
Network Intrusion Detection Based on
Semi-supervised Variational Auto-Encoder

Genki Osada(B), Kazumasa Omote, and Takashi Nishide

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
homerunrun@hotmail.com

Abstract. Network intrusion detection systems (NIDSs) based on
machine learning have been attracting much attention for its poten-
tial ability to detect unknown attacks that are hard for signature-based
NIDSs to detect. However, acquisition of a large amount of labeled data
that general supervised learning methods need is prohibitively expensive,
and this results in making it hard for learning-based NIDS to become
widespread in practical use.

In this paper, we tackle this issue by introducing semi-supervised
learning, and propose a novel detection method that is realized by means
of classification with the latent variable, which represents the causes
underlying the traffic we observe. Our proposed model is based on Varia-
tional Auto-Encoder, unsupervised deep neural network, and its strength
is a scalability to the amount of training data. We demonstrate that our
proposed method can make the detection accuracy of attack dramati-
cally improve by simply increasing the amount of unlabeled data, and,
in terms of the false negative rate, it outperforms the previous work based
on semi-supervised learning method, Laplacian regularized least squares
which has cubic complexity in the number of training data records and
is too inefficient to leverage a huge amount of unlabeled data.

1 Introduction

Applying machine learning techniques to network intrusion detection systems
(NIDSs) has been attracting much attention recently, as it has a potential to
detect unknown attacks, which is hard for signature-based ones to capture. Along
with the popularization of IoT devices and big data analysis, we can expect that
acquisition of data for model training will get easier and that its volume will
be much bigger, and hence it is predictable that machine learning will exert
stronger presence furthermore in network security research and practice.

However, the need for acquiring labeled data, which is required in general
supervised learning, such as classification, exists as a barrier against its wide-
spread adoption. Attacks in the wild are rarely captured, and even then, label-
ing process to determine whether it is normal or adversarial on every traffic
record requires expertise and obviously takes vast times, which ends up with
prohibitively high cost. To make matters even more troublesome, the character-
istics of traffic data vary from environment to environment. Considering the fact
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part II, LNCS 10493, pp. 344–361, 2017.
DOI: 10.1007/978-3-319-66399-9 19

NIDSs Based on Semi-supervised Variational Auto-Encoder 345

that most machine learning methodologies assume that training data and test
data should be sampled from independent and identically distributed (i.i.d.) ran-
dom variables, ideally, it is desirable that data is collected in the actual network
environments where the defense system will be deployed, rather than using data
that is sampled from other environments. Furthermore, as the trend of network
traffic changes day by day even in one environment, it is required to keep the
defense systems up-to-date through updating themselves continuously [5]. This
necessity means that labeling work is required many times.

We will tackle this issue by introducing semi-supervised learning so that the
amount of such labeling operations decreases. Our primal contributions are as
follows:

1. We propose a network intrusion detection method based on semi-supervised
learning that can reduce the number of labeling operations drastically with-
out sacrificing detection performance. Our proposed method outperforms the
previous work of [13] in terms of the false negative rate which is a crucial
index for NIDSs: our method gave 4.67%, compared with 10.86% in [13].

2. Our proposed method has the capability to improve its performance dra-
matically by simply increasing the amount of unlabeled data, which would
be easily available. While [13] has proposed NIDSs based on semi-supervised
learning, their method, Laplacian regularized least squares, cannot leverage
large scale data for training because it has cubic complexity in the number of
labeled and unlabeled examples [2]. On the other hand, since our proposed
method would be trained by mini-batch gradient descent optimization, it is
not restricted in terms of the amount of training data, which is an impor-
tant aspect to create a synergetic effect with semi-supervised learning. This
property also allows us to use the whole training data without the need to
extract part of training data. Taking into account the fact that the trend of
network traffic changes over a some period as mentioned above, which part of
data we extract from the whole data for training can have a great influence
on the detection performance. Thus if we are required to extract part of data
for training, it means that we need to establish an appropriate extraction
method, but such an extraction method would be no longer necessary if there
is no limit on the number of processable training data records.

3. In order to realize the above 1 and 2, we propose Forked Variational Auto-
Encoder (Forked VAE) as an extension of Variational Auto-Encoder (VAE)
[6,11], unsupervised deep neural network. Although there are Deep Genera-
tive Model (DGM) [7] and Auxiliary Deep Generative Model [9] as extended
the VAE for semi-supervised learning, their objectives are to reconstruct input
data, especially images, and they utilized label information for that aim. On
the other hand, our objective is to perform classification with the latent vari-
able which is represented with lower dimension and a simpler distribution
than the original input data, and for that purpose our Forked VAE utilizes
label information.

346 G. Osada et al.

In this paper, we describe the aforementioned learning model and show exper-
imental results that were done to evaluate its performance as an NIDS using
Kyoto2006+ and NSL-KDD datasets.

2 Our Approach

In this section, while we clarify our problem, we describe our detection approach
and intention for introducing semi-supervised learning.

2.1 Direction of Attack Detection

Outlier Detection vs. Classification. There are mainly two types of machine
learning techniques useful for network intrusion detection systems, namely, out-
lier detection and classification. As the term of outlier detection is often used
interchangeably with anomaly detection, what outlier methods do is to detect a
deviation from normal behavior. However, attackers often mimic normal traffic,
and in an environment where the users are not imposed a special restriction on
their use of network, we can expect that it is very often the case that previously
unseen but normal behaviors are observed. We can argue that the aim of outlier
detection techniques is just to find unknown behaviors and that distinguishing
attacks from benign traffic is out of their scope. In light of this, we choose an
approach of classification to judge whether the traffic is normal or not, rather
than detecting the outlier.

