
Privacy-Preserving Decision Trees Evaluation
via Linear Functions

Raymond K.H. Tai(B), Jack P.K. Ma, Yongjun Zhao, and Sherman S.M. Chow

Information Engineering Department,
Chinese University of Hong Kong, Shatin, Hong Kong
{tkh016,mpk016,zy113,sherman}@ie.cuhk.edu.hk

Abstract. The combination of cloud-based computing paradigm and
machine learning algorithms has enabled many complex analytic services,
such as face recognition in a crowd or valuation of immovable properties.
Companies can charge clients who do not have the expertise or resource
to build such complex models for the prediction or classification service.
In this work, we focus on machine learning classification with decision
tree (or random forests) as the analytic model, which is popular for its
effectiveness and simplicity. We propose privacy-preserving decision tree
evaluation protocols which hide the sensitive inputs (model and query)
from the counterparty. Comparing with the state-of-the-art, we made a
significant improvement in efficiency by cleverly exploiting the structure
of decision trees, which avoids an exponential number of encryptions in
the depth of the decision tree. Our experiment results show that our
protocols are especially efficient for deep but sparse decision trees, which
are typical for classification models trained from real datasets, ranging
from cancer diagnosis to spam classification.

1 Introduction

Machine learning analyzes the pattern of past data for predicting the outcome
when given new data as a query. It is widely applicable, say, to credit risk
assessment, object recognition, recommendation systems, etc. Taking diagnosis
of ischemic heart disease as an example, applying machine learning to the past
client records help the symptoms evaluation and electrocardiography [21].

Typical machine learning algorithms reveal the query of client and the cor-
responding classification result to the server. The clients (or users) using these
services may not want to reveal their sensitive information. For example, consider
revealing every single email to the spam classification server, or food allergy to
a diagnosis server. Leakage of sensitive information can be a life-or-death issue.

Another approach is to simply ask the server to give the model to the clients,
who then perform the classification themselves. Yet, the computation for a com-
plex classification model is time-consuming for a typical client. Moreover, the

Sherman Chow is supported by the Early Career Scheme and the Early Career Award
(CUHK 439713), and General Research Funds (CUHK 14201914) of the Research
Grants Council, University Grant Committee of Hong Kong.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part II, LNCS 10493, pp. 494–512, 2017.
DOI: 10.1007/978-3-319-66399-9 27

Privacy-Preserving Decision Trees Evaluation via Linear Functions 495

classifier itself, as the result of dedicated research effort which spent a con-
siderable amount of resources, is a valuable asset of the company. This means
revealing such “business secret” in clear is not an option. Also, the model is built
from, and hence can reveal, sensitive training data such as financial statements or
medical records. Recent work by Fredrikson et al. [10,11] showed a model inver-
sion attack which can recover information about the training data when given
access to the model but can be avoided by taking privacy-aware model training
[10]. A comprehensive survey [28] summarized attacks and defenses throughout
the process of machine learning, with a focus on confidentiality of training data
and differential privacy. Leaking the model not only hurts the reputation of the
company due to the compromise of the collected sensitive data, but may even
violate laws and regulations such as Health Insurance Portability and Account-
ability Act (HIPAA). This further motivates the need for the client to send the
(encrypted) query for the server to apply the model on it locally.

Ideally, users do not want the server to infer anything about their data,
including the classification result, while the server aims to prevent leaking any
information about the model. Simply put, the users should only know the clas-
sification result1 and the server should learn nothing.

This paper focuses on preserving privacy in classification using a decision
tree, a classifier known for its effectiveness and simplicity. Comparing to deep
learning approaches which are more powerful, decision tree approach is more
efficient when the data has a hierarchical structure and requires less parameter
tuning as well as training cost. Furthermore, in general, the more complicated the
underlying (non-privacy-preserving) machine learning it is, the less efficient will
be the corresponding privacy-preserving version. Figure 1 gives an overview of
the supervised machine learning model. The model w is a decision tree computed
from training data. In classification phase, a server holding w receives a feature
vector from the user as a query, and returns the result by applying w on it.

Training
Phase

ServerClient

Model Encrypted
Feature Vector

Private
Classifica on

Ini ate
service

Result Training
Algorithm

Training
data

(a) Private classification service (b) Decision tree example

Fig. 1. Machine learning service under the decision tree model

Decision tree, illustrated in Fig. 1b, is a binary tree structure storing a col-
lection of decision nodes and leaf nodes. Starting at the root, the classifier com-
pares one attribute in the feature vector with a node-specific threshold at a time
1 Of course, all such systems require a rate-limiting mechanism on the user queries.

496 R.K.H. Tai et al.

and outputs a bit bi denoting which node to traverse. This process is iterated
until arriving at some leaf node, which represents the classification result vi. The
result can be a fixed class or a probability distribution. Recent privacy-preserving
machine learning classification protocols [4,35] are built upon decision tree.

In general, it is a secure multi-party computation problem, where one may
employ garbled circuit (GC) [16,19,20,23,25] and fully homomorphic encryption
(FHE) [14] to implement different kinds of classifiers. However, this approach
typically incurs a high cost even for cloud servers. A comprehensive discussion on
generic methods can be found in [35]. Tailor-made schemes for specific classifier
can be far more efficient [4,12,17,27,35].

