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Abstract. A standard method to protect data and secrets is to apply
threshold cryptography in the form of secret sharing. This is motivated by
the acceptance that adversaries will compromise systems at some point;
and hence using threshold cryptography provides a defence in depth. The
existence of such powerful adversaries has also motivated the introduction
of game theoretic techniques into the analysis of systems, e.g. via the FlipIt
game of van Dijk et al. This work further analyses the case of FlipIt when
used with multiple resources, dubbed FlipThem in prior papers. We exam-
ine two key extensions of the FlipThem game to more realistic scenarios;
namely separate costs and strategies on each resource, and a learning app-
roach obtained using so-called fictitious play in which players do not know
about opponent costs, or assume rationality.

1 Introduction

The traditional methodology of securing systems is to rely solely on crypto-
graphic means to ensure protection of data (via encryption) and authentication
(via signatures and secured-passwords). However, both of these techniques rely
on some data being kept secure. The advent of attacks such as Advanced Per-
sistent Threats (APTs) means that exfiltration of the underlying cryptographic
keys, or other sensitive data, is now a real threat. To model such long term
stealthy attacks researchers have turned to game theory [1,22,26,30], adding to
a growing body of work looking at game theory in cybersecurity in various sce-
narios [7,16,35]. Probably the most influential work applying game theory in the
security area has been the FlipIt game [10]; with the follow up paper [5] demon-
strating applications of FlipIt to various examples including credential manage-
ment, virtual machine refresh and cloud auditing for service-level-agreement.
FlipIt has gained traction and popularity due to the assumption that the adver-
sary can always get into the system; thus aligning with the new rhetoric in the
security industry that compromise avoidance is no longer a realistic possibility
and it is now about limiting the amount of compromise as quickly and efficiently
as possible.

In FlipIt, two players, aptly named the defender and attacker, fight over con-
trol of a single resource. Each player has their own button which, when pressed,
will give them control over the resource assigning them some form of benefit.
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Pressing the button has a cost associated to it. The FlipIt paper examines this
game as a way of modelling attacks in which a stealthy adversary is trying to
control a single resource. For example it could be used to model an adversary
which compromises passwords (the adversary’s button press corresponds to a
break of a system password), whilst the defender resets passwords occasionally
(via pressing their button in the game). FlipIt has of course been generalised in
many different directions [11,17,19,24,27,28].

However, a standard defence against having a single point of failure for secure
data (be it real data or cryptographic secrets), is to use some form of distributed
cryptography [9], usually using some form of secret sharing [31]. Such techniques
can either be used directly as in [4,32], or using secret sharing to actually com-
pute some data as in Multi-Party Computation [2,8]. To capture this and other
such situations, Laszka et al. [18] introduce a FlipThem game in which there are
multiple resources, each equipped with a button as in FlipIt, and the attacker
obtains benefit only by gaining control of every resource in the game. This models
the full threshold situation in distributed cryptographic solutions.

The FlipThem game is extended by Leslie et al. [20] to the partial threshold
case, where the attacker is not required to gain control of the whole system but
only a fraction of the number of resources in order to have some benefit. Assum-
ing both players select the rates of Poisson processes controlling the pressing of
buttons, they calculate the proportion of time the attacker will be in control
of the system in order to gain some benefit. Nash equilibrium rates of play are
calculated which depend on move costs and the threshold of resources required
for the attacker to gain any benefit.

A major downside of the analysis in [20] is that the button associated to all
resources are given the same cost and move rate for the attacker (and similarly
for the defender). So in this current work we introduce the more realistic setting
in which a player may have different move rates and costs associated to each
resource. For example one resource may be easier to apply patches to than
others, or one may be easier to attack due to the operating system it runs. We
calculate Nash equilibrium rates of play for this more realistic setting.