Unfortunately, classification methods need labeled data to train a model in
general. The downside of using labels is the cost of obtaining them as argued
before, so outlier detection methods that can be trained in an unsupervised
manner without using labels are attractive. However, the upside of using labels
is the ability to steer a model in a desired direction, which can only be done
by supervised learning methods [15]. The contribution of this paper is mainly
to mitigate the above downside of supervised learning classification methods by
introducing semi-supervised learning.

Classification with Latent Variable. As mentioned in the above section
attackers often mimic benign traffic, so that the observed data can become hard
to distinguish from benign traffic. The intent behind the generation of those traf-
fic, however, should clearly be different from that behind benign traffic. There-
fore, we work on detecting the presence of malice underneath the generated traffic
rather than classifying the raw observed data. To realize this, we bring in the
latent variable model, which is a statistical model used in machine learning as a
powerful tool. As a latent variable model, let us consider that a single observed
traffic data x is generated by a corresponding unobserved continuous random
variable z, the latent variable, through some random process. We assume that z
is the cause of why traffic x is generated and that each x has corresponding z. If
z can be represented in the latent space such that it highlights the presence or
absence of malice and with a lower dimension than x in the observation space,

NIDSs Based on Semi-supervised Variational Auto-Encoder 347

Fig. 1. The whole picture of labeling operation. Black and orange arrows indicate
labeling flow and input to model training respectively. (Color figure online)

we can expect that attack detection can be performed in the latent space more
efficiently than in the observation space. Together with the discussion so far,
what we need to do is to do classification with the latent variable, for which two
things are needed:

– To know how to map the observed data x into the corresponding latent vari-
able z. This can be viewed as a matter of posterior distribution inference,
and we try to solve this with the technique called approximate inference. As
we will describe in detail in Sect. 3.1, we use the VAE as a building block for
that.

– To make the representation of latent variables z focus on the presence or
absence of malice. For this purpose, we introduce the essence of supervised
learning and incorporate it into the VAE, which leads to our new technique,
Forked VAE in Sect. 3.2.

2.2 Data Label

Before entering the section for semi-supervised learning, with consideration of
actual use, we describe the labels that we assume to put on each traffic record.
Figure 1 is the whole picture of labeling operations, from the observed data (i.e.,
raw data) to the labeled data for model training. First, we define three levels
of labels based on the granularity and these levels change through phases of
analysis. Level 0 means that no labeling has been done yet, i.e., the observed
data has no label. Level 2 indicates either “normal” or the name of attack types,
and it would be given through the expert analysis, which corresponds to Analysis
2 of Fig. 1. Here, we assume that a Level 1 label would be attached to the data
tentatively before Analysis 2 is finished. An analysis for unknown attacks can
often take much time, and until it gets finished, the labeled data for that kind of
new attack would be unavailable, which means that the defense system would be
left vulnerable during that time. However, even if the expert analysis has not fully
figured out the tactics of attackers yet, if the traffic is enough suspicious for us to
decide that it is a symptom of attack, immunization of the defense system against
those kind of attacks should be started in parallel with Analysis 2. Hence, for
the Level 1 label, a bit that indicates whether the traffic is a symptom of attack
or not is sufficient, and in order to handle this labeling process automatically

348 G. Osada et al.

in a short time, we assume that a signature based or anomaly detection based
NIDS is used in Analysis 1. Due to the use of NIDS, mis-labeling could happen
in Analysis 1. We therefore arrange Analysis 2 at the end of the system in Fig. 1
so that every traffic can be re-labeled correctly through that. However, here we
focus on using only Level 0 and 1 labeled data for the model training in this
paper because these labels are easily obtained timely, and a Level 2 label is out
of the scope of this paper.

It is not hard to imagine that once the system gets prepared, it would become
possible to collect a massive amount of Level 0 data. Hence, it is desirable that
the model has no restriction on the amount of training data so as to fully utilize a
vast amount of unlabeled data. In addition, to achieve the property of supervised
learning from Level 1 labeled data, we introduce semi-supervised learning.

2.3 Advantage of Semi-supervised Learning

The roles of supervised learning that uses labeled data and unsupervised learning
that uses unlabeled one are basically different. The main purpose of supervised
learning is clear enough: figuring out how relevant data should be extracted from
input data to perform a task at hand (e.g., classification). On the other hand,
unsupervised leaning tries to keep as much information about the original data
as possible [15]. Semi-supervised learning is known as combination of these two
to complement each other.

The detection of unknown attacks is obviously a crucial task for NIDSs, but
at the same time it also must be guaranteed that previously unseen normal
traffic can pass through the NIDS without being blocked. This can be viewed as
a problem of over-fitting, i.e., how well the learned model can handle correctly
the data record that was not contained in the training dataset, and we consider
this challenge as one of the most important missions for NIDSs. A more in-
depth argument about unsupervised learning and over-fitting can be found in
other literature, and we just briefly introduce the result of [3], which showed
that unsupervised learning outperformed supervised learning in the experiment
to verify whether a model can recognize the cluster that did not exist in the
training dataset.

The reason why we bring semi-supervised is to take full advantage of the
property of unlabeled data, and this leads to the reduction of labeling cost,
fast updating of the defense system and the tolerance to over-fitting inherent in
unsupervised learning.

