
RingCT 2.0: A Compact Accumulator-Based
(Linkable Ring Signature) Protocol for
Blockchain Cryptocurrency Monero

Shi-Feng Sun1,2, Man Ho Au1(B), Joseph K. Liu3, and Tsz Hon Yuen4

1 Hong Kong Polytechnic University, Hung Hom, Hong Kong
{csssun,csallen}@comp.polyu.edu.hk

2 Shanghai Jiao Tong University, Shanghai, China
3 Monash University, Melbourne, Australia

joseph.liu@monash.edu
4 Huawei, Singapore, Singapore

YUEN.TSZ.HON@huawei.com

Abstract. In this work, we initially study the necessary properties and
security requirements of Ring Confidential Transaction (RingCT) proto-
col deployed in the popular anonymous cryptocurrency Monero. Firstly,
we formalize the syntax of RingCT protocol and present several formal
security definitions according to its application in Monero. Based on our
observations on the underlying (linkable) ring signature and commitment
schemes, we then put forward a new efficient RingCT protocol (RingCT
2.0), which is built upon the well-known Pedersen commitment, accu-
mulator with one-way domain and signature of knowledge (which alto-
gether perform the functions of a linkable ring signature). Besides, we
show that it satisfies the security requirements if the underlying build-
ing blocks are secure in the random oracle model. In comparison with
the original RingCT protocol, our RingCT 2.0 protocol presents a sig-
nificant space saving, namely, the transaction size is independent of the
number of groups of input accounts included in the generalized ring while
the original RingCT suffers a linear growth with the number of groups,
which would allow each block to process more transactions.

1 Introduction

1.1 Monero: A Blockchain-Based Cryptocurrency

A cryptocurrency is a digital asset designed to work as a medium of exchange
using cryptography to secure the transactions and to control the creation of
additional units of the currency. Bitcoin became the first decentralized cryp-
tocurrency in 2009. Since then, numerous cryptocurrencies have been created.
Bitcoin and its derivatives use decentralized control as opposed to centralized
electronic money or centralized banking systems. The decentralized control is
related to the use of blockchain transaction database in the role of a distributed
ledger.
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part II, LNCS 10493, pp. 456–474, 2017.
DOI: 10.1007/978-3-319-66399-9 25

RingCT 2.0: Compact Spend Protocol for Monero 457

Major advantages of cryptocurrency include decentralized control and anony-
mous payment, when compared to the traditional credit card or debit card sys-
tem. However, the anonymity provided by bitcoin has been questioned in the
sense it offers pseudonymity instead of offering a true anonymity. For instance,
there is a research that identifyies ownership relationships between Bitcoin
addresses and IP addresses [20]. Bitcoin proxy or even other users may still
compute the actual identity of a bitcoin’s owner. Although there are various
improvements to enhance the anonymity of bitcoin (e.g. [31]), they are far from
practical and satisfactory.

One of the first attempt to provide anonymity in cryptocurrency is Dash
(released in 2014), which anonymizes the transaction process by mixing coins.
Nevertheless, it does not formally provide cryptographic anonymity. Another
attempt to provide anonymity in cryptocurrency is ZCash [8] (released in 2016),
which uses zero-knowledge succinct non-interactive argument of knowledge (zk-
SNARKs) [9]. They provide anonymity with a formal security proof. They used
zk-SNARKs to prove the knowledge of pre-image of hash functions in which the
proof generation process is rather expensive. Therefore, the efficiency is much
worse than the normal bitcoin transaction (for the sender side, it takes a few
minutes to perform a spent computation).

Monero is an open-source cryptocurrency created in April 2014 that focuses
on privacy, decentralisation and scalability. The current market value of Mon-
ero is already over US$750M1, which is one of the largest cryptocurrencies.
Unlike many cryptocurrencies that are derivatives of Bitcoin, Monero is based on
the CryptoNote protocol and possesses significant algorithmic differences relat-
ing to blockchain obfuscation. Monero daemon is mainly based on the original
CryptoNote protocol, which deploys “one-time ring signatures” as the cored
crypto-primitive to provide anonymity. Monero further improves the protocol
by using a variant of linkable ring signature [22], which is called Ring Confi-
dential Transactions (RingCT) [24].

On 10 January 2017, RingCT has been put into Monero transactions, starting
at block #1220516. RingCT transactions are enabled by default at this stage,
but it is still possible to send a transaction without RingCT until the next hard
fork in September 2017. In the first month after implementation, it has been
reported that approximately 50–60% of transactions used the optional RingCT
feature.2

Upon the enhancement of privacy, a major trade-off is the increase of size
for the transaction, due to the size of the linkable ring signature in the RingCT
protocol. Although RingCT has already shortened the size of the ring signature
by 50% when compared to the original CryptoNote protocol, it is still linear with
the number of public keys included in the ring.

1 At the time of June 2017. Market info is referenced from https://coinmarketcap.
com/.

2 https://web.archive.org/web/20170127204814/http://moneroblocks.info/stats/ring
ct-transactions.

https://coinmarketcap.com/
https://coinmarketcap.com/
https://web.archive.org/web/20170127204814/http://moneroblocks.info/stats/ringct-transactions
https://web.archive.org/web/20170127204814/http://moneroblocks.info/stats/ringct-transactions

458 S.-F. Sun et al.

1.2 Ring Signature and Linkable Ring Signature

A ring signature scheme (e.g., [1,26,33]) allows a member of a group to sign
messages on behalf of the group without revealing his identities, i.e. signer
anonymity. In addition, it is not possible to decide whether two signatures have
been issued by the same group member. Different from a group signature scheme
(e.g., [6,10,12]), the group formation is spontaneous and there is no group man-
ager to revoke the identity of the signer. That is, under the assumption that each
user is already associated with a public key of some standard signature scheme,
a user can form a group by simply collecting the public keys of all the group
members including his/her own. These diversion group members can be totally
unaware of being conscripted into the group.

Ring signature provides perfect (or unconditional) anonymity. However, it
may be too strong in some scenario. For example, in the case of anonymous
e-voting, it is necessary to detect if someone has submitted his vote more than
once so that the second casting should not be counted. Similar concerns should
be applied into anonymous e-cash system. A double-spent payment should be
discarded. In both scenarios, a linkable-anonymity is necessary, instead of the
strongest form, unconditional anonymity. Linkable ring signature [22] provides
a perfect characteristic of linkable anonymity: verifier knows nothing about the
signer, except that s/he is one of the users in the group (represented by the list of
public keys/identities). Yet given any two linkable signatures, the verifier knows
that whether they are generated by the same signer (even though the verifier
still does not know who the actual signer is).