1.1 Related Work

Earlier works in the privacy-preserving machine learning mostly focus on pro-
tecting data in the training phase [9,15,18,24,31,34]. Some of them use crypto-
graphic techniques including somewhat homomorphic encryption [14], and some
leverage differential privacy. Recently, big data analytics and cloud services are
gaining popularity. There are many privacy-preserving protocols for cloud-based
computation (e.g., feature extraction from encrypted images [29,33]). Following
the trend, privacy-preserving machine learning classification is getting more and
more attention [2–4,35]. Mohassel and Niksefat [26] proposed protocols that eval-
uate decision program obliviously, but with the assumption that clients already
knew the comparison results, i.e., the comparison nodes are public.

Bost et al. [4] build privacy-preserving protocols for hyperplane decision,
näıve Bayes, and decision tree classifiers. They first identify what are the core
operations of these classifiers, including addition, multiplication, dot products,
argmax, and comparison over encrypted data. Many of these can be achieved
by semi-homomorphic encryption. However, their construction treats a decision
tree as a high-degree polynomial, evaluation thus requires using FHE.

Wu et al. [35] propose an improved protocol for decision tree classification.
They make use of oblivious transfer (OT) and replace FHE by (much more effi-
cient) additively homomorphic encryption (AHE), while preserving both func-
tionality and privacy. They also show that their protocols outperform garbled
circuit based private evaluation protocols of branching program (which cover
decision tree as a special case) proposed by Brickell et al. [5] and Barni et al. [1].

1.2 Our Contribution

Bost et al. [4] treat a decision tree as a high-degree polynomial such that the
server can evaluate the result by homomorphic operation on the client’s FHE
encrypted input. To avoid using heavy FHE, Wu et al. [35] require the server to
send the decision tree to the client. For security, the server needs to transform it
into a randomized and complete tree before sending it to the client. However, this
results in the server complexity growing exponentially in the depth of the tree.

Instead of representing a decision tree as a high-degree polynomial, we rep-
resent it in the form of linear functions. We exploit the structure of the decision

Privacy-Preserving Decision Trees Evaluation via Linear Functions 497

tree and leverage the concept of path cost. Specifically, we compute the path
cost of each leaf node by a linear function and use it to determinate whether
a leaf node contains the classification result. This is to avoid multiplications
between encrypted messages. In this way, we require neither heavy FHE nor
sending randomized complete tree to the client, and achieve by far the most
efficient privacy-preserving decision-tree evaluation protocols while keeping the
communication cost minimal. The overall performance beats the state-of-the-art
asymptotically and empirically. Our basic construction is secure under the semi-
honest model which only requires AHE. Moreover, it only requires 4 communi-
cation rounds, where one sending/receiving action is considered as one round.
Let n and t be the dimension and the bit-size for each feature of a feature vec-
tor respectively, and m be the number of decision nodes. The complexity of our
protocol is O((n + m)t) for clients and O(mt) for the server.

We extend our basic construction to achieve one-sided security against mali-
cious client. The only existing one-sided secure protocol is from Wu et al. [35],
which requires the server to send a randomized complete tree to the client for
achieving one-sided security, even for sparse trees. Its complexity thus grows
exponentially in the depth of the tree denoted by d. For the first time, with our
new way of decision tree evaluation, we obtain a one-sided secure protocol which
does not require this exponential blow-up in both time and space complexities.
Notably, it achieves the same asymptotic complexity as the semi-honest one.

Depending only on m, our protocols work well for deep but sparse trees.
Table 1 shows a comparison. In practice, the differences between m and 2d can be
huge. Table 2 demonstrates this according to the parameters of UCI dataset [22]
considered by Wu et al. [35]. The ratios of 2d/m for the listed datasets are
1.6, 3.2, 21.3, 89.0, and 2259.9. It is practically relevant to consider sparse trees.

Table 1. Summary (t/n: size/number of feature, d/m: depth/number of nodes)

Protocol Complexity Number Encryption Leakage

Client Server of rounds scheme Client Server

Bost et al. [4]
(semi-honest)

O((n + m)t) O(mt) ≥6 Leveled-FHE None m

Wu et al. [35]
(semi-honest)

O((n + m)t + d) O(mt + 2d) 6 AHE None m, d

This work
(semi-honest)

O((n+ m)t) O(mt) 4 AHE None m

Wu et al. [35]
(One-sided)

O((n + d)t) O(2dt) 2 AHE None d

This work
(one-sided)

O((n+ m)t) O(mt) 4 AHE None m

498 R.K.H. Tai et al.

2 Preliminaries

2.1 Decision Tree Classifiers and Important Notations

Let the user input be in the form of an n-dimensional feature vector x =
(x1, . . . , xn) ∈ Z

n, and the number of decision nodes of the tree be m. Without
loss of generality, we assume the decision tree is a full binary tree, namely, every
node has either 0 or 2 children. For a full binary tree with m non-leaf nodes, the
number of leaf nodes is m + 1. Let T : Zn �−→ {v1, . . . , vm+1} be the decision
tree evaluation function with m decision nodes. Its output v = T (x) is the clas-
sification result which represents the class that x belongs. Each non-leaf node
denotes a test on the input attributes. Evaluation starts from the root, descends
to the left or right branch based on the test on the current node, and continues
until arriving at some leaf node storing T (x).