3 Proposed Model

On the basis of the discussion so far, our machine learning model needs to have
the following functionalities:

– Semi-supervised learning to leverage unlabeled data.
– Scalability to be able to deal with a huge amount of data for training.

NIDSs Based on Semi-supervised Variational Auto-Encoder 349

– Latent variable modeling by which unobserved latent variables are represented
in such a way that the presence or absence of malice underlying the observed
traffic data is highlighted.

– Classification with latent variables.

To build our model, we choose the Variational Auto-Encoder (VAE) [6,11] as a
building block. In this section, we first describe the VAE and then explain our
proposed model named Forked Variational Auto-Encoder (Forked VAE) while
comparing it with the Deep Generative Model (DGM) [7], which is previously
proposed as a semi-supervised learning version of the VAE.

3.1 Variational Auto-Encoder

Variational Inference. Before going into the description of the VAE, we intro-
duce a general approximating technique called Variational Inference, also known
as Variational Bayesian methods. As in Sect. 2.1, we consider a model in which
observed data x is considered to be generated from the latent variable z. We
assume that the input data and the latent variable consist of some feature vari-
ables, and from now on we denote them as x and z respectively. In the context
of the NIDS, for example, x corresponds to a single line of network traffic log,
and z corresponds to the intention with which x is generated. Our objective
is to predict whether x is normal or adversarial. As mentioned in Sect. 2.1, we
would like to perform classification with the latent variable, rather than the
observed data, and to do so what we have to know is p(z |x), which means pos-
terior probability. Suppose p(z |x) is parametrized by θ, what we want to do is
to optimize the model via tuning θ. Now, rather than trying to obtain p(z |x)
directly, we introduce an arbitrary simple distribution q(z |x), such as Gaussian,
and consider approximating p(z |x) by using q(z |x). Let’s suppose that q(z |x)
is parametrized by φ where φ is a parameter like the mean and covariance in
case q(z |x) is Gaussian. Here, logarithm marginal likelihood which we want to
maximize can be represented with q as follows:

log p(x) =
∫

q(z |x) log p(x) dz

=
∫

q(z |x) log
p(x , z)q(z |x)
p(z |x)q(z |x)

dz

= L + DKL(q(z |x)‖p(z |x))
≥ L

(1)

L =
∫

q(z |x) log
p(x , z)
q(z |x)

dz (2)

DKL(q(z |x)‖p(z |x)) =
∫

q(z |x) log
q(z |x)
p(z |x)

dz (3)

where the first line of Eq. (1) can be obtained just by insertion of weighted sum
by q(z |x) that is independent of p(x) and whose summation is one. Applying

350 G. Osada et al.

Bayes rule leads to the second line and it can be transformed into the third line
by multiplying both the numerator and the denominator inside the logarithm by
q(z |x). There are two goals in this scenario. One is to make marginal likelihood
log p(x) as large as possible, which is equivalent to optimizing the model with
regard to θ. The other is to make the shape of approximate distribution q(z |x)
closer to true distribution p(z |x) by tuning φ, which is equivalent to making
Eq. (3) closer to 0. With the fact that the KL divergence, Eq. (3), is nonnegative,
log p(x) is larger than L called variational lower bound, and these two goals can
be viewed as a single task, maximization of L. The VAE uses the gradient descent
method for this optimization problem in the line of neural networks.

Variational Auto-Encoder. In order to maximize the variational lower bound
L of Eq. (2) with regard to both the parameter θ and φ, the VAE uses the gradient
descent method called Stochastic Gradient Variational Bayes [6] or Stochastic
Back-propagation [11]. To derive the object function of VAE, we will do two-
step conversion to the variational lower bound L, Monte Calro estimation and a
technique called re-parameterization trick. First, we introduce the Monte Carlo
sampling, by which the integral at z in Eq. (6) is approximated by taking the
average of samples from q(z |x):

∫
q(z |x) f(z) dz = Ez∼q(z |x) [f(z)] � 1

M

M∑
m=1

f(z (m)) (4)

where z ∼ q(z |x) means that the distribution of the random variable z is consis-
tent with the probabilistic distribution q(z |x), z (m) indicates the m-th sample
from q(z |x), M is the number of the Monte Carlo sampling runs and Ez∼q(z |x)
means the expected value over empirical samples from the distribution of q(z |x).
Then applying re-parameterization trick, we express the random variable z as
a deterministic variable z = gφ(x , ε), where ε is an auxiliary noise variable
and ε(m) ∼ p(ε). If we let the variational approximate posterior be a univari-
ate Gaussian, q(z |x) = N (z |μ,σ2), the latent variable z can be expressed as
z (m) = μ + σε(m), where multiplication of σ and ε(m) is done as element-wise.
Equation (4) then can be written as:

Ez∼q(z |x) [f(z)] = Eε∼p(ε) [f(μ + σε)] � 1
M

M∑
m=1

f(μ + σε(m)) (5)

To make the sampling variance smaller, using the Bayes rule again (p(x , z) =
p(x |z)p(z)), we convert Eq. (2) as follows:

L =
∫

q(z |x) log p(x |z) dz − DKL(q(z |x)‖p(z)) (6)

Note that the KL-divergence between two Gaussians can be integrated analyt-
ically. Let P (z) = N (μ1,σ1), Q(z) = N (μ2,σ2) and D be the dimensionality
of z , then:

NIDSs Based on Semi-supervised Variational Auto-Encoder 351

DKL(P1(z)‖P2(z)) =
1
2
(log

|σ2|
|σ1| + tr

{
σ−1

2 σ1

}
)

+
1
2

(μ1 − μ2)
Tσ−1

2 (μ1 − μ2) − D

2

(7)

In our case, P1(z) is the posterior approximation q(z |x) = N (μ,σ) and P2(z) is
N (0, I) if we set the prior p(z) as a standard normal distribution. Then putting
them altogether, the objective function of the VAE for a single data point x
ends up as follows:

L =
1
M

M∑
m=1

log p(x |z (m)) − 1
2

D∑
d=1

[
1 + log(σd)2 − (μd)2 − (σd)2

]
(8)

where z (m) = μ+σε(m), ε(m) ∼ N (0, I) and μd and σd denote the d-th element
of each vector. If the mean and variance of the approximate posterior, μ and σ2,
are outputs of a fead-forward network q(z |x) parameterized by φ which takes x
as input, and so is p(x |z) by θ, we can optimize both of them simultaneously as
a single neural network whose objective function is L of Eq. (8). It then can be
viewed as a kind of Auto-Encoder that consists of the encoder q(z |x) and the
decoder p(x |z). In Eq. (8), while the first term corresponds to the reconstruction
error similar to typical Auto-Encoders, the second term is the advantage of the
VAE. The second term of Eq. (8) works as regularization that makes the shape
of the posterior approximation distribution q(z |x) of the latent space close to
the one of the prior distribution p(z), which means that in the test time the
model would be able to predict a reasonable z to some extent, even for the
traffic x that was not contained in the training dataset. Note that, z in the VAE
is represented as a continuous variable and the number of its dimensionality can
be specified arbitrarily, just in the same way as a usual hidden layer.

3.2 Extension to Semi-supervised Learning

The VAE now enables us to predict a latent representation z for a certain
observed traffic x . Additionally, its optimization is done by a mini-batch gradi-
ent descent method similarly to usual feedforward neural net models, and the
amount of training data that the VAE can handle is unlimited in principle.
The other thing we have to do is to add the functionalities of semi-supervised
learning and classification using the latent variable to the VAE. Here, we first
explain the architecture of the deep generative model (DGM) [7], which is previ-
ously proposed as an extension of the VAE to make it possible to generate data
conditionally using labels, and then describe our proposed model, Forked VAE.

Deep Generative Model. The deep generative model (DGM) [7], also known
as the conditional VAE (CVAE), has been proposed aiming to control the shape
of the data that would be generated. Let y be a scalar indicating a label of input
data x , and in the context of the NIDS with a Level 1 label in Sect. 2.2, y is

352 G. Osada et al.

a bit indicating whether a certain observed connection x shows a symptom of
attack or not. As the graphical model shown in Fig. 2a, the DGM represents
the inference model as q(x , y, z) = q(z |x , y)q(y|x)q(x) (the left-hand of Fig. 2a)
and the generative model as p(x , y, z) = p(z |x , y)p(y)p(z) (the right-hand of
Fig. 2a) respectively1. When x with label y is existent, by doing the expression
expansion similar to Eq. (1), the variational bound L� for a single data point
(x , y) can be shown as follows:

log p(x , y) =
∫

q(z |x) log
p(x , y, z)
p(z |x , y)

q(z |x , y)
q(z |x , y)

dz

= Ez∼q(z |x ,y)

[
log

p(x , y, z)
q(z |x , y)

]
− DKL(q(z |x , y)‖p(z |x , y))

≥ Ez∼q(z |x ,y)

[
log

p(x , y, z)
q(z |x , y)

]

= L�

(9)

For the case where the label is missing, the variational bound Lu for a single
data point x with unobserved label y is:

log p(x) =
∑

y

q(z |x)
∫

q(z |x)log
p(x , y, z)q(y, z |x)
p(y, z |x)q(y, z |x)

dz

=
∑

y

q(z |x) Ez∼q(z |x)

[
log

p(x , y, z)
q(y, z |x)

]
− DKL(q(y, z |x)‖p(y, z |x))

≥
∑

y

q(z |x) Ez∼q(z |x)

[
log

p(x , y, z)
q(y, z |x)

]

= Lu

(10)

Introducing an explicit classification loss log q(y|x) multiplied by coefficient α
so as to improve classification accuracy, the resultant objective function of DGM
to be maximized is as follows:

L =
∑

(x�,y�)

L� +
∑
xu

Lu − α
∑

(x�,y�)

[−log q(y|x)] (11)

where (x �, y�) indicates a data point x � with corresponding label y� and xu

denotes an unlabeled one.

Proposed Model. While the DGM is a semi-supervised learning model, it does
not satisfy our requirements. In the left-hand inference model of Fig. 2a, we can
see that a label y would be used as additional information to help infer a latent
variable z from x , as q(z |x , y), while what we want is exactly the opposite of
that, i.e., predicting y given z , as p(y|z)2. In addition, in a generative model
1 The model shown here is the type named Generative semi-supervised model (M2)

in the original paper of [7].
2 Note that we denote the prediction for y given z as a likelihood p(y|z), not as an

approximation posterior q(y|z).