We also introduce a framework from the learning in games literature [13]
which models the situation where each player responds to the observed actions
of the other player, instead of calculating an equilibrium. This adaptive frame-
work is required once we drop the unrealistic assumption that players know
their opponent’s costs and reward functions, and our version makes consider-
ably weaker assumptions on the information available to the players than the
adaptive framework of [10]. In particular we introduce learning into a situation
where the FlipThem game is played over a continuing sequence of epochs. We
assume players repeatedly calculate the average observed rate of their opponent
and respond optimally to that, resulting in a learning rule known as fictitious
play [6,13]. Performing multiple experiments, we find that when the costs result
in a game with an interior equilibrium point (i.e. one in which all players play
non-zero rates of all resources) the fictitious play procedure converges to this
equilibrium. On the other hand, when there is not an interior equilibrium, we
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find unstable behaviour in the learning procedure. This result is important in the
real world: the fictitious play formulation assumes that players know only their
own benefit functions and can observe the play of others, yet the players still
manage to converge to the calculated equilibria. Thus in these situations, even if
our players are unable to calculate equilibrium strategies, their näıve optimising
play will converge to an equilibrium and players’ long term rewards are captured
by the equilibrium payoffs.

2 Model

Our Multi-rate Threshold FlipThem game has two players, an attacker and
defender, fighting for control over the set of n resources, R = {R1, . . . ,Rn}.
Both players have buttons in front of each resource that when pressed will give
them control over that specific resource. For each resource Ri the defender and
attacker will play an exponential rate μi and λi, respectively, meaning that the
times of moves for a player on a given resource will follow a Poisson Process
with rate given by μi or λi. Using Markov Chain theory [14] we can construct
explicit values for the proportion of time the each player is in control of resource
Ri depending on their rates of play. This stationary distribution is given by
πi =

(
πi
0, π

i
1

)
= 1

μi+λi
(μi, λi), and indicates that the defender is in control of

the resource Ri a proportion μi/(λi + μi) of the time, and the attacker is in
control a proportion λi/(λi +μi) of the time. We assume that each behaviour on
each resource is independent of all the others, and hence the proportion of time
that the attacker is control of a particular set of resources C, with the defender
in control of the other resources, is simply given by the product of the individual
resource proportions:

∏
i∈C

λi

λi+μi

∏
i/∈C

μi

λi+μi
.

At any point in time, the attacker will have compromised k resources, whilst
the defender is in control of the remaining n − k resources, for some k. In order
for the attacker to have some gain, she must compromise t or more resources.
The value t is called the threshold, as used in a number of existing threshold
security situations discussed in the introduction. From a game theory point of
view, whenever k ≥ t the attacker obtains benefit, whilst when k < t the defender
obtains benefit.

From this we can construct benefit functions for both players. For the attacker
it is the proportion of time she is in control of a number of resources over the
threshold, such that k ≥ t, penalised by a cost for moving. For the defender it
is the proportion of time that she is in control of at least n − t + 1 resources,
again penalised by a cost of moving. Thus, the benefit functions for attacker and
defender respectively are given by
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βD(μ,λ) = 1 −
∑

C⊆{1,...,n}
|C|≥t

[
∏

i∈C

λi

λi + μi

]

·
[

∏

i/∈C

μi

λi + μi

]

−
∑

i

di · μi

βA(μ,λ) =
∑

C⊆{1,...,n}
|C|≥t

[
∏

i∈C

λi

λi + μi

]

·
[

∏

i/∈C

μi

λi + μi

]

−
∑

i

ai · λi

(1)

where the ai and di are the (relative) move costs on resource i for attacker and
defender, which are assumed fixed throughout the game, and μ and λ are the
vectors of rates over all resources for the defender and attacker, respectively,
constrained to be non-negative. The benefit functions in (1) show that the game
is non-zero-sum, meaning we are unable to use standard zero-sum results found
in the literature [25].

3 Finding the Equilibria of Multi-rate (n, t)-FlipThem

We begin by finding the equilibria of the multi-rate version of the FlipThem
game with n resources. This represents a more realistic scenario than previous
studies, by allowing players to favour certain resources based on differential costs
of attacking or defending, for example when a company owns multiple servers
located in different areas and with different versions of operating systems. We
want to find a stationary point or equilibrium of the two benefit functions (1)
in terms of purely the costs of moving on each resource. This would mean both
players are playing at a rate that maximises their own benefit function with
respect to their opponents play and move costs. Thus, they would not wish to
deviate from their current playing strategy or rates. This is known as a Nash
Equilibrium [23]. Our challenge in this article, compared with previous works
such as [20], is that neither benefit function is trivial to optimise simultaneously
across the vector of rates.