2.2 Building Blocks

Homomorphic Encryption. Our protocols use an additively homomorphic
encryption (AHE) called lifted ElGamal encryption [13] which is like ElGamal
but encodes the messages as exponents. Our particular choice of this encryption
scheme is for a fairer and easier comparison with prior work [35].

We denote by [m] an encryption of the plaintext m. Lifted ElGamal consists
of the following PPT algorithms: Let g be a generator of G. KGen takes in security
parameter λ and outputs public key pk and secret key sk. Enc outputs ciphertext
[m] when given plaintext (as an exponent) m while DEC outputs gm when given
[m]. Of course, one can also encrypt V = gv without knowing v as regular
ElGamal. Add takes in ciphertexts [m1], [m2] and outputs a ciphertext [m1+m2].
ScalarMul takes in [m] and a scalar n, and outputs [n · m]. Again, ScalarMul also
works for a regular ElGamal ciphertext of V = gv without knowing v.

We stress that we do not require recovering the plaintext from the exponents
as we only use it to encrypt either a bit or we use the group element as is. Thus
our usage does not require solving any discrete logarithm problem. In particular,
our constructions simply encrypts key k or classification v using regular ElGamal.
Ciphertext [k′] of lifted ElGamal is equivalent to a regular ElGamal encryption
of the key k = gk′

. Likewise, classification result can be directly represented by
gv′

while neither the server nor the client needs to know v′. To avoid clumsy
notation, our protocol description simply treats the implicit exponent as the
classification result to be encrypted. For actual operation, the server can simply
encrypt the group element and multiply its ElGamal ciphertext with another.

Comparison Protocols. Here we review the functionality of the private com-
parison protocol PvtCmp [32] and the private comparison protocol with condi-
tional key transfer PvtCmpOT [35] used by our schemes. The main idea of the
protocol is that, x =

∑t
i=1 2t−i ·xi > y =

∑t
i=1 2t−i · yi if and only if there exist

i such that xi − yi − 1 + 3 ·
∑

j<i xj⊕yj = 0 where t is a number larger than the
length of both x and y. It is easy to see that the equation can be computed over

Privacy-Preserving Decision Trees Evaluation via Linear Functions 499

x encrypted with additively homomorphic encryption and plaintext y. Therefore
it can be used to achieve private comparison. More formally, let [x] be an (addi-
tively homomorphic) encryption of x in binary form, y denote y in binary form,
b1 is a bit chosen randomly as part of the input (which also serves as a secret
share), and (k0, k1) are the two secret keys (for the protocol with key transfer).
The functionalities of these protocols are:

PvtCmp([x], (y, b1)) �−→ (b2,⊥),
PvtCmpOT([x], (y, b1, (k0, k1)) �−→ ((b2, kb2),⊥)

The bit b2 is set such that b1 ⊕ b2 = (x < y), e.g., when x < y and b1 = 1,
we have (x < y) = 1, so b2 = 0.

Looking ahead, our schemes make black-box use of these protocols. We iterate
them over i to perform comparison at each node Di to decide the traversal. We
use PvtCmps and PvtCmpc to denote the two stages of the protocol, which is
respectively initiated by the server and executed by the client upon receiving the
output of the server. Similar notation will be adopted for PvtCmpOT. Figure 2
gives the constructions of the above protocols. For their correctness and security
proofs, we refer to [35, Sects. 3.2, 4.2].

Proof of Knowledge. Zero-knowledge proofs can protect the privacy of some
inputs while we need to assert a certain property about them. We use the notion
of Camenisch and Stadler [6] to represent a zero-knowledge proof of knowledge
(PoK). For example, PoK{(α) : c = gα} denotes a PoK to prove that c = gα

holds for a secret α. Everything else in the equation (c and g here) are public.
Our schemes require proving certain equality for lifted ElGamal and the

following disjunctive (DisJ) proof [7]. PfDisjpk takes in a ciphertext [mb] and the
corresponding randomness used to encrypt, the bit b, M0 = gm0 and M1 = gm1 ,
and outputs π = (c0, f0, c1, f1) as a proof that [mb] encrypted m0 or m1. VerDisjpk
takes [m], π, M0 and M1, and outputs a bit indicating if π is valid. To turn it
into a non-interactive proof, we use a hash function H : {0, 1}∗ → Zp.

With input [x] = ([x1], · · · , [xt]), PfDisjpk is run t times, each with input [xq]
and output πq, q ∈ {1, · · · , t}. With input [π], VerDisjpk is run t times, each with
input ([xq], πq). Figure 3 shows the instantiation of PfDisjpk and VerDisjpk.

3 Proposed Main Construction

Our main construction is secure under semi-honest adversary. If both parties
follow the protocol, it guarantees the client only learns the number of decision
nodes and the correct classification result while the server learns nothing.