NIDSs Based on Semi-supervised Variational Auto-Encoder 353

(a) DGM (b) Forked VAE

Fig. 2. Graphical models of DGM and Forked VAE. Each left one represents inference
model q(x , y, z) and right one does generative model p(x , y, z) respectively.

of Fig. 2a, while the DGM is modeled so that the reconstructed data x would
be conditioned by a label y as well as a latent variable z , that is, p(x |y, z),
we consider that such structure is not appropriate for our task. As explained in
Sect. 2.2, since the labels we are going to use for NIDSs will be coarse and simply
indicate whether an observed data x is benign or not, we consider that it is not
natural that such rough labels can decide the actual form of traffic data x . The
reason why such a difference exists between our expectation and the structure of
a DGM is simply that the purpose of a DGM is not a classification task but data
generation as well as the VAE, and we can see such a similar structure also in
the Auxiliary Deep Generative Model (ADGM) [9], which is an extended model
of the DGM.

We therefore propose a model in which labels would not be used for data
generation, but only for training of classification. Our model is different from
the DGM in the following points:

– Replace q(z |y) with p(y|z) so that the classifier for z is trained.
– Use q(z |x) instead of q(z |x , y)q(y|x) and prohibit y from engaging in pro-

ducing x via z .
– Use p(x |z) instead of p(x |y, z) and prohibit y from causing x .

Figure 2b represents a graphical model of our proposed model in a form in
comparison with one of the DGM, where the inference model is q(x , y, z) =
q(x , z) = q(z |x)q(x) and the generative model is p(x , y, z) = p(x |z)p(y|z)p(z).
We will also give an intuitive explanation with the whole picture with a single
hidden layer h in Fig. 3. We refer to this model as Forked VAE because its
graphical model has a form where a generative flow branches from the point of z
to two directions, towards p(y|z) and towards p(x |z). The difference compared

Fig. 3. The graphical model of Forked VAE. Circles are stochastic variables and dia-
monds are deterministic variables.

354 G. Osada et al.

with the typical VAE is just the presence of the classifier, the functionality to
predict the label y of inputs x . Our basic idea is to make the latent variable
z subject to the presence or absence of malice by leveraging labeled data x �.
To do so, the model learns to predict the label y of x �, taking the mean of z ,
μ, as inputs, and the classification error is propagated from y to the leftmost x
through μ, as a supervised leaning signal. Additionally, for both the labeled data
x � and the unlabeled data xu, the model learns to reconstruct each of them, and
its unsupervised learning signal is back propagated from the rightmost x to the
leftmost x . Note that both unsupervised and supervised learning are performed
for a labeled data x �. The variational lower bound of the marginal likelihood for
a single labeled data point is:

log p(x , y) =
∫

q(z |x)log
p(x , y, z)q(z |x)
p(z |x)q(z |x)

= Ez∼q(z |x)

[
log

p(x , y, z)
q(z |x)

]
− DKL(q(z |x)‖p(z |x))

≥ Ez∼q(z |x)

[
log

p(x , y, z)
q(z |x)

]

= Ez∼q(z |x) [log p(x |z)] + Ez∼q(z |x) [log p(y|z)] − DKL(q(z |x)‖p(z))

= L
(forked)
�

(12)

where the way of changing mathematical expressions is similar to Eqs. (1) and (9)
again, and Bayes rule of p(x , y) = p(x , y, z)/p(z |x , y) = p(x , y, z)/p(z |x) based
on the independence of y on z (as the left side of Fig. 2b) is applied in the first
line. For a single unlabeled data point, it is simply equal to the variational lower
bound of typical VAE, Eq. (2), and we denote that as L

(forked)
u here. Adding the

classification loss term like the DGM and the ADGM, our objective function to
be maximized is as follows:

L(forked) =
∑

(x�,y�)

L
(forked)
� +

∑
xu

L(forked)
u − α

∑
(x�,y�)

Ez∼q(z |x�) [−log p(y|z)] (13)

where α is a trade-off hyper-parameter, and since it includes the expected value
over samples Ez∼q(z |x), the number of sampling times M has to be given.

Finally, we present an implementation of multi-layered perceptrons (MLPs)
of Fig. 3 as a concrete example. Although this example is relatively simple, there
are many possible choices of encoders and decoders. Since x is traffic data in
our case and consists of mixed data type, such as a real-valued number for the
connection duration and a categorical for the state of the connection, we handle
x as real-valued vector, and hence we select a multivariate Gaussian with a
diagonal covariance structure for a decoder of our MLP.

NIDSs Based on Semi-supervised Variational Auto-Encoder 355

h = tanh(W1x + b1)
μ = W2h + b2

log σ2 = W3h + b3

z (m) = μ + σε(m), ε(m) ∼ N (0, I)

ĥ = W4z
(m) + b24

μ̂ = tanh(W5ĥ + b5)

log σ̂2 = tanh(W6ĥ + b6)

x̂ ∼ N (μ̂, σ̂2I)

y = arg max
i

(softmax
i

(W7i
z (m) + b7))

(14)

where a tanh and multiplication of σ and ε(m) are performed as element-wise,
and the variances σ2 and σ̂2 are outputs as a logarithm so that it is guaranteed
to be a positive value. The value i in the last line indicates a class label, that is
normal or attack traffic, and W7i

is the i-th row of a weight matrix W7. The
values {W1, b1,W2, b2,W3, b3} are the weights and biases of the MLP and
corresponding to variational parameters φ that composes an encoder q(z |x), and
{W4, b4,W5, b5,W6, b6,W7, b7} are parameters θ of a decoder p(x |z). Then
we obtain the likelihoods used in the objective function Eq. (13) as follows:

log p(x |z) = log N (μ̂, σ̂2I) (15)
log p(y|z) = y� log y + (1 − y�) log (1 − y) (16)

As mentioned in the explanation of Eq. (8), log p(x |z) can be seen as a recon-
struction error since it contains the term of squared error. The value log p(y|z)
is simply classification error as cross-entropy loss.

