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Abstract. In this paper we present an extension of the AKISS protocol
verification tool which allows to verify equivalence properties for pro-
tocols with else branches, i.e., disequality tests. While many protocols
are represented as linear sequences or inputs, outputs and equality tests,
the reality is often more complex. When verifying equivalence properties
one needs to model precisely the error messages sent out when equality
tests fail. While ignoring these branches may often be safe when study-
ing trace properties this is not the case for equivalence properties, as for
instance witnessed by an attack on the European electronic passport.
One appealing feature of our approach is that our extension re-uses the
saturation procedure which is at the heart of the verification procedure
of AKISS as a black box, without need to modify it. As a result we obtain
the first tool that is able verify equivalence properties for protocols that
may use xor and else branches. We demonstrate the tool’s effectiveness
on several case studies, including the AKA protocol deployed in mobile
telephony.

1 Introduction

Security protocols are communication protocols that rely on cryptographic prim-
itives, e.g. encryption, or digital signatures to ensure security properties, e.g.,
confidentiality or authentication. Well-known examples of security protocols
include TLS [23], Kerberos [28] and IKE [27]. These protocols are extremely
difficult to design as they must ensure the expected security property, even if
the network is under control of an attacker: each message sent on the network
can be intercepted by the attacker, each received message potentially originates
from the attacker, and the attacker may manipulate all received data by apply-
ing functions on it. Moreover, as several sessions of the protocol may be executed
concurrently, one must consider all possible interleavings, and the attacker may
even participate in some of these sessions as a legitimate participant. As a result,
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a security proof by hand is extremely tricky as it would require to explore all of
the possible cases.

A successful approach to discover weaknesses in such protocols, or show
their absence is to use dedicated formal verification tools. A variety of tools
for analysing protocols exist: ProVerif [14], Scyther [21], Maude-NPA [24],
Tamarin [31], AVISPA [7], . . . These tools were generally initially developed
for verifying trace properties of rather simple protocols. In the last years there
has been a large body of works for extending these tools to handle more general
properties and more complex protocols.

Most tools were designed for analysing trace properties: a protocol cannot
reach a bad state, e.g., a state where the attacker knows a secret value. Many
important security properties are however stated in terms of indistinguishability :
can an attacker distinguish two protocols? For instance real-or-random secrecy
states the indistinguishability of two protocols, one outputting at the end of the
run the “real” secret, used within the protocol, while the other protocol out-
puts a freshly generated random secret. Similarly, unlinkability can be modeled
by the adversary’s inability to distinguish two sessions run by the same party
form two sessions run by two different parties. More generally, strong flavours
of secrecy [12], anonymity and unlinkability [5], as well as vote privacy [22], are
expressed as indistinguishability. This notion is naturally modelled in formal
models through behavioural equivalences in cryptographic process calculi, such
as the spi [3] and applied pi calculus [1]. During the last years, several specific
tools for checking such equivalences have been developed [15,17,32], or existing
tools have been extended to handle these properties [10,13,30].

Similarly, many tools were designed to verify protocols that have a simple,
linear execution flow: many protocol specification languages allow several roles
in parallel, each consisting of a sequence of input, or output actions with the
possibility to check equality between parts of messages. More complex proto-
cols do however require branching, and allow to react differently according to
whether an equality test holds or not (rather than just halting if a test fails).
As demonstrated by an attack on the European electronic passport [20], taking
into account the exact error message in case a test fails may be crucial: the fact
that in some versions of the passport output different error messages allowed an
attacker to trace a given passport. In this paper we will extend the AKISS tool
with the ability to verify protocols that have else branches.

An Overview of the AKISS Tool. The AKISS tool [15] is a verification tool for
checking indistinguishability properties. More precisely, it verifies trace equiva-
lence in a replication free (i.e., considering a bounded number of sessions) and
positive (no else branches) fragment of the applied pi calculus. The tool allows a
wide range of cryptographic primitives that are specified by the means of a user
defined equational theory. The tool is correct for any equational theory that
can be oriented into a convergent rewrite system which has the finite variant
property and was shown to guarantee termination on any subterm convergent
equational theory. This class of theories include classical cryptographic primi-
tives such as encryption, signatures and hashes, but also non-interactive zero
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knowledge proofs. Moreover, even though termination is not guaranteed proto-
cols relying on blind signatures or trapdoor commitments have been successfully
analysed. In addition, a recent extension of AKISS provides support for protocols
that use the exclusive or (xor) operation [8].

