events, respecting their
order. The accuracy of values domain is crucial to build a stealthy sandbox.



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 285

Indeed, the sandbox would be vulnerable to detection and fingerprinting,
whether the injected events do not resemble the ones that come from a real
sensor (e.g., they are out of range). Similarly to the Methods Hooking Layer,
the Events Player uses only tools from Android, Android SDK and emulators,
without requiring any modification.

4.3 Coordinator and Logger

The Coordinator and Logger, as it results clear from its name, has two roles: to
coordinate and to log. Its first role as coordinator consists in ensuring consistency
of bogus data, which the other components inject into the emulator. Whenever
the Methods Hooking Layer loads a new module, or when the Events Player
opens an events stream, we have to instruct the coordinator on how to manage
such hooks or events stream in accordance with the other modules. A deep study
of the interaction between Android features lead to a set of rules, which the
coordinator feature is able to interpret. For example, data that sensors acquire
is interdependent (e.g., accelerometer and GPS). Moreover, actuators on the
device (i.e., the screen, the notification LED, the flash, speakers and the vibrator)
can also influence data that sensors record (e.g., speakers may influence the
microphone).

The second role of this component consists in logging what happens inside
the sandbox. This logging feature of the Coordinator and Logger is useful to have
an insight on which detection techniques the samples are probably exploiting.
In addition to that, the logging feature is even more useful to signal whenever a
sample attempts to use a known technique which the sandbox is not able to cope
with yet. In this way, Mirage is able to monitor all possible evasion attempts. The
Methods Hooking Layer reports to the Coordinator and Logger every suspect or
evidence about the analyzed sample. The Coordinator and Logger could manage
the analysis process entirely. As an example, this component could handle tasks
such as sample submission or the presentation of results.

4.4 Data Collection App

The task of the Data Collection App is to collect information from real mobile
devices. Then, the Coordinator and Logger will inject such information into the
Methods Hooking Layer and into the Events Player. The goal of this process is
to hide artifacts in the emulator. Indeed, acquiring data from different smart-
phones and tablets models allows to create emulator instances with different
characteristics. At the same time, this approach also reduces the risk that mal-
ware authors detect a particular image. The app is also responsible of capturing
events streams on the real device, and store them in a compact and easy to
replay representation.

The Data Collection App can retrieve information from real mobile devices
available in a laboratory, but a real advantage would be to collect data with
crowd-sourcing. On one hand, in a laboratory scenario researchers could ask
their colleagues or students to kindly give their help by installing the app



286 L. Bordoni et al.

and uploading data. Two examples of existing loggers for Android used for
research purposes are DeviceAnalyzer [39] and DELTA [7]. On the other hand,
in a crowd-sourcing scenario companies could include the Data Collection App in
their mobile app. Adopting a freemium pricing strategy, companies can freely dis-
tribute their software for free in exchange for data collected from the device. With
an app with a wide user base, it is also possible to acquire “disposable” data on
demand. As an example, an antivirus app may offer to the user an extension of the
license or a month of premium features, if she agrees to share with the company her
sensors events for the next ten minutes. In both scenarios, we highlight that data
collection must be respectful of the privacy of the participants, e.g., applying per-
turbation on collected data [11]. Such perturbation is meant to alter information
in such a way that avoids to expose the contributing user’s identity (e.g., biomet-
rics, habits) and, at the same time, preserves the characteristics of the device.

5 A Representative Case Study: Tackling Evasion
Attacks Based on Sensors with Mirage

In this section, we present the development process of a sensors module for
Mirage, i.e., a collection of modules that emulates sensors in one or more Mirage
components. Designing an effective countermeasure against evasion attacks
requires a deep understanding of the problem. In this case study, we analyzed the
differences in sensors characteristics between real devices and emulators. This
case study has two purposes: (i) to briefly describe how we implemented Mirage,
and (ii) to show that Mirage is effective against the proposed detection heuristics
based on sensors. With a proof of concept implementation, we propose also an
approach to carry out an investigation on evasion attacks. The final goal of such
investigation is the development of a module for Mirage. In this way, researchers
can extend Mirage to tackle novel evasion attacks, by following the workflow we
present in this section.