1.3 Our Contributions

The contributions of this paper are twofold. First, we give a rigorous security
definition and requirement of RingCT protocol. We note that in the original
paper of RingCT [24], there is no rigorous security definition but just a direct
instantiation of the protocol. A rigorous security definition would definitely help
future researchers to develop better improvement of RingCT. Second, we target
to reduce the size of the RingCT protocol. Our new RingCT protocol (we call
it RingCT 2.0) is based on the well-known Pedersen commitment, accumulator
with one-way domain and signature of knowledge related to the accumulator.
The accumulator and the signature of knowledge together perform the functions
of a linkable ring signature. In particular, the size of signature in our protocol is
independent to the number of groups of input accounts in a transaction. We argue
that it can significantly shorten the size of each block, when compared to the
original protocol (which is linear with the number of groups of accounts included
in the generalized ring for the anonymizing purpose) especially when the number
of groups grows larger. More importantly, our construction fits perfectly into the
framework of the RingCT definition, which makes it suitable to be deployed in
Monero.

RingCT 2.0: Compact Spend Protocol for Monero 459

2 Related Works

Linkable ring signature was first proposed by Liu et al. [22] in 2004 (they named it
as Linkable Spontaneous Anonymous Group Signature which is actually linkable
ring signature). There are many variants in different types of cryptosystems with
different features. We summarize their features in Table 1.

Table 1. Comparison of linkable ring signatures

Scheme Signature size Cryptosystem

Liu et al. [22] O(n) public key

Tsang and Wei [29] O(1) public key

Liu and Wong [23] O(n) public key

Au et al. [2] O(1) public key

Au et al. [3] O(n) certificate-based

Zheng et al. [34] O(n) public key

Tsang et al. [30] O(n) public key

Tsang et al. [28] O(n) identity-based

Chow et al. [13] O(1) identity-based

Fujisaki and Suzuki [18] O(n) public key

Fujisaki [17] O(
√
n) public key

Au et al. [4] O(1) identity-based

Yuen et al. [32] O(
√
n) public key

Liu et al. [21] O(n) public key

As we can see from the table, there are only a few constant size linkable ring
signature existed in the literature. In our discussion, we focus on public key only
because both identity-based and certificate-based cryptosystems are not suitable
for blockchain paradigm as they require a Private Key Generator (PKG) to issue
user keys, which contradicts to the decentralized concept of blockchain. Among
them, [29] requires the Certificate Authority (CA) to generate the user key. [2]
is an improvement over [29] but it still requires an interaction between the user
and the CA during the user key generation process. Neither of them is suitable
for blockchain.

We note that not all linkable ring signature schemes are suitable for Monero.
There are some requirements that should be satisfied in order to be compatible
with RingCT. We will discuss more on this in Sect. 4.

3 Preliminaries

In this section, we first give some notations used in the rest of this paper. We use
[n] to denote the set of integers {1, 2, . . . , n} for some positive integer n ∈ N. For

460 S.-F. Sun et al.

a randomized algorithm A(·), we write y = A(x; r) to denote the unique output
of A on input x and randomness r, and denote by y ← A(x) the process of
picking randomness r at random and setting y = A(x; r). Also, we write x ← S
for sampling an element uniformly at random from a set S, and use negl(λ) to
denote some negligible function in a security parameter λ.

3.1 Mathematical Assumptions

Bilinear Pairings. Let G1 and G2 be two cyclic groups of prime order p, and
g be a generator of G1. A function e : G1 × G1 → G2 is a bilinear map if the
following properties hold:

– Bilinearity: e(Ax, By) = e(A,B)xy for all A,B ∈ G1 and x, y ∈ Zp;
– Non-degeneracy: e(g, g) �= 1, where 1 is the identity of G2;
– Efficient computability: there exists an algorithm that can efficiently compute

e(A,B) for all A,B ∈ G1.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a group where
|G| = q and g ∈ G such that 〈g〉 = G. There exists no probabilistic polynomial
time (PPT) algorithm that can distinguish the distributions (g, ga, gb, gab) and
(g, ga, gb, gc) with non-negligible probability over 1/2 in time polynomial in q,
where a, b, c are chosen uniformly at random from Zq.

k-Strong Diffie-Hellman (k-SDH) Assumption. There exists no PPT algo-
rithm which, on input a k + 1-tuple (g0, gα

0 , gα2

0 , . . . , gαk

0) ∈ G
k+1, returns a pair

(w, y) ∈ G × Z
∗
p, where G = 〈g0〉 and p is the order of G, such that wα+y = g0,

with non-negligible probability and in time polynomial in λ.

3.2 Building Blocks

In this section, we briefly recall the basic primitives used to construct our RingCT
protocol, which include accumulator with one-way domain, signature of knowl-
edge and homomorphic commitment scheme.

Accumulators with One-Way Domain. As defined in [5,14], an accumula-
tor accumulates multiple values into one single value such that, for each value
accumulated, there is a witness proving that it has indeed been accumulated.
Formally, let F = {Fλ} be a sequence of families of functions and X = {Xλ}
a sequence of families of finite sets, such that Fλ = {f : Uf × Xf → Uf} and
Xλ ⊆ Xf for all λ ∈ N, we call the pair (F ,X) an accumulator family with
one-way domain if the following conditions hold:

– quasi-commutativity: for all λ ∈ N, f ∈ Fλ, u ∈ Uf and x1, x2 ∈ Xλ, it
holds that f(f(u, x1), x2) = f(f(u, x2), x1). {Xλ} is always referred to as
the domain of this accumulator. For any X = {x1, x2, · · · , xn} ⊂ Xλ, we
further refer to f(· · · f(u, x1) · · · xn) as the accumulated value of X over u,
which will be denoted by f(u,X) thanks to this quasi-commutative property.