In a nutshell, AKISS proceeds as follows. Protocols are translated into first-
order Horn clauses. Next, the set of Horn clauses is saturated using a dedicated
Horn clause resolution procedure. This saturated set of clauses provides a finite
representation of all reachable states of the protocols, of the intruder knowledge
and equality tests that hold on the protocol outputs. These equality tests are
used by the adversary to distinguish protocols, i.e., its aim is to find a test which
holds on one protocol, but not the other. Next, AKISS uses this saturated set
of Horn clauses to decide trace equivalence when the processes specifying the
protocol are determinate (the precise definition of determinacy will be given in
Sect. 2). On general processes, AKISS may over- and under-approximate trace
equivalence, as discussed in [15].

Our Contributions. Our main contribution is to extend the AKISS tool to allow
more complex protocols which allow non trivial else branches. An interesting
point of our approach is that we do not need to modify the saturation procedure
of AKISS: we only need to saturate positive processes (in which disequality tests
are ignored). The algorithm is based on the following simple observation: when-
ever a trace is not executable because of the failure of a disequality test t1 �= t2,
the saturation of the process in which t1 �= t2 is replaced by t1 = t2 computes
all the traces that fail to execute on the original process (due to this particular
disequality test). This test can then be confronted to the other process that we
expect to be trace equivalent.

From a theoretical point, given that the saturation of AKISS was shown to
terminate on any subterm convergent rewrite system our algorithm provides, en
passant, a new decidability result for the class of subterm convergent equational
theories for protocols with else branches, generalising the results of [11,19] that
do not allow else branches and the result of [16], which only applies to a partic-
ular equational theory. Moreover, the result is modular, in the sense that if we
generalize the saturation procedure to other equational theories support for else
branches comes for “for free”. From a more practical point, we have implemented
our new procedure in the AKISS tool and demonstrate its effectiveness on several
case studies. Hence, we provide the first tool that is able to handle protocols that
require both xor and else braches: in addition to previously analysed protocols,
such as the private authentication protocol and the BAC protocol implemented
in the European passport, this allows us to analyse protocols using xor, such
as the AKA protocol [4] used in 3G and 4G mobile telephony, as well as xor-
based RFID protocols with key update (which requires an else branch for the
modelling). A previous analysis of the AKA protocol with ProVerif replaced the
use of xor with encryption [6]. Replacing xor by encryption may however miss
attacks as it was shown by Ryan and Schneider in [29].
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Related Work. We consider two kinds of tools: those restricted to a bounded
number of sessions (as in our work) and those that allow for an unbounded
number of sessions. The first kind of tools includes the SPEC and APTE tools.
SPEC [32] allows to verify a symbolic bisimulation: it only supports a fixed equa-
tional theory (encryption, signature, hash and mac) and has no support for else
branches. The APTE tool also supports a fixed equational theory (similar to
SPEC), but allows else branches. Both tools are not restricted to determinate
processes. Tools that allow protocol verification for an unbounded number of
sessions include ProVerif, Maude NPA and Tamarin. Given that the underlying
problem is undecidable when the number of sessions is not bounded, termina-
tion is not guaranteed. Each of these tools allows for else branches user-defined
equational theories, but ProVerif and Tamarin do not include support for xor.
While Maude NPA does support xor in principle, termination fails even on sim-
ple examples [30]. We may also note that the support for else branches in Maude
NPA is very recent [34]. Finally, each of these three tools checks a more fine-
grained relation that trace or observational equivalence, called diff-equivalence:
this equivalence requires both processes to follow the same execution flow and
is too fine-grained for some applications.

Full proofs, omitted because of lack of space, are available in [25].

2 A Formal Model for Security Protocols

In this section we introduce our formal language for modelling security proto-
cols. Messages are modelled as terms and equipped with an equational theory,
that models the algebraic properties of cryptographic primitives. The protocols
themselves will be modelled in a process calculus similar to the applied pi cal-
culus [1]: protocol participants are modelled as processes and their interaction
through message passing.

2.1 Term Algebra

Terms are built over the following atomic messages: the set of names N , that is
partitioned into private names Nprv and public names Npub; the set of message
variables X , denoted x, y, . . .; the set of parameters W = {w1,w2, . . .}. Private
names are used to model fresh, secret values, such as nonces or cryptographic
keys. Public names represent publically known values such as identifier and are
available to the attacker. Parameters allow the adversary to refer to messages
that were previously output.

We consider a signature Σ, i.e., a finite set of function symbols together with
their arity. Function symbols of arity 0 are called constants. Given a signature Σ
and a set of atoms A we denote by T (Σ,A) the set of terms, defined as the
smallest set that contains A and is closed under application of function symbols.
We denote by vars(t) the set of variables occurring in a term t. A substitution
is a function from variables to terms, lifted to terms homomorphically. The
application of a substitution σ to a term u is written uσ, and we denote dom(σ)
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its domain, i.e. dom(σ) = {x | σ(x) �= x}. We denote the identity substitution
whose domain is the empty set by ∅.