In what follow, we discuss some choices about the components of our Mirage
implementation. First, the Methods Hooking Layer rely on the Xposed frame-
work as a methods hooking facility [38]. Xposed is an open source tool that
allows to inject code before and after a method call. It is worthy of note that
other hooking tools, such as Cydia Substrate [8], adbi [21] serve the same pur-
pose. In particular, we preferred Xposed because Cydia Substrate is not open
source and adbi supports only the instruction sets of ARM processors. Xposed
by its nature is detectable, since it introduces some artifacts. However, subvert-
ing methods hooking detection techniques is not difficult, as pointed out in [4].
Secondly, the Events Player relies on a Telnet console in QEMU, which allows to
remotely inject sensors events into the emulator. During our preliminary stud-
ies, we considered multiple alternative approaches. Unfortunately, most of the
alternative approaches we investigated are not viable due to our requirements in
Sect. 3 (e.g., modifications to the emulator) or because they are not compatible
with recent Android versions (e.g., RERAN [14]). Although this is a QEMU-
specific feature, other emulators (e.g., Genymotion, Andy) offer a similar events



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 287

injection mechanism. Finally, we develop a custom Data Collection App and we
implement the remaining components as a set of scripts.

The case study we report in this paper is focused on sensors artifacts. We
chose detection techniques based on sensors for three reasons:

1. Researchers pointed the feasibility of such detection techniques [28,36] with-
out providing any effective countermeasure.

2. A possible countermeasure against such detection techniques involves multi-
ple components in our system (i.e., the Methods Hooking Layer, the Events
Player, the Coordinator and Logger, the Data Collection App).

3. Accessing motion, position and environmental sensors do not require any per-
mission. This means that the sensors-based detection techniques are stealth-
ier than the ones that do not rely on sensors. In fact, a popular app can be
repackaged to include a sensors-based detection technique, without altering
the original permission list in its manifest.

Our workflow starts with threat modeling (described in Sect. 5.1), continues
with artifacts discovery and analysis (Sect. 5.2), and ends with the implemen-
tation of the module (Sect. 5.3). By following the above steps, researchers can
progressively improve Mirage, toward an ideally undetectable sandbox.

5.1 Threat Model

In our threat model, we assume an attacker that is running a malicious app
on a mobile device, with full access to the Android sensors API. The sensors
API is composed of SensorManager, Sensor, and SensorEvent classes, plus
the SensorEventListener interface. An instance of SensorManager corresponds
to the sensor service, which allows to access to the set of sensors available on
the device. An instance of Sensor is related to a specific sensor, which can be
hardware or software-based. The methods of the Sensor object permit to identify
sensor capabilities. The SensorEvent class represents a single sensor event, that
contains: the sensor type, the sensor state (i.e., value and accuracy), and the
event timestamp. The SensorEventListener is a Java interface to implement
in order to receive notifications whenever a sensor state changes. In our threat
model, we also assume that the malicious app has a limited timespan before
deciding whether to execute the payload or to remain dormant. In that time
interval, the malicious app can monitor some sensors events.

5.2 Artifacts Analysis

Artifacts are imperfections that make a sandbox distinguishable from a real
device. To put ourselves in attacker’s shoes, we studied the Android sensors
API in order to find out which sensors artifacts malware could leverage to evade
dynamic analysis. First, we analyzed real smartphones such as LG/Google Nexus
5 and 5X, Samsung Galaxy S5 and S6, Galaxy Ace Plus, and Asus ZenFone 2.
These real devices were running different operating system versions, ranging



288 L. Bordoni et al.

from Android 2.3 (API level 9) to Android 7 (API level 24), which is the most
recent release at the time of writing. Then, we analyzed how emulators supports
sensors. In this analysis, we considered Android SDK’s emulator and Genymotion
(free plan), given their popularity among developers. On one hand, the Android
SDK provides a mobile device emulator based on QEMU (QEMU from now on).
Such emulator uses Android Virtual Device (AVD) configurations to customize
the emulated hardware platform. On the other hand, Genymotion is a third
party emulator, but it is compatible with Android SDK tools. Genymotion allows
developers to control features like the camera, the GPS and battery charge levels.
Most of the features of Genymotion are also manageable through a Java API [13].