RingCT 2.0: Compact Spend Protocol for Monero 461

– collision-resistance: for all λ ∈ N and efficient adversaries A, it holds that

Pr
[

X ⊂ Xλ ∧ (x ∈ Xf\X)
(w ∈ Uf) ∧ (f(w, x) = f(u,X)) :

f ← Fλ;u ← Uf ;
(x,w,X) ← A(f, Uf , u)

]
≤ negl(λ).

– one-way domain: let {Yλ}, {Rλ} be two sequences of families of sets associated
with {Xλ}, such that each Rλ is an efficiently verifiable, samplable relation
over Yλ × Xλ and it is infeasible to efficiently compute a witness y′ ∈ Yλ for
an x sampled from Xλ. That is,

Pr [(y′, x) ∈ Rλ : (y, x) ← Samp(1λ); y′ ← A(1λ, x)] ≤ negl(λ),

where Samp denotes the efficient sampling algorithm over Rλ.
– efficient generation: there exists an efficient algorithm denoted by ACC.Gen

that on input a security parameter λ outputs a description desc of a random
element of Fλ, possibly including some auxiliary information.

– efficient evaluation: for λ ∈ N, f ∈ Fλ, u ∈ Uf and X ⊂ Xλ, w ∈ Uf is called a
witness for the fact that x ∈ X has been accumulated within v

.= f(u,X) ∈
Uf iff f(w, x) = v. There exists two algorithms denoted by ACC.Eval and
ACC.Wit that on input (desc, X) and (desc, x,X) can efficiently evaluate the
accumulated value f(u,X) and the witness for x in f(u,X), respectively.

For sake of simplicity, we will denote by ACC = (ACC.Gen,ACC.Eval,
ACC.Wit) such an accumulator with one-way domain in the following.

Signature of Knowledge. Every three-move Proof of Knowledge protocols
(PoKs) that is Honest-Verifier Zero-Knowledge (HVZK) can be transformed into
a signature scheme by setting the challenge to the hash value of the commitment
concatenated with the message to be signed [16]. Signature schemes generated as
such are provably secure [25] against existential forgery under adaptively chosen
message attack in the random oracle model [7]. They are sometimes referred to
as Signatures of Knowledge, SoK for short [10]. As an example, we denote by
SoK{(x) : y = gx}(m), where m is the message, the signature scheme derived
from the zero-knowledge proof of the discrete logarithm of y using the above
technique. Before presenting the formal definition of SoK, we first let R be a fixed
NP-hard relation with the corresponding language L = {y : ∃ x s.t (x, y) ∈ R}.
Recall that a relation is called hard if it is infeasible for any efficient algorithm,
given some instance y, to compute a valid witness such that (x, y) ∈ R. In general,
signature of knowledge protocol for R over message space M comprises of a triple
of poly-time algorithms (Gen, Sign, Verf) with the following syntax:

– Gen(1λ): on input a security parameter λ, the algorithm outputs public para-
meters par, which will be implicitly taken as part input of the following algo-
rithms. Also, we assume that λ is efficiently recoverable from par.

– Sign(m,x, y): on input a message m ∈ M and a valid pair (x, y) ∈ R, the
algorithm outputs an SoK π.

– Verf(m,π, y): on input a message m, an SoK π and a statement y, the algo-
rithm outputs 0/1 indicating the in/validity of the SoK.

462 S.-F. Sun et al.

Definition 1 (SimExt Security of SoK [11]). An SoK protocol SoK = (Gen,
Sign,Verf) for hard relation R is called SimExt-secure if it satisfies the correct,
simulatable and extractable properties as defined below.

Correctness. For any message m ∈ M and valid pair (x, y) ∈ R, it holds that

Pr [Verf(m,π, y) = 1 : par ← Gen(1λ);π ← Sign(m,x, y)] ≥ 1 − negl(λ),

where if the probability is exactly 1 we call SoK perfectly correct.

Simulatability. There exists a poly-time simulator Sim = (SimGen,SimSign)
such that for any PPT adversary A, it holds that

∣∣∣Pr
[
b = 1 : (par, td) ← SimGen(1λ); b ← ASim(td,·,·,·)(par)

]
−

Pr
[
b = 1 : par ← Gen(1λ); b ← ASign(·,·,·)(par)

]∣∣∣ ≤ negl(λ),

where Sim receives an input (m,x, y), checks the validity of y and returns
π ← SimSign(m,x, y) if (x, y) ∈ R. In addition, td is the additional trapdoor
information used by Sim to simulate signatures without knowing a witness.

Extraction. In addition to Sim, there exists an efficient extractor Ext such that
for any PPT adversary A, it holds that

Pr

⎡
⎣ (x, y) ∈ R ∨ (m, y) ∈ Q

∨ Verf(m, y, π) = 0 :
(par, td) ← SimGen(1λ);
(m, y, π) ← ASim(td,·,·,·)(par)
x ← Ext(par, td,m, y, π).

⎤
⎦ ≥ 1 − negl(λ).

where Q denotes the set of all queries (m, y) that A has made to Sim.

Homomorphic Commitment Schemes. Informally, a (non-interactive) com-
mitment scheme includes two phases: in commit phase, a sender chooses a value
and constructs a commitment to it; later in the reveal phase the sender may
open the commitment and reveal the value. After that, the receiver can verify
that it is exactly the value that was committed at first. More formally, a com-
mitment scheme consists of a pair of poly-time algorithms (CKGen,Com): on
input a security parameter λ, CKGen(1λ) outputs a public commitment key ctk,
which specifies a message space Mctk and a commitment space Cctk; on input
a message m ∈ Mctk, Com(ctk,m) generates a commitment c ← Com(ctk,m)
to m, where ctk is often omitted when it is clear from the context. Normally, a
commitment scheme should satisfy the hiding and binding properties, as defined
below.

Definition 2 (Security of HCom [19]). A non-interactive scheme HCom =
(CKGen,Com) is called a secure homomorphic commitment scheme if it satisfies
the following properties.

RingCT 2.0: Compact Spend Protocol for Monero 463

Hiding This property means that the commitment does not reveal the committed
value. More precisely, HCom is called hiding if for all PPT adversaries A, it
holds that∣∣∣∣Pr

[
A(c) = b : ctk ← CKGen(1λ); (m0,m1) ← A(ctk);

b ← {0, 1}; c ← Com(ctk,mb)

]
− 1

2

∣∣∣∣ ≤ negl(λ),

where m0,m1 ∈ Mctk and HCom is called perfectly hiding if the probability
of A guessing b is exactly 1/2.