In the rest of paper, we denote n as dimension of the feature space, t as bits
needed to represent one feature, m as number of decision nodes in a decision
tree, d as depth of a decision tree. Di indicates ith decision node, Ei,0 (Ei,1)
indicates left (right) edge of Di, eci,j indicates edge cost of Ei,j , Lk indicates
kth leaf node, Pk indicates path of Lk from the root, and pck indicates the

500 R.K.H. Tai et al.

Fig. 2. Comparison protocols

corresponding path cost, while vk indicates classification result belongs to Lk.
[m] denotes encryption of message m, ki,j denotes key belongs to Ei,j and x
denotes binary representation of x = x1, · · · , xt. b ←$ {0, 1} means randomly
picking a bit and assign it to b, c ← f(b) means assigning the output of f(b) to
c and (x < y) is a bit equals 1 if the predicate x < y is true, 0 otherwise.

3.1 Intuition

When using a binary decision tree to do classification, each decision node Di

outputs a boolean value bi = (xi < yi) by comparing a given attribute xi in

Privacy-Preserving Decision Trees Evaluation via Linear Functions 501

Fig. 3. Proof of knowledge for lifted ElGamal encryption

the query and the threshold yi stored in Di. The boolean value bi = 0 (or 1)
indicates the classification result v is in the left (or right) subtree of Di. After
eliminating all impossible leaf nodes, we will get the unique classification result.

Each leaf node Lk has a unique path Pk from the root of the decision tree.
This path consists of a unique collection of edges. Observing that each of the
leaf node Lk in the right (left) subtree of Di has path Pk containing the right
(left) outgoing edge Ei,1 (Ei,0) of Di.

Combining the above two observations, we can get the unique classification
result by using each bi to eliminate leaf nodes that have path containing Ei,1−bi .

In our constructions, we introduce edge cost eci,j for each edge Ei,j and
define path cost pck as the summation of all eci,j ’s along the path Pk. By setting
edge cost eci,bi of edge Ei,bi to be zero and edge cost eci,1−bi of edge Ei,1−bi to
be non-zero, path Pk that contains edge Ei,1−bi will have path cost pck being
non-zero. Finally, we have vk being the classification result if and only if pck = 0.

Referring to the example in Fig. 1b, setting the edge costs eci,0 = bi and
eci,1 = 1 − bi for every node Di, the path cost pck for each leaf node Lk are:
pc1 = b1 + b2; pc2 = b1 +(1− b2)+ b3; pc3 = b1 +(1− b2)+(1− b3); pc4 = 1− b1.

By using ABY framework [8], one can switch the underlying primitives to
achieve better performance on different operations. However, in our construction,
the server needs to hide from the client which attribute is being compared in each
node as well as how the path costs are added up. To the best of our knowledge,
AHE is the best primitive to achieve our purpose.

3.2 Details of Algorithms

Let (pk, sk) be a key pair for lifted ElGamal over G of prime order p. The client
holds secret key sk. A feature vector is defined as (x1, . . . , xn) ∈ Z

n. Let t be the
bit-length of xi, and xi denotes the binary representation of xi.

In Steps 1–3 in Fig. 4, the server and the client interact to derive the com-
parison results bi of every decision node. The client outputs a bit bi,2 such that
bi,1 ⊕ bi,2 = bi = (xi < yi) where bi,1 is chosen by the server.

502 R.K.H. Tai et al.

Fig. 4. Private decision tree evaluation in the honest-but-curious model (Steps 1–3)

1. Client: Encrypts each component of the feature vector x1, . . . , xn in bits then
sends the ciphertexts [x1], . . ., [xn] to the server.

2. Server: For each decision node Di, i ∈ {1, · · · ,m}: chooses a random bit
bi,1 ←$ {0, 1}, applies PvtCmp (in Sect. 2.2) on attribute [xi], threshold yi,
and bit bi,1. After the loop, sends the results of all comparisons to the client.

3. Client: For i ∈ {1, · · · ,m}: obtains bit bi,2, a share of the comparison result.

In Steps 4–6 in Fig. 5, the server returns an encryption of the classification
result according to the comparison done in Steps 1–3. Firstly, the client encrypts
its share bit bi,2 and sends [bi,2] to the server. The server then computes [bi] =
[bi,1⊕bi,2]. We set eci,0 = bi to be the edge cost of Ei,0 and eci,1 = 1−bi to be the
edge cost of Ei,1. Then we compute the path cost pck =

∑
Ei,j∈Pk

eci,j for each
leaf node Lk. Finally, the server sends the randomized path cost [p̃ck] = [rk ·pck]
with randomized classification result [ṽk] = [r′

k · pck + vk] to the client such that
the client can only check whether the path cost [pck] equals zero and can only
get the corresponding classification result vk when pck equals zero.

4. Client: Sends encryptions of comparison results [b1,2], . . . , [bm,2] to the server.
5. Server:

For i ∈ {1, · · · ,m}: computes [bi] ← [bi,1 ⊕ bi,2].
For k ∈ {1, · · · ,m + 1}: computes path cost pck of leaf node Lk by taking
([b1], . . . , [bm]) and the decision tree as input. Chooses rk, r′

k ←$ Z
∗
p. Then

computes randomized path cost p̃ck ← [rk ·pck] and randomized classification
result [ṽk] ← [r′

k · pck + vk] for leaf node Lk.
After the loop, chooses a random permutation P over {1, . . . , m + 1} and
sends ([p̃cP (1)], [ṽP (1)]), . . ., ([p̃cP (m+1)], [ṽP (m+1)]) to the client.