4 Experiments

We evaluate the detection performance of our proposed method using
Kyoto2006+ [12] and NSL-KDD [14] datasets, and test it in two settings: one set-
ting is in the semi-supervised learning model where a large amount of unlabeled
data and very few labeled data are used, and the other setting is in the unsuper-
vised learning model using only unlabeled data. The detail of the experimental
conditions will be described in Sect. 4.2.

Our experimental procedure is simple. We first selected training data and
testing data respectively from each dataset, and then put them into the model
implemented based on the settings described in Sect. 4.1. Model training and
detection test were also performed with the parameters described in Sect. 4.1.

356 G. Osada et al.

4.1 Preparation

Datasets. Kyoto2006+ dataset covers nearly three years of real network traffic
through the end of 2008 over a collection of both honeypots and regular servers
that are operationally deployed at Kyoto University, while NSL-KDD is dataset
artificially generated over the virtual network nearly two decades ago. Labels
provided with Kyoto2006+ just indicates whether each traffic is malicious or non-
malicious, whereas labels with NSL-KDD consist of five categories, normal traffic
and four types of attack, such as DoS, probing, unauthorized access to local super
user (root) privileges and unauthorized access from a remote machine. In this
experiment, we deal with the label of NSL-KDD as binary, that is, the presence
or absence of malice, similar to Kyoto2006+, with the intent of realization of
Level 1 labeling in Sect. 2.2.

For Kyoto2006+, in order to compare the performance with previous works,
the condition on how to select the data used for training and for testing was
made consistent with [5,13]. Specifically, for Kyoto2006+, we used the traffic
data of the day of Jan 1, 2008 for training, which amounts to 111,589 examples
and the traffic of 12 days, 10th and 25th of each month from July to December,
for testing, which amounts to 1,261,616 examples in total. Note that the data
of 10th and 23rd were chosen for testing only in September because the honey
pot system was shut down on 25th due to scheduled power outage. For NSL-
KDD we used both training data and testing data as they were provided, and the
amounts of traffic are 125,973 and 22,543 respectively. More detailed information
on datasets can be found in relevant literature.

Parameters. Here, we present the parameters of the model we used in our
experiment. Both the inferring and generative models are provided with a hidden
layer between an input data layer and a latent variables layer, h in Fig. 3, and
the number of units they have is 200 for both. The number of the latent space
dimension is 30. As we set the prior distribution p(z) as a standard normal
distribution N (z |0, I), for the sake of the second term of Eq. (6), as the training
progresses q(z |x) becomes gradually close to a spherical distribution and each
element of z gets independent of each other. However, at the same time we
anticipate that at least two clusters corresponding to the attack and the benign
would emerge. Therefore, we relieved such regularizing effect stemming from KL
divergence a bit by multiplying the second term of Eq. (6) by 0.01. In addition,
we let α in Eq. (13) be 100 and let the frequency of Monte Carlo sampling for
x , M be 1, and AdaGrad was used as optimization and its learning rate was set
to 0.001.

The values for those parameters were chosen heuristically through our exper-
iments. From the difference in the size of the dimension of the input data, the
number of units of hidden layers and the size of latent variables are a bit smaller
respectively compared with the previous VAE based works, but the remaining
parameters ended up with the same as the previous works. For the parameter of
Random Forest, we used the default values defined by sickit-learn’s API as it is.

NIDSs Based on Semi-supervised Variational Auto-Encoder 357

Table 1. Summary of experimental conditions.

Purpose #Labeled #Unlabeled Corresponding Nos.
in Tables 2 and 3

1 Unsupervised learning 0 All records 1, 7

2 Semi-supervised learning 100 All records
excluding 100

5, 9

3 Semi-supervised learning 100 3,000 3, 8

Environments. The program for our experiments was implemented using
Theano 0.7.0 [17], and the specification of the machine used for the experi-
ment is iMac, Intel Core i5 2.7 GHz processor and 12 GB RAM. Although the
program runs only on CPU without using GPU, the computational time for the
model training was so short that millions of iterations of training for a single
mini-batch, that consists of 100 data records, got finished in a couple of hours.

4.2 Experimental Conditions

For comparison, we evaluated our models under three different conditions in
terms of the amounts of the training data. Table 1 shows the summary, and the
actual number of labeled and unlabeled data records for each condition is shown
in Tables 2 and 3, along with their corresponding results.

Condition 1 corresponding to No. 1 in Table 2 and No. 7 in Table 3, is set to
aim to evaluate the proposed model as unsupervised learning. The purpose of
the experiment of Condition 1 is to qualitatively evaluate the effectiveness of the
proposed model in terms of the ability to make the latent representation, i.e., as
a feature extractor, for network traffic data. In this evaluation, the latent space
is visualized where the raw traffic data is mapped in the unsupervised learning
way by using the training dataset without label information. In addition, we also
perform a detection experiment that is to classify the latent features extracted by
VAE, by using another machine learning classification method. As our proposed
model of Condition 1 is equivalent to the normal VAE and does not have a
classification function in itself, we chose Random Forest as our classifier, due to
its processing speed, the ability to use large amounts of data for training and
testing, and ease of implementation3. Note that the classification results of Nos.
1 and 7 are done by supervised learning with Random Forest.