Binding. This property means that a commitment cannot be opened to two dif-
ferent values. More precisely, HCom is called binding if for all PPT adver-
saries A, it holds that

Pr
[

m0 �= m1 ∧
Com(m0; r0) = Com(m1; r1)

: ctk ← CKGen(1λ);
(m0, r0,m1, r1) ← A(ctk)

]
≤ negl(λ),

where m0,m1 ∈ Mctk and r0, r1 are random coins of Com. HCom is called per-
fectly binding if the probability is exactly 0. Moreover, we call HCom strongly
binding if the probability holds even for the condition (m0, r0) �= (m1, r1)
rather than m0 �= m1.

Homomorphic. For this property, we assume that for each well-formed ctk,
the commitment space Cck is a multiplicative group of order q and both the
messages and random coins are from Zq. This property says that for all λ ∈ N,
ctk ← CKGen(1λ), m0,m1 ∈ Zq and r0, r1 ∈ Zq, it holds that

Com(m0; r0) · Com(m1; r1) = Com(m0 + m1; r0 + r1).

4 RingCT Protocol for Monero

In this section, we formalize ring confidential transaction (RingCT) protocol for
Monero. Recall that Monero is based on CryptoNote, where each user may have
a number of distinct accounts. Each account consists of a one-time address and a
coin, and it is always associated with an account key used to authorize its spend-
ing. In each transaction, a user can spend many of her/his accounts with the
corresponding keys. The goal of ring confidential transaction (RingCT) protocol
is to protect the anonymity of spenders as well as the privacy of transactions.

Informally, a RingCT protocol mainly comprises of two phases: the gener-
ation and the verification of ring confidential transactions, which are operated
by the spender and recipients respectively. When a user would like to spend m

of her/his accounts, w.l.o.g., denoted by As = {(pk
(k)
s , cn

(k)
s)}k∈[m] where pk

(k)
s

is the user’s k-th account address and cn
(k)
s is the coin w.r.t. this account, s/he

first chooses t output accounts {(pkout,j , cnout,j)}j∈[t] for all output addresses
R = {pkout,j}j∈[t] accordingly, such that the sum of balances of her/his input
accounts equals to that of output accounts, and then additionally selects n − 1

464 S.-F. Sun et al.

groups of input accounts with each containing m different accounts to anony-
mously spend As for some payments (i.e., creating a ring confidential transac-
tion). Whenever receiving this transaction from the P2P blockchain network,
the miners check the validity of the transaction with public information along
with it and add it to a (new) block if valid.

By a thorough analysis of the protocol in [24], we find that the RingCT pro-
tocol essentially involves ring signatures and commitments (that are used to hide
account balance). To be compatible within the protocol, these two cryptographic
primitives should satisfy the following properties simultaneously:

– Public keys generated by the key generation algorithm of ring signature should
be homomorphic.

– Commitments should be homomorphic with respect to (w.r.t.) the same oper-
ation as public keys.

– Commitments to zero are well-formed public keys, each corresponding secret
key of which can be derived from the randomness of commitments.

To further capture the essential properties and securities required by the ring
confidential transaction protocol for Monero, we initiate the formalization of
RingCT protocol and its security models, the details of which are shown in the
following subsections.

4.1 Technical Description

In general, a RingCT protocol consists of a tuple of poly-time algorithms (Setup,
KeyGen, Mint, Spend, Verify), the syntax of which are described as follows:

– pp ← Setup(1λ): the Setup algorithm takes a security parameter λ ∈ N, and
outputs the public system parameters pp. All algorithms below have implicitly
pp as part of their inputs.

– (sk, pk) ← KeyGen(pp): the key generation algorithm takes as input pp and
outputs a public and secret key pair (pk, sk). In the context of Monero, pk is
always set as a one-time address, which together with a coin constitutes an
account.

– (cn, ck) ← Mint(pk, a): the Mint algorithm takes as input an amount a and
a valid address pk s.t. (pk, sk) ← KeyGen(pp), and outputs a coin cn for pk
as well as the associated coin key ck3. The coin cn together with address
pk forms an account act

.= (pk, cn), the corresponding secret key of which is
ask

.= (sk, ck) that is required for authorizing its spending.
– (tx, π, S) ← Spend(m,Ks, As, A,R): on input a group As of accounts together

with the corresponding account secret keys Ks, an arbitrary set A of groups of
input accounts containing As, a set R of out addresses and some transaction
string m ∈ {0, 1}∗, the algorithm outputs a transaction tx (containing m, A
and AR which denotes the set of output accounts w.r.t. R), a proof π and a
set S of serial numbers.

3 We note that ck will be privately sent to the user possessing account address pk,
e.g., by private public key encryption.

RingCT 2.0: Compact Spend Protocol for Monero 465

– 1/0 ← Verify(tx, π, S): on input the transaction tx containing m, A and AR,
proof π and serial numbers S, the algorithm verifies whether a set of accounts
with serial numbers S is spent properly for the transaction tx towards
addresses R, and outputs 1 or 0, meaning a valid or invalid spending
respectively.

4.2 Security Definitions

A RingCT protocol should at least satisfy the properties formalized below.

Definition 3 (Perfect Correctness). This property requires that a user
can spend any group of her accounts w.r.t. an arbitrary set of groups
of input accounts, each group containing the same number of accounts
as the group she intends to spend. Specifically, a RingCT protocol Π =
(Setup,KeyGen,Mint,Spend, Verify) is called perfectly correct if for all PPT
adversaries A, it holds that

Pr

⎡
⎢⎢⎣Verify(tx, π, S) = 1 :

pp ← Setup(1λ); (m, A,R) ← A(pp,As,Ks)
where (As,Ks) =

{(
(pk, cn), (sk, ck)

)}
s.t.

(pk, sk) ← KeyGen(pp), (cn, ck) ← Mint(pk, a);
(tx, π, S) ← Spend(m,Ks, As, A,R).

⎤
⎥⎥⎦ = 1.