3.1 Full Threshold: Multi-rate (n, n)-FlipThem

We begin with the full threshold case in which the attacker must control all
resources in order to obtain some benefit. The algebra is easier in this case; the
partial threshold version is addressed in Sect. 3.2. For this full threshold case,
the general benefit functions (1) simplify to

βD(μ,λ) = 1 −
n∏

i=1

λi

μi + λi
−

n∑

i=1

di · μi

βA(μ,λ) =
n∏

i=1

λi

μi + λi
−

n∑

i=1

ai · λi.

(2)

Note that these benefit functions reduce to those of [20] if we set μi = μ, λi = λ,
ai = a

n and di = d
n for all i.
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We start by finding the best response function of the defender, which is a
function brD mapping attacker rates λ to the set of all defender rates μ which
maximise defender payoff βD when the attacker plays rates λ. A necessary,
though not sufficient, condition for μ to maximise βD is that each μi maximises
βD conditional on the other values of μ. Furthermore, maxima with respect to
μi occur either when the partial derivative ∂βD

∂μi
is 0, or at a boundary of the

parameter space. Equating this partial derivative to zero to gives

∂βD

∂μi
= 0 ⇒ −

n∏

j=1

λj + di · (λi + μi)2 ·
n∏

j=1,j �=i

(μj + λj) = 0.

This is a quadratic in μi, meaning that fixing the defender’s benefit function
shown in (2) for all attacker rates λ and all defender rates μj where j �= i, gives
only two turning points. Since βD decreases to negative infinity as μi gets large,
the two candidates for a maximising μi are at the upper root of this equation,
or at μi = 0. A non-0 μi must therefore satisfy

μi = −λi +

√√
√
√λi

di
·

n∏

j=1,j �=i

λj

(μj + λj)
. (3)

Of course, a μi satisfying this equation could be negative and thus inadmissible
as a rate, but all we claim for now is that any non-zero μi must be of the this
form.

We can use the same method in differentiating the attacker’s benefit with
respect to her rate λi for resource Ri, equating this to zero and manipulating to
give

λi = −μi +

√√
√
√μi

ai
·

n∏

j=1,j �=i

λj

(μj + λj)
. (4)

Any Nash equilibrium in the interior of the strategy space (i.e. with strictly
positive rates on all resources) must be a simultaneous solution of (3) and (4).
Note that both equations can be rearranged to express λi + μi in terms of a
square root, and then we can equate the square root terms to find that λi

μi
= di

ai
.

Substituting this relationship back in to (3) and (4) gives

λ∗
i =

di

(ai + di)2
·

n∏

j=1
j �=i

dj

(aj + dj)
, μ∗

i =
ai

(ai + di)2
·

n∏

j=1
j �=i

dj

(aj + dj)
. (5)

If a company was reviewing its defensive systems and was able to calculate
these equilibria, they can see the rate at which they’d have to move in order
to defend their system optimally, under the assumption that the attacker is
also playing optimally. (Of course, if the attacker was playing sub-optimally, the
defender would be able to gain a larger pay off.) From these equilibria the parties
are able to calculate the long run proportion of time each of their resources within
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the system would be compromised by looking at the stationary distribution
shown in Sect. 2. From this information, the company can also calculate the
value of the benefit functions for each player when playing these rates. This is
useful in the real world as it can be used by companies to make strategic decisions
on the design of their systems. We do this by substituting the two equilibria back
into the benefit functions (2). We can express these rewards in terms of the ratio
between the costs of each resource, ρj = aj

dj
, giving the dimensionless expression

β∗
D = 1 −

n∏

i=1

1
ρi + 1

⎡

⎣1 +
n∑

j=1

ρj

ρj + 1

⎤

⎦ ,

β∗
A =

n∏

i=1

1
ρi + 1

⎡

⎣1 −
n∑

j=1

ρj

ρj + 1

⎤

⎦ .