Conditions 2 and 3 were set to evaluate our model as semi-supervised learn-
ing, which corresponds to Nos. 3, 5, 8 and 9 in Tables 2 and 3. In both condi-
tions the number of labeled data records was only 100 that were selected from
the beginning of each training data file, whereas in Condition 2 unlabeled data
consists of all but the 100 data records, and in Condition 3 unlabeled data con-
sists of 3,000 records chosen from 101st to 3,100th lines of training file of each
datasets. Condition 3 was created to adapt our evaluation to the experimental
3 We use scikit-learn [16].

358 G. Osada et al.

Fig. 4. Visualization of the latent space. Plots on each figure correspond to first 2,000
traffic records of Jul 15, 2008 of Kyoto2006+. According to corresponding labels in the
data file, each traffic is plotted as a red point if it is normall or as blue if adversarial.
(Left) The model trained in unsupervised learning under Condition 1 (corresponding
to No. 1 in Table 2). (Right) The model trained in semi-supervised learning under
Condition 2 (corresponding to No. 5 in Table 2). To visualize, the dimensionality is
converted from 30 to 2 by using t-SNE. (Color figure online)

condition of [13] where Kyoto2006+ was used in the same way. Indeed, consider-
ing that the training data consists of only 3,100 records in total and this number
is very small compared with the test data of 1,261,616 records, performance of
the trained model is heavily dependent on which records are used for training.
Therefore, we tried to match our condition exactly with [13], however unfor-
tunately that could not be realized because in [13] the data had been selected
randomly. For NSL-KDD, unlabeled data records for Conditions 2 and 3 were
selected in the same way, namely, 3,000 records extracted from 100 line from
the beginning of the training data file and all the remaining records except for
first 100 lines of that file, which are corresponding to Nos. 8 and 9 in Table 3
respectively.

4.3 Results

Figure 4 shows that how the trained model recognizes the observed traffic data
in the latent space z , where each blue plot corresponds to a normal connection
and each red does to an attack. Note that all records in the training data have
corresponding labels, and hence in the evaluation as the unsupervised model,
after we mapped data into the latent space (Fig. 4 left) or performed classification
with Random Forest (No. 1 in Table 2 and No. 7 in Table 3), we could distinguish
normal from adversarial by using those label information as the ground truth.
In the left side of Fig. 4, the plots form concentric circles with different radius
between normal traffic and adversarial ones, which can be naturally considered
as the manifestation of the effect of the second term of Eq. (6), and although the
model has been trained in an unsupervised manner as typical VAE, we can see
that it succeeded in isolating adversarial traffic from normal traffic fairly well.
The right side of Fig. 4, which is the projection through our Forked VAE, forms
no longer a concentric circles nor two clusters. Although the detection accuracy
ended up being good as discussed later, there is probably room for the model
parameter tuning, especially α in Eq. (13).

NIDSs Based on Semi-supervised Variational Auto-Encoder 359

Table 2. Classification performance on the Kyoto2006+ dataset.

Conditions Results

No #Labeled #Unlabeled Recall FP Ratea AUC Score

1 (ours) 0 111,589 0.90893 0.05382 0.90662

2 [13] 0 111,589 N/A N/A N/A

3 (ours) 100 3,000 0.62014 0.15330 0.89798

4 [13] 100 3,000 0.89144 0.02667 0.98651

5 (ours) 100 111,489 0.95326 0.03439 0.98471

6 [13] 100 111,489 N/A N/A N/A
a False Positive Rate.

Table 3. Classification performance on the NSL-KDD dataset.

Conditions Results

No #Labeled #Unlabeled Recall FP Ratea AUC Score

7 (ours) 0 125,973 0.85663 0.12860 0.93713

8 (ours) 100 3,000 0.74267 0.14648 0.86957

9 (ours) 100 125,873 0.85991 0.12106 0.95718
a False Positive Rate.

Tables 2 and 3 show the classification results respectively. In both datasets,
the relative superiority of Conditions 1, 2 and 3 was as expected. Focusing on
Area Under the Curve (AUC), we can see that [13] (No. 4) has still outperformed
our result despite the fact that [13] used only 3,000 unlabeled data. However, the
results of Conditions 2 and 3 show that the performance of our model was dras-
tically improved with the increase of unlabeled data records. In particular, the
recall of our proposed semi-supervised model (No. 5) ends up being remarkably
higher than that of [13] (No. 4), and that means our model outperforms [13] in
terms of the false negative rate which is a crucial index for NIDSs: our model
gave 4.67%, compared with 10.86% in [13]4. As argued in Sect. 2, our ultimate
goal is to construct a defense systems that can fully leverage unlabeled data,
which would be available with very low cost, and this results can be regarded as
taking the first step towards the realization of that.

5 Related Work

There have been many works related to network intrusion detection system using
machine learning techniques. The works [4,8,10] proposed anomaly detection
4 Regarding the N/A in Table 2, the reason why [13] evaluated the performance by

using only the small amount of training data records seems that the method they
used has the limitation in terms of the amount of the training data records. We
confirmed the reason indirectly by the fact that applying the kernel PCA, which is
based on kernel computation similarly to Laplacian regularized least squares used
in [13], ended up with an out-of-memory error.