Definition 4 (Balance). This property requires that any malicious user cannot
(1) spend any account without her control and (2) spend her own/controllable
accounts with a larger output amount. Specifically, a RingCT protocol Π =
(Setup,KeyGen, Mint,Spend,Verify) is called balanced w.r.t. insider corruption
if for all PPT adversaries A, it holds that

Pr
[
A Wins : pp ← Setup(1λ); ({act′i}

μ
i=1, {Si}ν

i=1)
← AAddGen,ActGen,Spend,Corrupt(pp)

]
≤ negl(λ),

where all oracles AddGen, ActGen, Spend and Corrupt are defined as below:

– AddGen(i): on input a query number i, picks randomness τi, runs algorithm
(ski, pki) ← KeyGen(pp; τi) and returns address pki.

– ActGen(i, ai): on input address index i and an amount ai, runs algorithm
(cni, cki) ← Mint(pki, ai), then adds i and account acti = (pki, cni) to initially
empty lists I and G respectively, and outputs (acti, cki) for address pki, where
pki is assumed to have been generated by AddGen. The associated secret key
with account acti is aski

.= (ski, cki). The oracle also uses aski to determine
the serial number si of acti and adds it to initially empty list S.

– Spend(m, As, A,R): takes in transaction string m, input accounts A contain-
ing As and output addresses R, runs (tx, π, S) ← Spend(m,Ks, As, A,R) and
returns (tx, π, S) after adding it to list T , where As ⊂ G and we assume that
at least one account/address in As has not been corrupted so far.

– Corrupt(i): on input query number i ∈ I, uses account key aski to determine
the serial number si of account acti with address pki, then adds si and (si, ai)
to lists C and B respectively, where ai is the balance of the account with address
pki, and finally returns τi.

466 S.-F. Sun et al.

At last, A outputs all her spends with some new accounts (act′1, act′2, · · · , act′μ,
S1,S2, · · · ,Sν) such that Si = (txi, πi, Si), where all spends are payed to, w.l.o.g.,
the challenger with account address pkc

4, i.e., txi = (mi, Ai, A{pkc}), and Ai ⊂
G ∪ {act′i}

μ
i=1 for all i ∈ [ν]. We call A wins in the experiment if her outputs

satisfy the following conditions:

1. Verify(txi, πi, Si) = 1 for all i ∈ [ν].
2. Si /∈ T ∧ Si ⊂ S for all i ∈ [ν], and Sj ∩ Sk = ∅ for any different j, k ∈ [ν].

3. Let Si = {si,j} and E =
ν⋃

i=1

{ai,j : (si,j , ai,j) ∈ B ∧ si,j ∈ Si ∩ C}, it holds that∑
ai,j∈E ai,j <

∑ν
i=1 aout,i, where aout,i denotes the balance of output account

in Si.

Definition 5 (Anonymity). This property requires that two proofs of spending
with the same transaction string m, input accounts A, output addresses R and dis-
tinct spent accounts As0 , As1 ∈ A are (computationally) indistinguishable, mean-
ing that the spender’s accounts are successfully hidden among all the honestly
generated accounts. Specifically, a RingCT protocol Π = (Setup,KeyGen,Mint,
Spend,Verify) is called anonymous if for all PPT adversaries A = (A1,A2), it
holds that∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎣b′ = b :

pp ← Setup(1λ); (m, As0 , As1 , A,R) ←
AAddGen,ActGen,Spend,Corrupt

1 (pp); b ← {0, 1},
(tx∗, π∗, S∗) ← Spend(m,Ksb

, Asb
, A,R);

b′ ← ASpend,Corrupt
2 (pp, (tx∗, π∗, S∗))

⎤
⎥⎥⎦− 1

2

∣∣∣∣∣∣∣∣
≤ negl(λ),

where all oracles are defined as before, Asi
∈ A and Asi

⊂ G for i ∈ {0, 1}. In
addition, the following restrictions should be satisfied:

– For all i ∈ {0, 1}, any account in Asi
has not been corrupted.

– Any query in the form of (·, As, ·, ·) s.t. As ∩ Asi
�= ∅ has not been issued to

Spend oracle.

Definition 6 (Non-Slanderability). This property requires that a malicious
user cannot slander any honest user after observing an honestly generated spend-
ing. That is, it is infeasible for any malicious user to produce a valid spending
that share at least one serial number with a previously generated honest spend-
ing. Specifically, a RingCT protocol Π = (Setup,KeyGen,Mint,Spend,Verify) is
called non-slanderable if for all PPT adversaries A, it holds that

Pr
[
A Wins : pp ← Setup(1λ);

(
(t̂x, π̂, Ŝ), (tx∗, π∗, S∗)

)
← AAddGen,ActGen,Spend,Corrupt(pp)

]
≤ negl(λ),

where all oracles are defined as before, and (t̂x, π̂, Ŝ) is one output of the oracle
Spend for some (m, As, A,R). We call A succeeds if the output satisfies the fol-
lowing conditions: (1) Verify(tx∗, π∗, S∗) = 1; (2) (tx∗, π∗, S∗) /∈ T ; (3) Ŝ∩C = ∅
but Ŝ ∩ S∗ �= ∅.
4 Note that in this case, assuming pkc has been generated by AddGen, the challenger

knows all balances of the spent accounts and output accounts involved in the adver-
sarial spends {S}ν

i=1.

RingCT 2.0: Compact Spend Protocol for Monero 467

We note that our non-slanderability definition already covers linkability prop-
erty of a linkable ring signature. Thus we do not need to explicitly define linka-
bility.

5 Our RingCT 2.0 Protocol

In this section, we present a new RingCT protocol under our formalized syntax.
Specifically, our protocol is constructed based on a generic accumulator with one-
way domain ACC, a signature of knowledge SoK and the well-known Pedersen
commitment. Proceeding to present the details, we first give an intuition of
our protocol. Without loss of generality, we denote all, say, n groups of input
accounts by A = {(pk

(k)
in,i, cn

(k)
in,i)}i∈[n],k∈[m] (including the group of m accounts

the user intends to spend) and set the spender’s group as the s-th group, i.e.,
As = {(pk

(k)
in,s, cn

(k)
in,s)}k∈[m]. Conceptually, our idea is to arrange the account

groups key into a matrix in which each group corresponds to a column. To
shorten the size of transaction, the public keys in the same row is accumulated
into one value. Then, the spender proves that he is using one account of each
row in the spending. To ensure that the spender is using the account of the same
column, the accumulated elements in protocol are formed as pk

(k)
in,i · us instead

of pk
(k)
in,i, as shown in the matrix below.