(6)

We have expressed the payoffs to both players at the putative interior equi-
librium. If this is an equilibrium, neither player will wish to deviate from these
equilibrium rates. However we have thus far ignored the potential maximising
μi at 0. While no individual μi or λi will deviate unilaterally to zero (recall
that the partial derivatives have only two zeroes, and thus payoff decreases as μi

decreases to zero), if several rates simultaneously switch the payoff to a player
could increase. We therefore consider what happens when rates can switch to
zero, starting with the attacker.

By considering the attacker’s benefit function (2), we can see that if the
attacker plays a zero rate on any resource, then in order to maximise the payoff,
she should play zero rates on the rest of the system. In other words, she should
drop out of the game and receive zero reward. Thus by comparing the attacker
payoff in (6) to zero we can see quickly whether this is indeed a point at which
the attacker will be content.

For the defender, things are more complicated. However, we can see from the
benefit function (2) that a zero payoff by withdrawing from the game is again an
option, and so we compare the equilibrium payoff (6) to zero as a partial check
on whether the fixed point (5) is an equilibrium. We do not explicitly discount
partial dropout of the defender, but note that by dropping out the defender is
effectively reducing the game to a smaller number of servers, and hence should
not have invested in the additional servers in the first place. Comparing the
benefits in (6) to zero it is easy to see in this full threshold case that the defender’s
benefit β∗

D is always non-negative when playing (5) meaning dropping out is not
an equilibrium point for the defender, whereas β∗

A can drop below 0. We use this
to find a condition which must be satisfied for the point (5) to be an equilibrium.
In particular, we require β∗

A in (6) to be positive, and therefore

1 −
n∑

j=1

ρj

ρj + 1
> 0. (7)

Thus, we have a condition (7) that, if satisfied, the attacker will not drop out of
the game. If the condition is not satisfied, the attacker will prefer to drop out of
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the game entirely than to play at the interior equilibrium. Ensuring condition
(7) is met can thus be viewed as an design criterium for system engineers when
designing defensive systems.

3.2 Partial Threshold: Multi-rate (n, t)-FlipThem

So far we have extended the full threshold FlipThem game [18] by obtaining the
equilibria of the benefit functions constructed from the proportion of time the
attacker is in control of the whole system. In order to generalise this further,
we return to our partial threshold case in which the attacker gains benefit from
controlling only t < n resources. Our general benefit functions for both players
are written in (1); the analysis is analogous to methods demonstrated above in
Sect. 3.1. In this (n, t)-threshold case, the analogous best response conditions to
(3) and (4) are

μi = −λi +
√

λi · Si

di
and λi = −μi +

√
μiSi

ai
, (8)

where we have introduced Si to denote

∑

C⊆Ai

|C|≥t

⎡

⎣
∏

j∈C

λj

λj + μj

⎤

⎦ ·

⎡

⎣
∏

j /∈C

μj

λj + μj

⎤

⎦

and Ai = {1, . . . , i−1, i+1, . . . , n}. Interestingly, equating the square root terms
results in the same relationship μi

ai
= λi

di
as in Sect. 3.1. Finally, substituting this

relationship back into the best response functions (8) gives us

μ∗
i =

ai

(ai + di)2
·

∑

C⊆Ai

|C|≥t

⎡

⎣
∏

j∈C

dj

aj + dj

⎤

⎦ ·

⎡

⎣
∏

j /∈C

aj

aj + dj

⎤

⎦ ,

λ∗
i =

di

(ai + di)2
·

∑

C⊆Ai

|C|≥t

⎡

⎣
∏

j∈C

dj

aj + dj

⎤

⎦ ·

⎡

⎣
∏

j /∈C

aj

aj + dj

⎤

⎦ .