360 G. Osada et al.

methods that measure changes of traffic volume on the basis of entropy. Estab-
lishing a way to collect normal data that defines the baseline is a challenge
for their methodology, and [10] worked on that issue with the algorithm that
makes it possible to sample packets efficiently. While the direction of the detec-
tion method of [10] is different from ours, their method can be considered to be
related to our objective in terms of data sampling. Once we succeed in reduc-
ing the amount of labeling by introducing semi-supervised learning, what would
become as the next primary problem is possibly how to select a small amount
of data to be labeled efficiently and effectively.

The work [1] proposed an anomaly detection method using the VAE, in which
the model was trained only with benign traffic data, and whether observed data is
normal or adversarial would be judged based on the likelihood of reconstruction
p(x |z). However, acquiring traffic data exclusive of adversarial traffic requires
the task that is equivalent to labeling, and hence the need for preparing pure
benign traffic data may become problematic when it is put into practical use.

The works [5,13] dealt with network intrusion detection as a classification
task, and especially [13] had much in common with us including the reason
why they did not use outlier detection methods. The work [13] is also a pio-
neering work introducing semi-supervised learning and their method is based on
Laplacian regularized least squares. Compared with [13] in terms of the semi-
supervised learning based technique, the strength of our proposed Forked VAE
is being a more scalable model. As mentioned in Sect. 1, the computation com-
plexity of [13] is a cubic of the number of labeled and unlabeled training data
records [2], whereas our model is not much affected by the data volume because,
as mentioned in Sect. 3.1, its learning process would be done by gradient descent
just as in the other neural network model, which leads to the synergy with
semi-supervised learning through making full use of a huge amount of unlabeled
data.

6 Summary

In this paper, we have proposed the novel NIDS based on the Forked VAE, a semi-
supervised learning model extending the VAE. The strength of our proposed
method is the scalability of the model, which makes it possible to train the model
with a huge amount of unlabeled data, and in the experiment using Kyoto2006+
dataset, we demonstrated that the false negative rate gets improved from 37.99%
to 4.67% by simply increasing the number of unlabeled data records from 3,000
to 111,489 with only 100 labeled data records.

Acknowledgements. This work was supported in part by JSPS KAKENHI Grant
Numbers 17K00178 and 16K00183.

References

1. An, J., Cho, S.: Variational Autoencoder based anomaly Detection using
Reconstruction Probability (2015). http://dm.snu.ac.kr/static/docs/TR/
SNUDM-TR-2015-03.pdf

http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf
http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf

NIDSs Based on Semi-supervised Variational Auto-Encoder 361

2. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res.
7(Nov), 2399–2434 (2006)

3. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Toward supervised anomaly detec-
tion. J. Artif. Intell. Res. (JAIR) 46, 235–262 (2013)

4. Gu, Y., McCallum, A., Towsley, D.: Detecting anomalies in network traffic using
maximum entropy estimation. In: Proceedings of the 5th ACM SIGCOMM Con-
ference on Internet Measurement, pp. 32–32. USENIX Association, October 2005

5. Kishimoto, K., Yamaki, H., Takakura, H.: Improving performance of anomaly-
based ids by combining multiple classifiers. In: 2011 IEEE/IPSJ 11th International
Symposium on Applications and the Internet (SAINT), pp. 366–371. IEEE, July
2011

6. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

7. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learn-
ing with deep generative models. In: Advances in Neural Information Processing
Systems, pp. 3581–3589 (2014)

8. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: ACM SIGCOMM Computer Communication Review, vol. 35, no. 4,
pp. 217–228. ACM, August 2005

9. Maale, L., Snderby, C.K., Snderby, S.K., Winther, O.: Improving semi-supervised
learning with auxiliary deep generative models. In: NIPS Workshop on Advances
in Approximate Bayesian Inference (2015)

10. Nawata, S., Uchida, M., Gu, Y., Tsuru, M., Oie, Y.: Unsupervised ensemble anom-
aly detection through time-periodical packet sampling. In: INFOCOM IEEE Con-
ference on Computer Communications Workshops, pp. 1–6. IEEE, March 2010

11. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082
(2014)

12. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analy-
sis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. In:
Proceedings of the First Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security, pp. 29–36. ACM, April 2011

13. Symons, C.T., Beaver, J.M.: Nonparametric semi-supervised learning for network
intrusion detection: combining performance improvements with realistic in-situ
training. In: Proceedings of the 5th ACM Workshop on Security and Artificial
Intelligence, pp. 49–58. ACM, October 2012

14. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the
KDD CUP 99 data set. In: IEEE Symposium on Computational Intelligence for
Security and Defense Applications, CISDA 2009, pp. 1–6. IEEE, July 2009

15. Valpola, H.: From neural PCA to deep unsupervised learning. Adv. Independent
Component Anal. Learn. Mach. 143–171 (2015)

16. http://scikit-learn.org/stable/
17. http://deeplearning.net/software/theano/

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1401.4082
http://scikit-learn.org/stable/
http://deeplearning.net/software/theano/

	Network Intrusion Detection Based on Semi-supervised Variational Auto-Encoder
	1 Introduction
	2 Our Approach
	2.1 Direction of Attack Detection
	2.2 Data Label
	2.3 Advantage of Semi-supervised Learning

	3 Proposed Model
	3.1 Variational Auto-Encoder
	3.2 Extension to Semi-supervised Learning

	4 Experiments
	4.1 Preparation
	4.2 Experimental Conditions
	4.3 Results

	5 Related Work
	6 Summary
	References