The first discrepancy we noticed is that both emulators support a limited
set of sensors. The developers of Android defined some types of sensors (i.e.,
the ones whose names begin with android.sensor.*). For such sensors, the
getType method returns an integer number less than or equal to 100. Moreover,
vendors can introduce custom sensors, i.e., the sensors for which getStringType
returns a string that begins with com.google.sensor.* in the Nexus 5X. Given
this fact, we can argue that a malware author who wants to target as much users
as possible will not rely on device-specific sensors. In addition to that, malware
authors have to focus on sensors available in API level 9 in order to target most
of the devices (approximately 99.9% of the active devices according to Google
Play [2]).

In our analysis, we considered the sensors embedded in real devices and the
ones simulated by virtual devices. For each sensor, we called all methods available
in the Sensor class. As an example, in Table 1 we show the discrepancies in terms
of return values for accelerometer methods on real and emulated Nexus 5X. In
Table 1, we also include the return values for our proposal, which we discuss in
details in Sect. 6. Malware authors can rely on those discrepancies to develop
simple detection techniques (a single conditional statement is enough). We refer
to these techniques as static heuristics, since they exploit an artifact due to the
Android API, which is not related to events streams. The accelerometer, thanks
to its wide availability, is particularly well suited for broad-spectrum heuristics.

Table 1. Example of return values for Nexus 5X accelerometer in real devices, vanilla
emulators (i.e., QEMU and Genymotion) and QEMU enriched with Mirage.

Device getName getVendor getFifoMax-EventCount

Real BMI160 accelerometer Bosch 5736

QEMU Goldfish 3-axis

Accelerometer

The Android

Open Source

Project

0

Genymotion Genymotion

Accelerometer

Genymobile 0

QEMU + Mirage BMI160 accelerometer Bosch 5736



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 289

In the literature, researchers already pointed out the feasibility of dynamic
heuristics, in which they exploited sensors events that emulators generate [28,36].
We investigated further: for each real mobile device at our disposal, we regis-
tered callback methods to receive changes in sensors state. By applying the
option SENSOR DELAY FASTEST, we got those states as fast as possible. In our
experiments, we observed that collecting an incoming stream of events for ten
seconds is enough for our purpose. We collected sensors data from real mobile
devices in three different scenarios: lying on a table, while typing and leaving
them in a pocket while walking. Then, we repeated the data collection task on
QEMU and Genymotion emulators. Such emulators allow only two modes of
screen rotation: portrait and landscape.

During our experiments, we were able to observe some differences between
real and emulated motion sensors. In real mobile devices, we noticed that motion
sensors (e.g., the accelerometer) quickly oscillate among a small range of values,
even when the device is lying on a flat surface. In emulators, we noticed that it is
possible to stimulate the accelerometer by changing from landscape to portrait
mode. In contrast, without rotating the screen, each motion sensor in emulators
produce the same value. Table 2 records the constant values that each sensor
in QEMU produces. It is worthy of note that some sensors in QEMU produce
values only along one axis, so in Table 2 we mark the cells related to the other
two axes as n/a.