6. Client: For k′ ∈ {1, · · · m + 1}: checks if [p̃ck′] = [0]. If so, outputs v ←
DECsk([ṽk′]).

The following lemma shows that our protocol is correct.

Lemma 1. If both client and server follow our protocol, the client learns the
classification results T (x) at the end.

Privacy-Preserving Decision Trees Evaluation via Linear Functions 503

Fig. 5. Private decision tree evaluation in the honest-but-curious model (Steps 4–6)

Proof. By the tree construction, Ei,0 ∈ Pk indicates xi < yi is a constraint of
getting vk, while Ei,1 ∈ Pk indicates xi ≥ yi is a constraint of getting vk. The
server obtains [bi] from the comparison protocol where bi = (xi < yi). The edge
costs eci,0, eci,1 are defined as bi and 1−bi respectively, so that eci,0 = (xi < yi),
and eci,1 = (xi ≥ yi). The path cost pck of classification vk is defined to be∑

Ei,j∈Pk
eci,j . Thus, we have vk is the classification result if and only if ∀Ei,j ∈

Pk, eci,j = 0, that is pck = 0. Moreover, we have p̃ck = rk ·pck = 0 ⇐⇒ pck = 0
and ṽk = r′

k · pck + vk = vk ⇐⇒ pck = 0. Therefore the protocol is correct.

3.3 Random Forest Extension

To extend our constructions to random forest, the simplest way is asking the
server to send the comparison results of all trees in the forest in Step 2 and
likewise all outputs in Step 5 to the client. In this way, the client only knows
the total number of decision nodes of all trees, but does not know the number of
decision nodes of an individual tree. In addition, we can use the trick of additive
secret sharing [35] to further hide each output value v from a tree.

To handle numeric attributes, one can multiply the numeric attributes with a
large number to make it an integer. For categorical attributes Ci, we require the
client to send encryption of its category [C] to the server. In malicious setting,
the client is also required to prove that [C] = [Ci] for some i. Then the server
chooses ri ←$ Z

∗
p and sets the edge cost eci as ri · (Ci − C).

504 R.K.H. Tai et al.

4 One-Sided Secure Extension

A client that does not follow the protocol specification can learn some informa-
tion about the threshold or structure of the model in the semi-honest construc-
tion. For example, the client can send feature vector not in binary form or send
false responses in the comparison protocol.

In the one-sided secure extension, similar to the existing protocol [35], we use
proof of knowledge and conditional oblivious transfer to protect against malicious
clients. In particular, the client needs to prove that the encrypted feature vector
consists of encryption of either 0 or 1. To ensure the client sends true responses
in the comparison protocol, the server uses conditional OT to transfer the keys,
such that the client gets either key k0 or k1 at each comparison depending on the
comparison result. The client needs to prove the response is encryption of either
k0 or k1. We only require the input attribute values to be in encrypted binary
form while the range of attribute values are not restricted (except the bound 2t)
as inputting abnormal attribute values only leads to a corrupted classification
result. For this extension, a malicious server can only give corrupted result but
learns nothing, while a malicious client can only learn the classification result
and the number of decision nodes m.

Figures 6 and 7 show the details of our extension. In Steps 1–3, PoKs are
sent along with encrypted inputs to ensure that they are encryption of bits. The

Fig. 6. One-sided secure decision tree evaluation (Steps 1–3)

Privacy-Preserving Decision Trees Evaluation via Linear Functions 505

Fig. 7. One-sided secure decision tree evaluation (Steps 4–6)

server and the client involve in comparison protocol with OT. The client outputs
bi,2 such that bi,1 ⊕ bi,2 = (xi < yi) and key ki,bi,2 where bi,1 is chosen by server.

1. Client: Encrypts the feature vector in bits and computes proofs showing the
ciphertexts are encryption of 0 or 1. Then sends encrypted feature vector in
bits with proofs ([x1],π1), · · · , ([xn],πn) to the server.

2. Server: Verifies all proofs. Aborts if any proofs fail.
For i ∈ {1, · · · ,m}: chooses bi,1 ←$ {0, 1} and keys ki,0, ki,1 ←$ Zp.
Computes Ki,0 ← gki,bi,1 , Ki,1 ← gki,1−bi,1 . Then applies PvtCmpOT (in
Sect. 2.2) on attribute [xi], threshold yi, bit bi,1, and keys ki,0, ki,1.
After the loop, sends (K1,0,K1,1), . . . , (Km,0,Km,1) and all messages for m
comparisons with OT to the client.

3. Client: For i ∈ {1, · · · ,m}: computes the comparison result (bi,2, ki,bi,2).

In Steps 4–6 in Fig. 7, PoKs are sent along with encrypted keys [ki,bi,2] to
ensure that the client sends the correct comparison results. Instead of using bi,2,
the server uses kbi,2 to define the edge cost and compute path cost pck. The edge
cost eci,j is defined as eci,j ← ki,j − ki,bi . As mentioned in Sect. 2.2, the client
does not need to solve discrete logarithm to get the keys or the result.