To further guarantee the total balance in each transaction is conserved, the
spender computes extra public keys p̃ki based on the input accounts and the
output accounts. Looking ahead, knowledge of the secret key that corresponds
to p̃ki implies that the balance in accounts Ai is equal to the balance of the
output accounts.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pk
(1)
in,1 · u1 · · · pk

(1)
in,s · us · · · pk

(1)
in,n · un

...
. . .

...
. . .

...
pk

(k)
in,1 · u1 · · · pk

(k)
in,s · us · · · pk

(k)
in,n · un

...
. . .

...
. . .

...
pk

(m)
in,1 · u1 · · · pk

(m)
in,s · us · · · pk

(m)
in,n · un

p̃k1 · u1 · · · p̃ks · us · · · p̃kn · un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒
...

⇒
...

⇒
⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
...

vk

...
vm

vm+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

5.1 Protocol Description

Let ACC = (ACC.Gen,ACC.Eval,ACC.Wit) be an accumulator with one-way
domain and SoK = (Gen,Sign,Verf) be a signature of knowledge as defined in
Sect. 3.2. Based on these primitives and the Pedersen commitment, our RingCT
protocol RCT = (Setup,KeyGen,Mint,Spend,Verify) is designed as follows:

Setup(1λ): on input a security parameter λ, the algorithm prepares a collision-
resistant accumulator f with one-way domain Gq, together with its description

468 S.-F. Sun et al.

desc, by calling ACC.Gen(1λ), and generates par by running Gen(1λ). Then it
randomly picks generators h0, h1, u ∈ Gq, chooses a random hash function H,
and outputs the system parameters pp =

(
1λ, desc, par, h0, h1, u,H

)
.

KeyGen(pp): on input pp, the algorithm generates a key pair (sk, pk) :=
(x, y = hx

0) ∈ Zq × Gq by executing the sampling algorithm of the one-way
relation associated with the domain of f . In the context of Monero, the public key
pk is always set as a one-time address, which combining with a coin constitutes
a user’s account.

Mint(pk, a): on input address pk and an amount a ∈ Zq, the algorithm mints
a coin for pk: chooses r ∈ Zq uniformly at random, computes commitment
c = hr

0h
a
1 , where r is called a secret hiding factor and a is the balance of account

pk, and then returns (cn, ck) = (c, (r, a)). The coin cn together with pk forms the
account act

.= (pk, cn), to which the corresponding secret key is ask
.= (sk, ck).

Spend(m,Ks, As, A,R): on input a set of secret keys Ks associated with
the group of input accounts As, some transaction string m ∈ {0, 1}∗, an arbi-
trary set A of groups of input accounts containing As, and a set R of output
addresses, the algorithm produces an SoK π and the corresponding serial num-
bers S w.r.t. As as follows. Without loss of generality, we denote all, say, n
groups (including the group the user intends to spend) of input accounts by
A = {(pk

(k)
in,i, cn

(k)
in,i)}i∈[n],k∈[m] and set the spender’s group as the s-th group,

i.e., As = {(pk
(k)
in,s, cn

(k)
in,s)}k∈[m], the corresponding secret keys of which are

Ks = {ask
(k)
s = (sk(k)

in,s, (r
(k)
in,s, a

(k)
in,s))}k∈[m], and denote the intended output

addresses by R = {pkout,j}j∈[t].

1. Set aout,j ∈ Zq for all output address pkout,j ∈ R, such that the input and

output balances satisfy
m∑

k=1

a
(k)
in,s =

t∑
j=1

aout,j , then pick uniformly at random

rout,j ∈ Zq and mint coin cnout,j = cout,j = h
rout,j

0 h
aout,j

1 . After that, add
output account actout,j = (pkout,j , cnout,j) to AR, and privately send the coin
key ckout,j = (rour,j , aout,j) to the user holding address pkout,j .

2. Compute s̃ks =
m∑

k=1

sk
(k)
in,s +

m∑
k=1

r
(k)
in,s −

t∑
j=1

rout,j and p̃ki =
m∏

k=1

pk
(k)
in,i ·

m∏
k=1

cn
(k)
in,i/

t∏
j=1

cnout,j for each i ∈ [n]. Clearly, it holds that p̃ks = h
˜sks
0 , which

follows from the fact that
m∑

k=1

a
(k)
in,s =

t∑
j=1

aout,j . For convenience, we denote

p̃ki and s̃ks by y
(m+1)
i and x

(m+1)
s respectively hereafter, i.e., p̃ki

.= y
(m+1)
i

and s̃ks
.= x

(m+1)
s .

3. Generate a proof π that the group of coins As was spent properly for a
transaction tx, which consists of m, input accounts A and output accounts
AR = {actout,j}, as follows. For clarity, we denote sk

(k)
in,s = x

(k)
s for all k ∈ [m]

and pk
(k)
in,i = y

(k)
i for all i ∈ [n] and k ∈ [m]. Recall that p̃ki

.= y
(m+1)
i for all

i ∈ [n] and s̃ks
.= x

(m+1)
s .

RingCT 2.0: Compact Spend Protocol for Monero 469

(a) For each k ∈ [m+1], compute the accumulated value vk = ACC.Eval(desc,

{y
(k)
i · ui}) and the witness w

(k)
s = ACC.Wit(desc, {y

(k)
i · ui|i �= s}) for the

fact that y
(k)
s · us has been accumulated within vk (i.e., computing the

witness w
(k)
s s.t. f(w(k)

s , y
(k)
s · us) = vk). Then compute sk = H(y(k)

s)x(k)
s

for all k ∈ [m]. For simplicity, we denote z
(k)
s = y

(k)
s · us hereafter.

(b) Use Sign to produce a signature of knowledge π on tx as:

SoK

⎧⎪⎨
⎪⎩({wk, zk, xk}m+1

k=1 , γ) :

f(wm+1, zm+1) = vm+1 ∧ zm+1 = h
xm+1
0 uγ∧

f(w1, z1) = v1 ∧ z1 = h
x1
0 uγ ∧ s1 = H(y(1)

s)x1∧
.
.
.

f(wm, zm) = vm ∧ zm = hxm
0 uγ ∧ sm = H(y(m)

s)xm

⎫⎪⎬
⎪⎭ (tx)

(c) Eventually, return (tx, π, S), where S = {s1, s2, . . . , sm}. We note that
the serial number sk is uniquely determined by the address key sk

(k)
in,s for

every k ∈ [m], and thus they can be used to prevent double-spending.