Table 2. Constant values produced by sensors in QEMU, grouped by screen
orientation.

getStringType Portrait Landscape

values[0] values[1] values[2] values[0] values[1] values[2]

android.sensor. accelerometer 0 9.77622 0.813417 9.77622 0 0.813417

magnetic field 0 0 0 0 0 0

light 0 n/a n/a 0 n/a n/a

pressure 0 n/a n/a 0 n/a n/a

proximity 1 n/a n/a 1 n/a n/a

relative humidity 0 n/a n/a 0 n/a n/a

To show the detectability of the analyzed emulators, we implemented a fast
dynamic heuristic that observes the variance of accelerometer values. Since by
default such emulators are able to produce at most two different accelerome-
ter values along one axis, if the accelerometer produces at least three different
values it is likely to be on a real device. In general, static heuristics are faster
than dynamic ones, because static heuristics do not require looping or waiting.
Hence, the execution time of our dynamic heuristics depends on how fast sensors
generate events, since it needs to retrieve at least three values in order to decide.
Unfortunately, dynamic heuristics that rely on sensors are harder to tackle than
static ones. Indeed, an ideal countermeasure against such dynamic heuristics
consist in simulating or replaying events.



290 L. Bordoni et al.

5.3 Module Implementation

In order to tackle the evasion attacks in Sect. 5.2 with Mirage:

– We included in our Data Collection App the code we used for artifacts analysis.
– We patched the discrepancies in return values using information we obtained

from the Data Collection App.

To address static heuristics, we added to the Methods Hooking Layer our knowl-
edge about the characteristics of real sensors. In fact, the Methods Hooking Layer
can intercept methods calls directed to the Sensor class, returning values that we
collected from sensors of a real device. Xposed executes a method before (pre-
method) and after (post-method) each method hooked [38]. The pre-method
can evaluate and alter the arguments, or it can return a custom result. In our
implementation, we used only post-methods. In fact, first we allow the origi-
nal methods to execute, then we inspect the sensor type, and finally we alter
its return value accordingly. After defining an hook for each method of Sensor
class, for every available sensor type, Mirage is able to mimic a real device.

In our proof of concept implementation, we leveraged QEMU to develop the
replay mechanism of Events Player. This is because QEMU exposes a console
via Telnet and it supports more sensors than Genymotion. Such console allows
to control the virtualized environment, including sensors. The syntax of a Telnet
command is telnet <host> <console-port>, where the default port is 5554.
Once connected, we can set the values for a given sensor using the command
set <sensorname> <value-a>[:<value-b>[:<value-c>]]. We implemented a
prototype that reads a stream of values from a file and injects such stream
(i.e., replay) into a running emulator. Under these settings, the Coordinator and
Logger ensures that the Events Player replays for each sensor a sequence that
is part of the same stream. This solution is adaptable to all Android emulators
that expose a similar injection mechanism (including the premium releases of
Genymotion), and it does not require any modification to the emulator.

6 Evaluation

For the evaluation of our proposal, we developed the SandboxStorm app. Such
app includes the static and dynamic heuristics in Sect. 5.2, thus it easily detected
both QEMU and Genymotion emulators. To show that similar artifacts are also
present in state of the art systems, we submitted our SandboxStorm app both to
offline and online malware analysis services. We picked CuckooDroid and Droid-
Box as offline dynamic analysis software, mainly because they are open source.
CuckooDroid adds to the Cuckoo Sandbox a QEMU-based virtual machine to
execute and analyze Android apps [6]. DroidBox relies on QEMU and it tries
to understand the sample’s behavior by repackaging the app with monitoring
code [16]. Then, we picked some state of the art online malware analysis services
from [23]. Among them SandDroid [30] and TraceDroid [35] were in working
order. Moreover, we had the opportunity of testing the SandboxStorm app also



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 291

on Andrubis [17] before its shutdown. Unfortunately, CopperDroid [34] was stuck
on a long queue of unaccomplished analysis at the time of our evaluation.

In Table 3, we summarize the results we obtained by running our SandboxS-
torm app in the aforementioned malware analysis systems. The results show
that both static and dynamic heuristics of our SandboxStorm app successfully
detected the presence of an underlying emulator. In the worst case, our dynamic
heuristic took about 74 seconds to detect that the app is running on a virtual
device. However, we believe that such amount of time is still negligible in this
scenario, since a malicious app can delay the start of its malicious behavior by
74 seconds. It is worthy of note that Andrubis and TraceDroid did not made
available any sensor. However, the absence of sensors is a clear evidence that the
sample is not running on a real device.