506 R.K.H. Tai et al.

4. Client: For i ∈ {1, · · · ,m}: encrypts comparison result ki,bi,2 and produces
proof πi showing [ki,bi,2] encrypted either one element in Ki where Ki =
{gki,0 , gki,1}. Then sends (([k1,b1,2], π1), . . . , ([km,bm,2], πm)) to server.

5. Server: Let Ki = {gki,0 , gki,1}. Verifies all the proofs, aborts if any one fails.
For k ∈ {1, · · · ,m + 1}: computes path cost pck of leaf node Lk by taking
([k1,b1,2], . . . , [km,bm,2]), (k1,b1,1 , . . . , km,bm,1), (k1,b1,2 , . . . , km,bm,2) and tree T
as input.
Chooses rk, r′

k ←$ Z
∗
p. Then computes p̃ck ← [rk·pck] and [ṽk] ← [r′

k·pck+vk].
After the loop, chooses a random permutation P over {1, . . . , m+1} and sends
([p̃cP (1)], [ṽP (1)]), . . ., ([p̃cP (m+1)], [ṽP (m+1)]) to the client.

6. Client: For k′ ∈ {1, · · · ,m + 1}: checks if [p̃ck′] = [0]. If so, outputs v ←
DECsk([ṽk′]).

5 Performance Analysis

5.1 Complexity

In the semi-honest construction, the client needs to encrypt its feature vector in
binary form, which results in nt ciphertext to be sent to the server. When com-
puting the comparison results, the server computes mt ciphertexts and sends to
the client. The client decrypts at most mt ciphertexts and encrypts m responses
to the server. Finally, the server computes 2(m+1) ciphertexts and sends to the
client. The client outputs the result by decrypting at most (m + 2) ciphertexts.

The one-sided secure construction requires the client to do additional PoKs.
The client sends nt ciphertexts and nt PoKs in the first round. The server verifies
all nt PoKs. When computing the comparison results, the server computes mt
ciphertexts and sends to the client. The server also computes 2m exponentiation
(for the gk term) and sends the results to the client. The client decrypts at most
mt ciphertexts and mt exponentiations to get the comparison results. The client
then encrypts m responses to the server with m PoKs. The server verifies all m
PoKs. Finally, the server computes 2(m+1) ciphertexts and sends to the client.
The client outputs the result by decrypting at most (m + 2) ciphertexts.

5.2 Experiment Setup

We also evaluate our protocols empirically. We implement the lifted ElGamal
over elliptic curve secp256k1 with key size 256 bits using mcl library2 which
contains an implementation of lifted ElGamal cryptosystem [30].

For the comparison protocol, we instantiate it with an AHE-based one. While
one can easily change the AHE-based comparison protocol to one based on gar-
bled circuits (GC) [19,20,23]; however, if we adapt GC in a trivial way, the client
will know what attribute is utilized in each comparison. More concretely, in a
decision tree, one attribute may be reused in comparison nodes or not being
used (if it is a dummy one), revealing which attribute is used to compare will
2 https://github.com/herumi/mcl/.

https://github.com/herumi/mcl/

Privacy-Preserving Decision Trees Evaluation via Linear Functions 507

leak information of the decision tree to the client. One can, again, prevent such
leakage by utilizing AHE, but this defeats the purpose of replacing it with GC.
In addition, the experiment done by Wu et al. [35] is based on AHE, so we only
consider comparison protocol in AHE for a fairer comparison.

We run our tests on a commodity desktop computer equipped with Intel
Core i7-6700 CPU (3.40 GHz) running Ubuntu 16.04 on VMware Workstation
allocated with one core and 4 GB of RAM. The times reported are an average
over 10 trials. For an easier comparison, we use the Nursery dataset from UCI
machine learning repository [22] as in the previous benchmarks [4,35]. We set
t = 64 as the bit-size for representing a single feature following [35].

5.3 Comparison

Table 2 shows the comparison between our protocols and the existing works. The
timing figures for [4,35], marked with “()”, are from the experiments performed
by Bost et al. [4] and Wu et al. [35]. Those marked with “(∼)”, e.g., (∼290) are
read off from the chart which cannot be precise due to the scale. The comparison
below used those numbers as is. While we used a similar platform and same
security parameter for the experiment, those numbers are for references only.

Table 2. Computation time comparison (n: vector dim., d: depth, m: no. of nodes)

Dataset n d m Protocol Computation (s) Bandwidth (MB)

Client Server

Nursery 8 4 4 Semi-honest Bost et al. [4] (1.58) (0.80) (2.58)

Wu et al. [35] (0.11) (0.13) (0.10)

This work 0.11 0.06 0.10

One-sided Wu et al. [35] (0.22) (0.94) (0.70)

This work 0.40 0.51 0.25

(Sparse) tree 16 20 500 Semi-honest Wu et al. [35] (∼2) (∼102) (∼145)

This work 2.54 7.88 4.15

16 12 300 One-sided Wu et al. [35] (∼0.5) (∼290) (∼130)

This work 2.35 10.01 5.06

For tree with m ≈ 2d, e.g., nursery data with d = m = 4, ours perform
similarly to Wu et al. [35]. For a sparse tree with m � 2d, which are abundant
as we argued in the introduction, our protocols perform much better. Note that
one-sided secure protocol of Wu et al. [35] has to transform a non-complete tree
to a complete tree, resulting in O(2dt) complexity for the server (see Table 1).
While the server is more powerful than the clients in general, yet it is serving
multiple clients. Since all these protocols are interactive, a client still needs to
wait for the server to complete its computation before getting the final results,
the running time of the server unavoidably affects the user experiences.