We equip the signature Σ with an equational theory E: an equational theory
is defined by a set of equations M = N with M,N ∈ T (Σ,X ). The equational
theory E induces an equivalence relation =E on terms: =E is the smallest equiv-
alence on terms, which contains all equations M = N in E, is closed under
application of function symbols and substitutions of variables by terms.

Example 1. As an example we model the exclusive-or operator. Let Σxor =
{⊕, 0}, and the equational theory Exor defined by the following equations:

x ⊕ x = 0 x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z x ⊕ 0 = x x ⊕ y = y ⊕ x

Additional primitives, e.g. pairs, symmetric and asymmetric encryptions, sig-
natures, hashes, etc, can be modelled by extending the signature and equational
theory.

Example 2. Let Σ+
xor = Σxor�{〈·, ·〉, proj1, proj2, h}, and E+

xor be defined by extend-
ing Exor with the following equations: proj1(〈x, y〉) = x, and proj2(〈x, y〉) = y.

The symbol 〈·, ·〉 models pairs and proj1 and proj2 projections of the first and
second element. The unary symbol h models a cryptographic hash function. Let
AUTN = 〈SQNN ⊕AK,MAC〉, then we have proj1(AUTN)⊕AK =E SQNN .

As we build on the AKISS tool [8,15] we suppose in the following that the
signature and equational theory are an extension the theory of exclusive or, i.e.,
Σ is such that Σxor ⊆ Σ and E = Exor ∪ {M = N | M,N ∈ T (Σ � Σxor,X )}.
and that E can be oriented into a convergent rewrite system which has the finite
variant property. This allows to model a wide range of cryptographic primitives,
including symmetric and asymmetric encryption, digital signatures, hash func-
tions and also zero knowledge proofs or blind signatures. We refer the reader
to [15] for the precise technical definitions, which are not crucial for this paper.

2.2 Process Calculus

Syntax. Let Ch be a set of public channel names. A protocol is a set of processes
and a process is generated by the following grammar:

P, P ′, P1, P2 :: = 0 null process
in(c, x).P input
out(c, t).P output
[s = t].P test=

[s �= t].P test�=

where x ∈ X , s, t ∈ T (Σ,N ∪ X ), and c ∈ Ch.
A receive action in(c, x) acts as a binding construct for the variable x and

free and bound variables of processes are defined as usual. We also assume that
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each variable is bound at most once. A process is ground if it does not contain
any free variables. For sake of conciseness, we sometimes omit the null process
at the end of a process.

Following [15], we only consider a minimalistic core calculus. Given that we
only consider a bounded number of sessions (i.e., a process calculus without
replication) and that we aim at verifying trace equivalence, parallel composi-
tion, denoted P ‖ Q can be added as syntactic sugar to denote the set of all
interleavings at a cost of an exponential blow-up (see [15]). Similarly, we can
encode conditionals: a process

if t1 = t2 then P else Q

can be encoded by the set {[t1 = t2].P, [t1 �= t2].Q}. As usual we omit
else Q when Q = 0 and sometimes write if t1 �= t2 then P else Q for
if t1 = t2 then Q else P . This will ease the specification of protocols and
improve readability. A protocol typically consists of the set of all possible inter-
leavings.

Example 3. As an example consider a simplified version of the AKA protocol,
which is vulnerable to replay attacks, depicted in Fig. 1. The network (NS) and
mobile station (MS) share a secret key kIMSI . NS generates a nonce r which it
sends to MS together with f(kIMSI , r) where f models a message authentication
code (MAC). MS verifies the MAC: if successful it sends another MAC based on
function f2 and generates sessions keys from r and kIMSI ; otherwise, it sends an
error message. NS checks whether the received message is the expected MAC or

MS
kIMSI

NS
kIMSI

nonce r
XMAC ← f(kIMSI , r)

〈r, XMAC〉

MAC ← f(kIMSI , r)
if MAC �= XMAC
then RES ← MAC FAIL
else RES ← f2(kIMSI , r)

RES

set sessions keys if RES �= f2(kIMSI , r)
then RECOVER
else set sessions keys

Fig. 1. A simplified version of the AKA protocol
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the error message. In case the MAC is received it generates the sessions keys;
otherwise it starts a recovery protocol.