In order to evaluate our sensors module, we executed the SandboxStorm app
in QEMU enhanced with our proof of concept implementation of Mirage. Once
distributed, our Data Collection App can retrieve more information from real
smartphones and tablets, in order to build several profiles. The static heuristics
in SandboxStorm app failed to detect Mirage, because its Methods Hooking Layer
manipulates the return values of methods on the fly. In Table 1, we compare
some artifacts in vanilla emulators (see Sect. 5.2) to the corresponding values we
collected during the execution inside Mirage. These values are identical to the
ones provided by a real Nexus 5X. Moreover, the methods in Sensor class return
realistic values for each sensor in the emulator. Even our dynamic heuristic in
SandboxStorm app failed to detect the sandbox. In fact, the Events Player injects
previously recorded sensors values, that are naturally different from the ones that
we described in Table 2. Overall, SandboxStorm app is not able to notice that it
is running in Mirage.

We also tested the stealthiness of our Mirage implementation against Droid-
Bench (version 3.0-develop) [9], an open source benchmark suite, which includes
several test cases (i.e., apps) for emulator detection. In particular, we tested our
sensors module against “Sensors1” test case. The “Sensors1” test successfully
recognized our real devices and both vanilla QEMU and Genymotion, but it
missclassified our QEMU enhanced with Mirage as a real device.

Table 3. Detection time by analysis system and heuristic type.

Analysis system Static heuristic Dynamic heuristic

CuckooDroid 16 ms 70361 ms

DroidBox 18 ms 69581 ms

Andrubis 16 ms n/a

SandDroid 15 ms 73964 ms

Tracedroid 17 ms n/a



292 L. Bordoni et al.

Fig. 2. Number of events retrieved in ten seconds for several sensors and devices.

7 Discussion

The core contribution of our work is Mirage, a framework that allows researchers
to build malware analysis systems for Android that are robust against evasion
attacks. Mirage is potentially adaptable to work with any emulator or hypervisor.
Our implementation of Mirage, is able to tackle complex heuristics based on
sensors of our SandboxStorm app (see Sect. 6). In the rest of this section, we
first discuss the effectiveness of our sensors module and possible limitations of
Mirage. Then, we present some alternative implementations of the Events Player.
Finally, we remark the importance of modularity in the design of Mirage.

Effectiveness of the Sensors Module. We verified that the sensors module is
effective against our static and dynamic heuristics based on sensors (see Sect. 6).
We further investigated the reasons underneath the success of our implementation
of Mirage against the “Sensor1” heuristic of DroidBench. We noticed that such
heuristic checks the presence of 13 distinct types of sensors. If DroidBench detects
a number of sensors that is less than or equal to a given threshold (the authors set
this threshold to 7), it reports the presence of an emulator. Hence, this test case
consists in a static heuristic. In Mirage, the Methods Hooking Layer is responsible
to cope with detection techniques that are purely static. Since our sensors module
for theMethodsHookingLayer can fake the presence of sensors that are not actually
there, “Sensor1” test case fails to count the number of real sensors.

Overall, the development process of the sensors module for Mirage helped
us to show that our proposal can be a useful tool to tackle evasive malware on
Android. Unfortunately, such module has some shortcomings. Given a specific
real device simulated by Mirage, the Methods Hooking Layer is able to mimic
static characteristics of sensors available in such device, even if these sensors are
not present in the underlying emulator. Similarly, Mirage can also hide the sen-
sors that are available in the emulator whenever they are not present in the real
device. Nevertheless, for sandbox detection techniques that monitor the events
stream (like the dynamic heuristic in SandboxStorm app), our Events Player
implementation is limited to the set of sensors supported by the underlying
emulator (i.e., QEMU, in our current implementation).