508 R.K.H. Tai et al.

For concrete benchmark, we consider a sparse tree with m = 25d (follow-
ing [35]). For d = 20, our semi-honest protocol takes 7.88 s for the server which
is 13 times better. The total bandwidth required by our protocol is only 4.15 MB,
which is only 2.86% of [35]. For a sparse tree of depth 12 with 300 nodes, the one-
sided secure protocol of Wu et al. [35] operates on a complete tree of 2d = 4096
nodes. Our protocol takes 10.01 s for the server which is 29 times better. For
both cases, the client takes less than 3 s. The total bandwidth required by our
protocol is 5.06 MB, which is only 3.9% of [35].

In general, our protocol greatly reduces the computation time for the server
when m � 2d while maintaining similar performance for clients. More impor-
tantly, we avoid the exponential (in the tree depth) bandwidth required by the
one-sided protocol of Wu et al. [35]. It is desirable to save both the local storage
and the downloading bandwidth requirement for the client. In favor of existing
works, the above figures exclude our saving in network communication time.

5.4 Benchmark on Real Datasets

Table 3 shows that our protocols give good performance in various real datasets.
Even for housing data which introduces a large number of decision nodes, or
spambase date which has high dimension feature vectors and introduces a deep
tree, our semi-honest protocol requires less than 2.5 s to complete the classifica-
tion, and the bandwidth required is less than 1 MB. Our semi-honest protocol
outperforms the semi-honest protocol of Wu et al. [35] in all datasets. Although
the performance of one-sided secure protocol of Wu et al. [35] is not provided,
by referring to Table 2, we can see that it requires more than 5 min and 130 MB
for housing and spambase data due to the great depth, which is not practical.
For our one-sided secure protocol, the computation time required is less than 8
s while the bandwidth required is less than 2.5 MB.

Table 3. Performance of semi-honest and one-sided secure protocol on UCL datasets

Dataset n d m Computation (s) Bandwidth (MB)

Semi-honest One-sided Semi-honest One-sided

This [35] Diff- This This [35] Diff- This

work erence work work erence work

Heart-disease 13 3 5 0.25 (0.37) −33% 1.42 0.14 (0.11) +25% 0.39

Credit-screening 15 4 5 0.27 (0.55) −50% 1.59 0.16 (0.09) +70% 0.43

Breast-cancer 9 8 12 0.34 (0.55) −47% 1.30 0.17 (0.20) −16% 0.41

Housing 13 13 92 1.98 (4.08) −51% 4.56 0.85 (1.87) −54% 1.80

spambase 57 17 58 1.80 (16.60) −89% 7.47 0.92 (17.41) −95% 2.28

In both protocols, the bandwidth and computation required by the server
grows linearly with the number of decision nodes m. When m � n (e.g., for
spam), the computation required by clients also grows linearly with m.

Privacy-Preserving Decision Trees Evaluation via Linear Functions 509

Figure 8 shows the bandwidth required and the performance of our protocol.

4 2000
0

10

20

30

40

Decision Nodes

Ba
nd

w
id

th
 (M

B)

Semi-honest One-side secure

(a) Total bandwidth vs. number of nodes

0
10
20
30
40
50
60
70

4 500 1000 1500 2000

Ti
m

e
(s

)

Decision Nodes
semi-honest client semi-honest server
one-sided secure client one-sided secure server

(b) Computation time vs. number of nodes

Fig. 8. Performance of semi-honest and one sided secure protocol

6 Conclusion

We proposed new privacy-preserving protocols for decision tree classifier. The
complexity of the state-of-the-art [35] is exponential in the depth of the decision
tree. The major improvement is that the complexity of our protocols grows only
linearly with the number of decision nodes. Many models in the form of a decision
tree are deep but sparse [22,35]. This makes our protocols more desirable.

Our experiment results show a significant improvement for our semi-honest
protocol and one-sided secure protocol. The total bandwidth and the server
computation are greatly reduced which makes the one-sided protocol practical.
We hope our techniques of exploiting the structure of decision tree will spark
future improvement on the efficiency while maintaining security.

A Outline of Security Analysis

Security of Client. In the semi-honest protocol, all the client sends to the server
are encrypted feature vector in Step 1 and encrypted share of comparison results
in Step 4. The server can thus learn nothing from the client. In the one-sided
secure protocol, the server additionally receives PoKs along with ciphertexts in
Step 1 and Step 4. By the zero-knowledge property of the PoK, the PoKs leak
no information about the client input.

Security of Server. In the semi-honest protocol, all the server sends to the client
are secret shares of comparison results in Step 2, and randomized path costs and
randomized classifications in Step 5. Without the knowledge of another share
(hidden by the server), the share of comparison results appears to be random.