(9)

As in Sect. 3.1, (9) is a Nash equilibrium for the game, unless one or other
player can improve their payoff by dropping out of one or more resources. We
can substitute these rates back into the players’ benefit functions as we did in
the full threshold case in Sect. 3.1 to check that the payoffs at this putative
equilibrium are non-negative. However, the formulae become very complicated
to write down explicitly in general and we leave this to Sect. 4, when we deal
with specific examples. Note this also means we do not have a clean condition
analogous to (7) to test whether (9) is an equilibrium.
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4 Introducing Fictitious Play into Multi-rate
(n, t)-FlipThem

While the equilibrium analysis above offers useful insight into the security game
Multi-rate Threshold FlipThem, it can be viewed as an unrealistic model of real
world play. In particular it is extremely unlikely the players have full knowledge
of the payoff and move costs of their opponent, and therefore cannot calculate
the equilibrium strategies. We now introduce game-theoretical learning, in which
the only knowledge a player has of their opponent is the actions that they take.
When the game is repeatedly played through time, players respond to their
observations and attempt to improve their payoff. In this article we focus on a
method of learning known as fictitious play [3,6,13].

We break the game up into periods of fixed length of time. At the end of
period τ each player observes the number of times the button of each resource i
was pressed by their opponent in that period. Denote by λτ

i and μτ
i the actual

rate played by attacker and defender in period τ , and use λ̃i

τ
and μ̃i

τ to denote
the number of button presses by the attacker and defender respectively, nor-
malised by the length of the time interval. After T plays of the game, each player
averages the observations he has made of the opponent, resulting in estimates
for each resource

λ̂T
i =

1
T

T∑

τ=1

λ̃τ
i , μ̂T

i =
1
T

T∑

τ=1

μ̃τ
i .

The players select their rates for time period T + 1 by playing a best response
to their estimates;

μT +1
i = brD

i (λ̂
T

), λT +1
i = brA

i (μ̂T ).

where μ̂T and λ̂
T

are the defender and attacker’s vector of rates played on each
resource. If it were the case that opponent rates were constant, the averaging
of observations over time would be an optimal estimation of those rates. Since
both players are learning, the rates are not constant, and averaging uniformly
over time does not result in statistically optimal prediction. However lack of a
better informed model of rate evolution means that averaging is retained as the
standard mechanism in fictitious play; see [21,34] for attempts to move beyond
this assumption.

This fictitious play process is described in Algorithm1, where we see the
simplicity of the learning process and the sparsity of the information required
by the players. The only challenging step is in calculating the best response
function; as observed in Sect. 3 the best response of each player is not in general
a simple analytical function of the rates of the opponent. From the defender’s
point of view we consider all subsets of the resources; setting the rates of these
resources to zero, and solving (8) for the non-zero rates, we find a putative best

response; the set of rates with the highest payoff given the fixed belief λ̂
T

is
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1 Set maximum periods to be played;
2 Randomly assign move costs for each player;
3 Randomly choose initial starting rates for both players;
4 One period is played;
5 while Number of periods has not reached the maximum do
6 Each player receives last period’s observation of their opponent’s play;
7 Each player averages their opponent’s history to form a belief;
8 Each player uses their best response function to calculate rate for this

period;
9 Each player plays this rate;

10 end

Algorithm 1. Fictitious Play algorithm for multi-rate (n, t)-FlipThem

the best response. The attacker’s best response is calculated analogously. An
interesting question, which we address, is whether this simple learning process
converges to the equilibria calculated previously in Sect. 3.

The process we have defined is a discrete time stochastic process. It is in
actual fact a stochastic fictitious play process [12]; since the number of button
presses in a period is Poisson with expected value the played rate multiplied by
the length of the time interval, the observations can be seen to satisfy

μ̃T +1
i = brD

i (λ̂
T

) + MT +1
μ,i , λ̃T +1

i = brA
i (μ̂T ) + MT +1

λ,i ,

where E(Mτ+1
·,· |Fτ ) = 0 if Fτ denotes the history of the process up to time τ . The

methods of [3] then apply directly to show that the convergence (or otherwise)
of the discrete stochastic process is governed by the continuous deterministic
differential equations

dλ

dt
= br(μ) − λ,

dμ

dt
= br(λ) − μ. (10)

In standard fictitious play analyses, one might show that solutions of (10) are
globally convergent to the equilibrium set. This is commonly achievable only in
some classes of games, and since we do not have a zero-sum game we have not
been able to show the required global convergence of (10).