Pre-filter NDK-based Applications. The Native Development Kit (NDK)
allows embedding native code into Android apps. NDK can be useful for



Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 293

developers that need reduced latency to run computationally intensive apps
(e.g., games) or to reuse code libraries written in C and C++. Unfortunately,
allowing developers to code using NDK enables mobile malware authors to
develop kernel-level exploits and sophisticated detection techniques [28,36]. Mal-
ware that is able to measure performances at low level (e.g., that measure the
duration of time-consuming computation) can evade analysis systems based on
virtualization by performing computational timing attacks. This is because such
systems insert additional layers between the Android operating system and the
CPU, with respect to real devices. Even though all these kind of artifacts are
hard to patch, we can easily detect the usage of native code. Since Mirage can-
not handle NDK-based malware properly, it could forward these samples to a
real device or to a small bare metal infrastructure for the analysis. We assume
that most of the requests are addressed in our sandbox, and we consider the
forwarding of the samples to a real device as a last chance.

Alternative Implementations of the Events Player. Before deciding to
rely on the Telnet console in QEMU in order to implement the sensors module
in the Events Player, we considered different approaches. In order to simulate
sensor events in real time, researchers in [28] suggested to use external soft-
ware simulators, like OpenIntents Sensor Simulator (OISS) [25], or to adopt or
a record-and-replay approach, like RERAN [14]. On one hand, OISS is an app
that transmits simulated or recorded sensors streams to an emulator. Unfortu-
nately, to receive the generated sensors events, OISS forces apps developers to
use its own API instead of Android sensors API. This constraint is unsuitable for
malware analysis, because the source code of the sample usually is not available.
On the other hand, RERAN is a tool that first captures an events stream from
a real device and then injects the stream in another device. Input events are
recorded from /dev/input/event* in the source device and stored in a trace
using getevent tool of Android SDK. A custom replay agent reads the trace and
writes events to /dev/input/event* in the destination device. Unfortunately,
in recent smartphones (e.g., Nexus 5X, Galaxy S5) getevent tool is able to get
the touchscreen and buttons events, but not sensors ones.

Modularity of Mirage Components. One of the most important lesson we
learned during our experiments is that the Android platform is rapidly and
unpredictably changing. To give a significant example, while we were testing our
heuristics, the developers of Android released an improved version of QEMU
(along with Android Studio 2.0 release). This new version handles many more
simulated events than the previous ones, actually resembling a real device. To
show that, in Fig. 2 we compare the number of events retrieved in ten seconds
from real and virtual Nexus 5X. In this experiment, we used the last releases of
QEMU and Genymotion. Each sensor that the two emulators support is able to
generate a number of events approximately equal or greater than the sensors on
the real Nexus 5X. Unfortunately, the developers of Android arbitrarily decided
to remove the opportunity to set sensors values via Telnet in the improved version
of QEMU, which we exploited in our implementation of the Events Player.



294 L. Bordoni et al.

Although we still do not know if the developers will reintroduce such feature
in the future, this change highlights that the modularity in Mirage components is
fundamental. Now QEMU is able to produce a significant number of sensors events
on its own. Hence, it is possible to hook also methods of SensorEventListener
class and manipulate the returned sensors values directly (without injecting sen-
sors events from the Events Player). The isolation between the modules of the
Events Player and the Methods Hooking Layer allows to relocate the simulation
of sensors events from the former to the latter, without modifying the other mod-
ules. Nonetheless, to give a more comprehensive proof of concept of Mirage, we
preferred to use the previous release of QEMU (prior to Android Studio 2.0), keep-
ing the simulation of sensors events in the Events Player.