510 R.K.H. Tai et al.

In Step 5, by the correctness of our protocol, only the path cost corresponding
to the classification result equals 0 and others equal to non-zero numbers. After
randomization, only the one corresponding to the classification result equals 0,
while others equal to random numbers. Except for the classification result with
0 path cost, all other classifications are randomized by random path costs. The
client can only learn the classification result. Since the number of comparisons
equals the number of decision nodes m, and the number of path costs, as well
as classifications, equals the number of leaf nodes m + 1, our protocol leaks m.

The one-sided secure protocol additionally needs to ensure the client follows
the protocol. In Step 1, PoKs are sent with ciphertexts to ensure the client input
is encryption of bits. In Step 4, by the security of the comparison protocol, the
client only learns one out of two keys according to the share of the comparison
result. The client has to encrypt and send the key along with PoK showing the
encrypted key is one of the two keys corresponding to the comparison. This
ensures the comparison response sent by the client is correct as the client only
learns one key and it has to send back either key as the response. As long as the
correctness of the client input is ensured, the messages sent in Step 2 and Step 5
leak no information about the server input as the semi-honest setting.

References

1. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04444-1 26

2. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A., Schneider, T.: Privacy-preserving
ECG classification with branching programs and neural networks. Trans. Inf.
Forensics Secur. 6(2), 452–468 (2011)

3. Bos, J.W., Lauter, K.E., Naehrig, M.: Private predictive analysis on encrypted
medical data. J. Biomed. Inform. 50, 234–243 (2014)

4. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

5. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS (2007)

6. Camenisch J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: CRYPTO (1997)

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
doi:10.1007/3-540-48071-4 7

8. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

9. Du, W., Han, Y.S. Chen, S.: Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: SDM (2004)

10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: ACM CCS (2015)

11. Fredrikson, M., Lantz, E., Jha, S., Lin, D., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: an end-to-end case study of personalized Warfarin dosing. In:
USENIX Security (2014)

http://dx.doi.org/10.1007/978-3-642-04444-1_26
http://dx.doi.org/10.1007/3-540-48071-4_7

Privacy-Preserving Decision Trees Evaluation via Linear Functions 511

12. Frikken, K.B.: Practical private DNA string searching and matching through effi-
cient oblivious automata evaluation. In: DBSec (2009)

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

14. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity, Stanford, CA, USA, AAI3382729 (2009)

15. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37682-5 1

16. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography. Springer, Heidelberg (2010)

17. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: TCC
(2007)

18. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A practical differentially
private random decision tree classifier. Trans. Data Priv. 5(1), 273–295 (2012)

19. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
Gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014
Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1 25

20. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008 Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 40

21. Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and
perspective. Artif. Intell. Med. 23(1), 89–109 (2001)

22. Lichman, M.: UCI machine learning repository. School of Information and Computer
Sciences, University of California, Irvine (2013). http://archive.ics.uci.edu/ml

23. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013 Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 1

24. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. Springer, Heidelberg
(2000)

25. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. J. Cryptol. 28(2), 312–350 (2015)

26. Mohassel, P., Niksefat, S.: Oblivious decision programs from oblivious transfer:
efficient reductions. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 269–
284. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32946-3 20

27. Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol
for oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27954-6 25

28. Papernot, N., McDaniel, P.D., Sinha, A., Wellman, M.P.: Towards the science of
security and privacy in machine learning. CoRR, abs/1611.03814 (2016)

29. Qin, Z., Yan, K. Ren, K., Chen, C.W., Wang, C.: Towards efficient privacy-
preserving image feature extraction in cloud computing. In: ACM Multimedia
(2014)

30. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Omote, K.: Methods for restricting
message space in public-key encryption. IEICE Trans. 96(6), 156–1168 (2013)

31. Vaidya, J., Kantarcioglu, M., Clifton, C.: Privacy-preserving näıve Bayes classifi-
cation. VLDB J. 17(4), 879–898 (2008)

http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/978-3-642-37682-5_1
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-642-40084-1_1
http://dx.doi.org/10.1007/978-3-642-32946-3_20
http://dx.doi.org/10.1007/978-3-642-27954-6_25
http://dx.doi.org/10.1007/978-3-642-27954-6_25

512 R.K.H. Tai et al.

32. Veugen, T.: Improving the DGK comparison protocol. In: WIFS (2012)
33. Wang, Q., He, M., Du, M., Chow, S.S.M., Lai, R.W.F., Zou, Q.: Searchable encryp-

tion over feature-rich data. IEEE Trans. Dependable Sec. Comput. (2017)
34. Wright, R.N., Yang, Z.: Privacy-preserving Bayesian network structure computa-

tion on distributed heterogeneous data. In: SIGKDD (2004)
35. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees

and random forests. PoPETs 4, 335–355 (2016)

	Privacy-Preserving Decision Trees Evaluation via Linear Functions
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Decision Tree Classifiers and Important Notations
	2.2 Building Blocks

	3 Proposed Main Construction
	3.1 Intuition
	3.2 Details of Algorithms
	3.3 Random Forest Extension

	4 One-Sided Secure Extension
	5 Performance Analysis
	5.1 Complexity
	5.2 Experiment Setup
	5.3 Comparison
	5.4 Benchmark on Real Datasets

	6 Conclusion
	A Outline of Security Analysis
	References