4.1 Original FlipIt

The game of FlipIt can be considered a special case of our game of multi-rate
(n, t)-FlipThem, seen by setting n = t = 1. This has the advantage that the
best responses can be written in closed form, and we can use (10) to set up a
two dimensional ordinary differential equation in terms of the players’ rates and
time. We start by writing the benefit functions for this special case

βD(μ, λ) = 1 − λ

μ + λ
− dμ, βA(μ, λ) =

λ

μ + λ
− aλ. (11)
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Differentiating the players’ benefit functions (11) in terms of their respective
resource rates and then solving for these gives the best response functions

brD(λ) =

(

−λ +

√
λ

d

)+

, brA(μ) =
(

−μ +
√

μ

a

)+

where (x)+ = max(x, 0). The ordinary differential equation (10) becomes

dλ

dt
=

(
−μ +

√
μ

a

)+

− λ,
dμ

dt
=

(

−λ +

√
λ

d

)+

− μ. (12)

This is a two dimensional ordinary differential equation in terms of the players’
rates and time. The plot of the phase portrait of this is shown in Fig. 1. Where
we have used d = 0.1, a = 0.3 as the move costs. It easy to see that the arrows
demonstrating the direction of the rates over time converge upon a single point.
This point is the equilibrium we can calculate easily from the more general
equilibria derived in Sect. 3.2. We can also use Algorithm 1 to plot trajectories
of the system in order to view convergence of the system; the convergence is
monotonic and uninteresting so we omit the plots.

Fig. 1. Phase portrait of (12) with d = 0.1, a = 0.3

4.2 (n, t)-FlipThem

A multi-resource example in which we retain one rate per player (as opposed
to one rate per resource for each player) is given by the situation in [18,20];
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each player chooses a rate at which to play all resources. Whilst this allows us
to retain a two-dimensional system when considering the multiple resource case,
unfortunately obtaining explicit best response functions is extremely difficult.
Therefore, we revert to Algorithm 1 using time intervals of length 100; we fix
this time interval for all further experiments in this article.

As in those previous works, we consider the stationary distribution of the
system, with the defender playing with rate μ and attacker rate λ. This results
in a stationary distribution for the whole system, given by

π =
1

(μ + λ)n

(
μn, n · λ · μn−1, . . . ,

(
n

k

)
· μn−k · λk, . . . , n · μ · λn−1, λn

)
,

where the states correspond to the number of compromised resources, ranging
from 0 to n. Benefit functions for both players are given by

βD(μ, λ) = 1 −
n∑

i=t

πi − d · μ = 1 − 1
(μ + λ)n

·
n∑

i=t

(
n

i

)
· μn−i · λi − d · μ,

βA(μ, λ) =
n∑

i=t

πi − a · λ =
1

(μ + λ)n
·

n∑

i=t

(
n

i

)
· μn−i · λi − a · λ,

and best responses are calculated by differentiating these benefit functions, as in
[20] and Sect. 3. In Fig. 2 we plot the rate of the attacker and defender respec-
tively by applying Algorithm1 to random starting rates for both players, with
(3, 2)-threshold and costs a = 0.65 and d = 0.5. The straight horizontal lines
represents the players’ Nash equilibrium rates that can be calculated as a special
case of the general equilibrium from (9). Note that we have chosen these costs
in order to produce positive benefits for both players whilst playing the calcu-
lated Nash equilibrium. We see that both the defender’s and attacker’s mean
rate converges to these lines.
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Fig. 2. Mean of the defender’s and attacker’s rate with (3, 2)-threshold and ratio ρ =
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= 1.3.
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4.3 Multi-rate (n, t)-FlipThem

Finally, we come to the most general case of the paper, Multi-rate (n, t)-
FlipThem. As observed previously, depending on the player’s belief of their
opponents rates on each resource, they may choose to drop out of playing on a
certain resource, or perhaps even all of them. Our best response functions must
iterate through all possibilities of setting the resource rates to zero and chooses
the configuration with the highest benefit as the best response. This solution is
then used as μT +1 or λT +1 for the following period T + 1.

We want to find a condition such that we can gain some insight as to whether
in this most complicated setting our iterative learning rule will converge to the
equilibria we calculated analytically in Sect. 3.2. We experimented with multiple
combinations of n and t, randomly simulating costs of both players. From these
empirical results, we observe that convergence occurs whenever the internal fixed
point (9) results in non-negative benefits to both players.