8 Conclusion

In this paper, we take a step towards the stealthiness of malware analysis sand-
boxes for Android. After carefully reviewing the state of the art, we enlisted six
essential requirements that an analysis system have to fulfill to tackle evasion
attacks. Hence, we proposed Mirage, a framework that fulfills all these require-
ments. In this paper, we also presented a representative case study, which shows
how Mirage can cope with sandbox detection techniques that exploit artifacts in
emulators due to sensors API. To evaluate our proposal, we developed a proof of
concept implementation of Mirage, enabled with our sensors module. To compare
our sandbox to state of the art dynamic analysis services for Android, we also
developed the SandboxStorm app. This app contains some static and dynamic
heuristics to detect emulators, based on our findings about sensors API artifacts.
Our thorough evaluation shows that all dynamic analysis systems that we tested
are detectable by our SandboxStorm app. Conversely, Mirage resembled a real
device and, consequently, sensors-based heuristics in SandboxStorm app and in
DroidBench were not able to detect Mirage as a sandbox.

Acknowledgments. Mauro Conti is supported by a Marie Curie Fellowship funded
by the European Commission (agreement PCIG11-GA-2012-321980). This work is also
partially supported by the EU TagItSmart! Project (agreement H2020-ICT30-2015-
688061), the EU-India REACH Project (agreement ICI+/2014/342-896), and by the
projects “Physical-Layer Security for Wireless Communication”, and “Content Centric
Networking: Security and Privacy Issues” funded by the University of Padua. This
work is partially supported by the grant n. 2017-166478 (3696) from Cisco University
Research Program Fund and Silicon Valley Community Foundation. This work is
also partially funded by the project CNR-MOST/Taiwan 2016-17 “Verifiable Data
Structure Streaming”.

References

1. Android. Building requirements. goo.gl/7rLNfX (2016)
2. Android. Dashboards. goo.gl/7ygJx (2016)
3. Android. Developer’s guide. goo.gl/lvtCmr (2016)

http://goo.gl/7rLNfX
http://goo.gl/7ygJx
http://goo.gl/lvtCmr


Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 295

4. Bergman, N.: Android anti-hooking techniques in Java. goo.gl/vN1iDU (2015)
5. Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S.A., Albayrak, S.: An Android

application sandbox system for suspicious software detection. In: IEEE MALWARE
(2010)

6. Check Point Software Technologies LTD. Automated Android malware analysis
with Cuckoo Sandbox. goo.gl/pDokqw (2016)

7. Conti, M., Santo, E.D., Spolaor, R.: DELTA: data extraction and logging tool for
Android (2016). arXiv preprint: arXiv:1609.02769

8. Freeman, J.: Instrument Java methods using native code. goo.gl/1yqeFj (2016)
9. Fritz, C., Arzt, S., Rasthofer, S.: DroidBench. goo.gl/MEPCsD (2016)

10. Gajrani, J., Sarswat, J., Tripathi, M., Laxmi, V., Gaur, M., Conti, M.: A robust
dynamic analysis system preventing sandbox detection by Android malware. In:
ACM SIN (2015)

11. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Commun. Mag. 49, 32–39 (2011)

12. Gartner. Gartner says five of top 10 worldwide mobile phone vendors increased
sales in second quarter of 2016. goo.gl/X0ArDi (2016)

13. Genymotion. Using Genymotion Java API. goo.gl/zCTuDl (2016)
14. Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: timing-and touch-sensitive

record and replay for android. In: IEEE ICSE (2013)
15. Jing, Y., Zhao, Z., Ahn, G.-J., Hu, H.: Morpheus: automatically generating heuris-

tics to detect Android emulators. In: ACM ACSAC (2014)
16. Lantz, P.: Dynamic analysis of Android apps. goo.gl/bFvjWS (2015)
17. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der

Veen, V., Platzer, C.: Andrubis-1,000,000 apps later: a view on current Android
malware behaviors. In: IEEE BADGERS (2014)

18. Lockheimer, H.: Android and security. goo.gl/fFFQcC (2012)
19. Maier, D., Protsenko, M., Müller, T.: A game of droid and mouse: the threat of

split-personality malware on Android. Comput. Secur. 54, 2–15 (2015)
20. Matenaar, F., Schulz, P.: Detecting Android sandboxes. goo.gl/0fp4bB (2012)
21. Mulliner, C.: The Android dynamic binary instrumentation toolkit. goo.gl/bzvBzm