Verify(tx, π, S): receiving a transaction tx containing m, A and AR, the asso-
ciated SoK π for tx and the serial numbers S = {si}, the recipient verifies that
a set of accounts with serial numbers {si} from input accounts A was spent for
a transaction tx (towards output addresses R) with string m, as follows:

1. Use A = {(pk
(k)
in,i, cn

(k)
in,i)}i∈[n],k∈[m] and AR = {(pkout,j , cnout,j)}j∈[t] (con-

tained in tx) to compute p̃ki =
m∏

k=1

pk
(k)
in,i ·

m∏
k=1

cn
(k)
in,i/

t∏
j=1

cnout,j for all i ∈ [n],

and then compute the accumulated values vk = ACC.Eval(desc, {pk
(k)
in,i · ui})

for all k ∈ [m] and vm+1 = ACC.Eval(desc, {p̃ki · ui}).
2. Take as input accumulated values (v1, · · · , vm+1), serial numbers S = (s1, · · · ,

sm), transaction tx and π to verify whether it is a valid spending by checking
Verf(tx, (v1, · · · , vm+1, s1, · · · , sm), π) ?= 1. If true, accept this transaction,
otherwise reject it.

The correctness of this protocol follows directly from that of the underlying
signature of knowledge protocol SoK. We do not give more details here.

5.2 Security Analysis

In this part, the securities of our RingCT protocol are collectively analyzed under
the formalized security models, which are indicated as the following theorems.

Theorem 1. Assuming the discrete logarithm (DL) problem in Gq is hard, ACC
is an accumulator with one-way domain and SoK is a SimExt-secure signature
of knowledge, then the proposed RingCT protocol RCT is balanced w.r.t. insider
corruption.

Theorem 2. Let HComP be the Pedersen commitment, ACC be an accumulator
with one-way domain and SoK a SimExt-secure signature of knowledge, then the
proposed RingCT protocol RCT is anonymous under the DDH assumption.

470 S.-F. Sun et al.

Theorem 3. Assuming the DL problem in Gq is hard, ACC is an accumulator
with one-way domain and SoK is a SimExt-secure signature of knowledge, then
the proposed RingCT protocol RCT is non-slanderable w.r.t. insider corruption.

Proofs for Theorems 1, 2 and 3 can be found in the full version of this paper [27].

5.3 Instantiations

Our RingCT protocol is constructed based on a well-known homomorphic com-
mitment, i.e., the Pedersen commitment, a generic accumulator with one-way
domain ACC and a signature of knowledge SoK for a specific language related
to ACC. Next we give an instantiation of ACC and SoK, and briefly recall the
Pedersen commitment for completeness.

Accumulator with One-Way Domain. A specific (universal) accumulator for
DDH groups presented in [5] is well suited to our protocol, the algorithms of
which are described as follows:

– ACC.Gen(1λ): generate cyclic groups G1 = 〈g0〉 and G2 of prime order p,
equipped with a bilinear pairing e : G1 × G1 → G2, and an accumulating
function g◦ f : Z∗

p ×Z
∗
p → G1, where f is defined as f : Z∗

p ×Z
∗
p → Z

∗
p such that

f : (u, x) �→ u(x + α) for some auxiliary information α randomly chosen from
Z

∗
p (for simplicity, u is always set as the identity element of Z∗

p) and g is defined
as g : Z∗

p → G1 such that g : x �→ gx
0 . The domain of accumulatable elements

is Gq = 〈h〉, which is a cyclic group of prime order q such that Gq ⊂ Z
∗
p. At

last, output the description desc = (G1,G2,Gq, e, g0, g
α
0 , gα2

0 , · · · , gαn

0 , g ◦ f),
where n is the maximum number of elements to be accumulated.

– ACC.Eval(desc, X): compute the accumulated value g ◦ f(1,X) for X by eval-
uating

∏n
i=0(g

αi

0)ui with public information {gαi

0 }i∈[n], where ui is the coef-
ficient of the polynomial

∏
x∈X(x + α) =

∏n
i=0(uiα

i).
– ACC.Wit(desc, xs,X): the relation Ω w.r.t. this accumulator is defined as

Ω(w, x, v) = 1 iff e(w, gx
0gα

0) = e(v, g0), a witness ws for the element xs ∈
X := {x1, x2, · · · , xn} s.t. s ∈ [n] is computed as ws = g ◦ f(1,X\{xs}) =∏n−1

i=0 (gαi

0)ui with public information {gαi

0 }i∈[n−1], where ui is the coefficient
of the polynomial

∏n
i=1,i �=s(xi + α) =

∏n−1
i=0 (uiα

i).

Regarding this accumulator, the domain of accumulatable elements is Gq =
〈h〉, the one-way relation for which is defined as Rq

.= {(y, x) ∈ Zq×Gq : x = hy}.
Moreover, the relation Rq is efficiently verifiable, efficiently samplable and one-
way, as defined before.

Theorem 4 [5]. Under the n-SDH assumption in group G1, the above accumu-
lator ACC is a secure universal accumulator. Moreover, under the DL assumption
in group Gq, it is an accumulator with one-way domain.

As to the associated SoK with this concrete ACC, it can be easily obtained
by applying the Fiat-Shamir paradigm [15] to the associated interactive zero-
knowledge protocol given in [5].

RingCT 2.0: Compact Spend Protocol for Monero 471

Pedersen Commitment. As shown in [19], the Pedersen commitment is naturally
a homomorphic commitment scheme. Its key generation algorithm CKGen and
commit algorithm Com are described respectively as:

– CKGen(1λ): on input a security parameter 1λ, outputs the commitment key
ctk = (Gq, q, g, h), where Gq is a cyclic group of prime order q and g, h are
random generators of Gq.

– Com(ctk,m): to commit to a message m ∈ Zq, the algorithm randomly picks
r ∈ Zq and computes c = gmhr.

As well known, this commitment scheme is perfectly hiding and computationally
strongly binding under the discrete logarithm assumption in Gq.