Specific Case (n =3, t =2): In order to illustrate the outcomes of our fic-
titious play algorithm we specify our threshold (n, t) = (3, 2), and choose two
representative cases of our randomly simulated examples. These particular exam-
ples were selected for ease of display, allowing us to illustrate their properties of
convergence (or divergence) clearly on just one figure. The first, when the bene-
fits are positive and the internal equilibrium is not ruled out, we term ‘success’.
The second is an example in which the internal fixed point is not an equilibrium,
and we term this case ‘failure’.

Success: Our first example is with ratios (ρ1, ρ2, ρ3) ≈ (0.7833, 0.7856, 0.7023)
and attacker costs (a1, a2, a3) ≈ (0.6237, 0.5959, 0.5149). Thus, the benefit values
at equilibrium are β∗

D ≈ 0.0359 and β∗
A ≈ 0.2429. Since we have positive payoff

for both players we expect convergence of the learning algorithm. This is exactly
what we observe in Fig. 3; convergence of rates to the lines representing the
equilibria calculated in Sect. 3.2.

Failure: Our second example shows a lack of convergence when conditions are
not met. Therefore, we choose ratios to be (ρ1, ρ2, ρ3) ≈ (0.5152, 0.5074, 0.5010)
and attacker costs (a1, a2, a3) ≈ (0.2597, 0.2570, 0.2555). This gives ‘equilibrium’
benefits for the defender and attacker of β∗

D ≈ −0.0354 and β∗
A ≈ 0.4368. The

defender’s benefit in this situation is negative, meaning we expect a lack of
convergence. Figure 4 shows the development of both players’ rates over time.
We can see the rates do not approach anywhere near the equilibrium. Intuitively,
this makes sense as the defender will not choose to end up playing in a game in
which she receives negative payoff when she can drop out of the game completely
in order to receive zero payoff.

We can see evidence of this dropping out in Fig. 5, which shows the rates the
defender is actually playing on the resource (rather than the mean over time).
The defender has certain periods where she drops out of the game entirely. The
attacker’s mean rates then start to drop until a point when the defender decides
to re-enter the game.
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Fig. 3. Mean of the defender’s rates (top) and attacker’s rates (bottom) on all resources
with (3, 2)-threshold and ratios (ρ1, ρ2, ρ3) ≈ (0.7833, 0.7856, 0.7023)

To see a reason for this volatility, Fig. 6 shows the defender’s payoff surface
for nearby attacker strategies on either side of a ‘dropout’ event from Fig. 5. We
fix the defender’s rate on resource 1 and plot the benefit surface as the rates on
resources 2 and 3 vary. We also plot the plane of zero reward. It’s easy to observe
that the maximum of this reward surface is above 0 in the left hand plot, but
a small perturbation of the attacker rates pushes the maximal defender benefit
below zero in the right hand plot, thus forcing the defender to drop out entirely.
We conjecture that as the ratios decrease (and therefore become more costly for
the defender) the defender drops out of the game more often within this learning
environment.



Multi-rate Threshold FlipThem 187

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

R
at

e

Iteration

Mean Defender  1
Mean Defender  2
Mean Defender  3

Defender Equilibrium 1
Defender Equilibrium 2
Defender Equilibrium 3

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

R
at

e

Iteration

Mean Attacker  1
Mean Attacker  2
Mean Attacker  3

Attacker Equilibrium 1
Attacker Equilibrium 2
Attacker Equilibrium 3

Fig. 4. Mean of the defender’s rates (top) and attacker’s rates (bottom) on all resources
with (3, 2)-threshold and ratios (ρ1, ρ2, ρ3) ≈ (0.5152, 0.5074, 0.5010).
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Fig. 5. Defender’s actual rates on all resources with (3, 2)-threshold and ratios
(ρ1, ρ2, ρ3) ≈ (0.5152, 0.5074, 0.5010).
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Fig. 6. Two snapshots of the defender’s reward surface with a slight perturbation in
attackers rates. (Left) the payoff is just above the 0-plane. (Right) the whole payoff
surface is below the 0-plane.
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