(2016)
22. Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat, D.,

Kruegel, C., Vigna, G.: BareDroid: large-scale analysis of android apps on real
devices. In: ACM ACSAC (2015)

23. Neuner, S., Van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G.,
Mulazzani, M., Weippl, E.: Enter sandbox: Android sandbox comparison (2014).
arXiv preprint: arXiv:1410.7749

24. Oberheide, J., Miller, C.: Dissecting the Android Bouncer. SummerCon (2012)
25. OpenIntents. Sensor Simulator. goo.gl/n1a9XD (2014)
26. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how to

automatically generate procedures to detect CPU emulators. In: USENIX WOOT
(2009)

27. Percoco, N.J., Schulte, S.: Adventures in BouncerLand. Black Hat USA (2012)
28. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage

against the virtual machine: hindering dynamic analysis of Android malware. In:
ACM EUROSEC (2014)

29. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
1–18. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75496-1 1

http://goo.gl/vN1iDU
http://goo.gl/pDokqw
http://arxiv.org/abs/1609.02769
http://goo.gl/1yqeFj
http://goo.gl/MEPCsD
http://goo.gl/X0ArDi
http://goo.gl/zCTuDl
http://goo.gl/bFvjWS
http://goo.gl/fFFQcC
http://goo.gl/0fp4bB
http://goo.gl/bzvBzm
http://arxiv.org/abs/1410.7749
http://goo.gl/n1a9XD
http://dx.doi.org/10.1007/978-3-540-75496-1_1


296 L. Bordoni et al.

30. SandDroid. An automatic Android application analysis system (2014). http://
sanddroid.xjtu.edu.cn/

31. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into Android applications. In: ACM SAC (2013)

32. Statista. Number of apps available in leading app stores as of June 2016.
goo.gl/tCnPXW(2016)

33. Strazzere, T.: Dex education 201 - anti-emulation. goo.gl/jrqaaJ (2013)
34. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-

struction of Android malware behaviors. In: NDSS (2015)
35. Van Der Veen, V., Bos, H., Rossow, C.: Dynamic analysis of Android malware.

Internet & Web Technology Master thesis, VU University Amsterdam (2013)
36. Vidas, T., Christin, N.: Evading Android runtime analysis via sandbox detection.

In: ACM ASIACCS (2014)
37. Vidas, T., Tan, J., Nahata, J., Tan, C.L., Christin, N., Tague, P.: A5: automated

analysis of adversarial Android applications. In: ACM SPSM (2014)
38. Vollmer, R.: XposedBridge development tutorial. goo.gl/P0piK (2016)
39. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer. In: Proceedings of ACM

HOTMOBILE (2011)
40. Wheatstone, R.: Pippa Middleton’s iCloud hacked. goo.gl/xnNQ5u (2016)
41. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik

semantic views for dynamic Android malware analysis. In: USENIX Security (2012)
42. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution.

In: IEEE SP (2012)

http://sanddroid.xjtu.edu.cn/
http://sanddroid.xjtu.edu.cn/
http://goo.gl/tCnPXW
http://goo.gl/jrqaaJ
http://goo.gl/P0piK
http://goo.gl/xnNQ5u

	Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox for Android
	1 Introduction
	2 Related Work
	3 Sandbox Requirements
	4 Mirage: Our System Architecture
	4.1 Methods Hooking Layer
	4.2 Events Player
	4.3 Coordinator and Logger
	4.4 Data Collection App

	5 A Representative Case Study: Tackling Evasion Attacks Based on Sensors with Mirage
	5.1 Threat Model
	5.2 Artifacts Analysis
	5.3 Module Implementation

	6 Evaluation
	7 Discussion
	8 Conclusion
	References