6 Efficiency Analysis

In this section, we give a brief comparison of the efficiency of our RingCT proto-
col with that of [24]. In particular, the anonymity of our protocol relies heavily
on the underlying accumulator with one-way domain, which compacts a group
of input accounts to a shorter value, while the RingCT protocol given in [24] is
directly constructed on the basis of a linkable ring signature. As shown in [24],
the size of signature in their protocol increases linearly with the number n of
group accounts. More concretely, it is almost O(n(m+1)) where m is the number
of accounts contained in each group. In contrast, the communication complexity
of our protocol is O(m), which is independent of the number of groups. Clearly,
the proposed protocol presents a significant space/bandwidth saving.

7 Conclusion

In this work, we first formalize the syntax of RingCT protocol and present some
rigorous security definitions by capturing the necessary security requirements for
its application in Monero, which is the core part for Monero. Next, we propose a
new RingCT protocol (RingCT 2.0) based on a specific homomorphic commit-
ment, accumulator with one-way domain and the related signature of knowledge.
The size of the RingCT 2.0 protocol is independent to the number of groups of
input accounts included in the generalized ring while the original RingCT pro-
tocol suffers from the linear growing size with the number of groups. We believe
the significant space complexity improvement in RingCT 2.0 will improve the
overall efficiency of Monero.

Acknowledgement. This work is supported by National Natural Science Foundation
of China (61602396, 61472083).

472 S.-F. Sun et al.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). doi:10.1007/3-540-36178-2 26

2. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp.
101–115. Springer, Heidelberg (2006). doi:10.1007/11774716 9

3. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Certificate based (linkable) ring signa-
ture. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72163-5 8

4. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469,
1–14 (2013)

5. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00862-7 20

6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 38

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press (1993)

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, 18–21 May
2014, pp. 459–474 (2014)

9. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, 20–22 August 2014, pp. 781–796 (2014)

10. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

11. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Proceedings
26th Annual International Cryptology Conference on Advances in Cryptology -
CRYPTO 2006, Santa Barbara, California, USA, 20–24 August 2006, pp. 78–96
(2006)

12. Chaum, D., Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.1007/
3-540-46416-6 22

13. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175–192. Springer, Heidelberg (2006). doi:10.1007/11958239 12

14. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 609–626. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 36

15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

http://dx.doi.org/10.1007/3-540-36178-2_26
http://dx.doi.org/10.1007/11774716_9
http://dx.doi.org/10.1007/978-3-540-72163-5_8
http://dx.doi.org/10.1007/978-3-642-00862-7_20
http://dx.doi.org/10.1007/3-540-39200-9_38
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/11958239_12
http://dx.doi.org/10.1007/978-3-540-24676-3_36
http://dx.doi.org/10.1007/3-540-47721-7_12

RingCT 2.0: Compact Spend Protocol for Monero 473

16. Fiege, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: STOC 1987:
19th Annual ACM conference on Theory of Computing, pp. 210–217. ACM Press,
New York (1987)

17. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19074-2 25

18. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71677-8 13

19. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 9

20. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using P2P
network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437,
pp. 469–485. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5 30

21. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)

22. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group sig-
nature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-27800-9 28

23. Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes.
In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y.,
Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer,
Heidelberg (2005). doi:10.1007/11424826 65

24. Noether, S.: Ring signature confidential transactions for Monero. Cryptology ePrint
Archive, Report 2015/1098 (2015). http://eprint.iacr.org/

25. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). doi:10.1007/3-540-68339-9 33

26. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
doi:10.1007/3-540-45682-1 32

27. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency Monero (Full
Version). Cryptology ePrint Archive, Report 2017 (2017). http://eprint.iacr.org/

28. Tsang, P.P., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S.: A suite of non-pairing ID-
based threshold ring signature schemes with different levels of anonymity (extended
abstract). In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp.
166–183. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16280-0 11

29. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attes-
tation. In: Deng, R.H., Bao, F., Pang, H.H., Zhou, J. (eds.) ISPEC 2005. LNCS,
vol. 3439, pp. 48–60. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31979-5 5

30. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separa-
ble linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30556-9 30

31. Wijaya, D.A., Liu, J.K., Steinfeld, R., Sun, S.-F., Huang, X.: Anonymizing bitcoin
transaction. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) ISPEC 2016. LNCS,
vol. 10060, pp. 271–283. Springer, Cham (2016). doi:10.1007/978-3-319-49151-6 19

http://dx.doi.org/10.1007/978-3-642-19074-2_25
http://dx.doi.org/10.1007/978-3-540-71677-8_13
http://dx.doi.org/10.1007/978-3-540-71677-8_13
http://dx.doi.org/10.1007/978-3-662-46803-6_9
http://dx.doi.org/10.1007/978-3-662-45472-5_30
http://dx.doi.org/10.1007/978-3-540-27800-9_28
http://dx.doi.org/10.1007/978-3-540-27800-9_28
http://dx.doi.org/10.1007/11424826_65
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-68339-9_33
http://dx.doi.org/10.1007/3-540-45682-1_32
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-16280-0_11
http://dx.doi.org/10.1007/978-3-540-31979-5_5
http://dx.doi.org/10.1007/978-3-540-30556-9_30
http://dx.doi.org/10.1007/978-3-319-49151-6_19

474 S.-F. Sun et al.

32. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. Comput. J. 56(4), 407–421 (2013)

33. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002). doi:10.1007/3-540-36178-2 33

34. Zheng, D., Li, X., Chen, K., Li, J.: Linkable ring signatures from linear feedback
shift register. In: Denko, M.K., et al. (eds.) EUC 2007. LNCS, vol. 4809, pp. 716–
727. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77090-9 66

http://dx.doi.org/10.1007/3-540-36178-2_33
http://dx.doi.org/10.1007/978-3-540-77090-9_66

	RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero
	1 Introduction
	1.1 Monero: A Blockchain-Based Cryptocurrency
	1.2 Ring Signature and Linkable Ring Signature
	1.3 Our Contributions

	2 Related Works
	3 Preliminaries
	3.1 Mathematical Assumptions
	3.2 Building Blocks

	4 RingCT Protocol for Monero
	4.1 Technical Description
	4.2 Security Definitions

	5 Our RingCT 2.0 Protocol
	5.1 Protocol Description
	5.2 Security Analysis
	5.3 Instantiations

	6 Efficiency Analysis
	7 Conclusion
	References