Using the additional operators introduced above, we can model the protocol
as MS ‖ NS where

NS=̂ out(c, 〈r, f(kIMSI , r)〉).in(c, x).if x �= f2(kIMSI , r) then out(c,RECOVER)
MS=̂ in(c, y). if y �= f(kIMSI , r) then out(c,MAC FAIL) else out(c, f2(kIMSI , r))

If we skip the actions [x �= f2(kIMSI , r)].out(c,RECOVER), the protocol cor-
responds to a set of 12 processes which include, for instance, the 4 following
processes.

out(c, 〈r, f(kIMSI , r)〉).in(c, y).[y �= f(kIMSI , r)].out(c,MAC FAIL).in(c, x)
out(c, 〈r, f(kIMSI , r)〉).in(c, y).[y = f(kIMSI , r)].out(c, f2(kIMSI , r)).in(c, x)
out(c, 〈r, f(kIMSI , r)〉).in(c, y).in(c, x).[y �= f(kIMSI , r)].out(c,MAC FAIL)
out(c, 〈r, f(kIMSI , r)〉).in(c, y).in(c, x).[y = f(kIMSI , r)].out(c, f2(kIMSI , r))

Note that since a test is an invisible action, there is no need to consider traces
where a test does not strictly precede its following action. The correctness of
this optimization is proven in [15].

Semantics. In order to define the operational semantics of our process calculus
we define the notion of message deduction. Intuitively, message deduction models
which new messages an intruder can construct from previously learnt messages.
The messages output during a protocol execution are presented by a frame:

ϕ = {w1 �→ t1, . . . ,w� �→ t�}

A frame is a substitution dom(ϕ) = {w1, . . . ,w�}. An intruder may refer to the
ith term through the parameter wi.

Definition 1. Let ϕ be a frame, t ∈ T (Σ,N ) and R ∈ T (Σ,Npub ∪ dom(ϕ)).
We say that t is deducible from ϕ using R, written ϕ �R t, when Rϕ =E t.

Intuitively, an attacker can deduce new messages by applying function sym-
bols in Σ to public names (in Npub) and terms he already knows (those in ϕ).
The term R is called a recipe.

A configuration is a pair (P,ϕ) where P is a ground process, and ϕ is a
frame. The operational semantics is defined as a labelled transition relation on
configurations �−→ where � is either an input, an output, or an unobservable action
test defined as follows:

Recv (in(c, x).P, ϕ)
in(c,R)−−−−→ (P{x �→ t}, ϕ) if ϕ �R t

Send (out(c, t).P, ϕ)
out(c)−−−−→ (P,ϕ ∪ {w|ϕ|+1 �→ t})

Test= ([s = t].P, ϕ) test−−−→ (P,ϕ) if s =E t

Test�= ([s �= t].P, ϕ) test−−−→ (P,ϕ) if s �=E t
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Intuitively, the labels have the following meaning:

– in(c,R) represents the input of a message sent by the attacker on channel c
and the message is deduced using recipe R;

– out(c) represents the output of a message on channel c (adding the message
to the frame);

– test represents the evaluation of a conditional (in the equational theory).

When � �= test we define �=⇒ to be test−−−→
∗ �−→ test−−−→

∗
and we lift �−→ and �=⇒ to

sequences of actions. Given a protocol P, we write (P, ϕ)
�1,...,�n−−−−−→ (P ′, ϕ′) if

there exists P ∈ P such that (P,ϕ)
�1,...,�n−−−−−→ (P ′, ϕ′), and similarly for �=⇒.

2.3 Trace Equivalence

The fact that an attacker cannot distinguish two protocols will be modelled
through trace equivalence. We first define the notion of a test which an attacker
may apply on a frame to try to distinguish two processes.

Definition 2. Let ϕ be a frame and R1, R2 be two terms in T (Σ,Npub

∪ dom(ϕ)). The test R1
?= R2 holds on frame ϕ, written (R1 = R2)ϕ, if

R1ϕ =E R2ϕ.

Trace equivalence of processes P and Q states that any test that holds on
process P (after some execution) also holds on process Q after the same execu-
tion.

Definition 3 [15]. A protocol P is trace included in a protocol Q, denoted

P � Q, if whenever (P, ∅)
�1,...,�n=====⇒ (P,ϕ) and (R1 = R2)ϕ, then there exists a

configuration (Q′, ϕ′) such that (Q, ∅)
�1,...,�n=====⇒ (Q′, ϕ′) and (R1 = R2)ϕ′.

We say that P and Q are equivalent, written P ≈ Q, if P � Q and Q � P.

This notion of equivalence does not coincide with the usual notion of trace
equivalence as defined e.g. in [18]. It is actually coarser and is therefore sound for
finding attacks. However, it has been shown that the classical and above defined
notions coincide for the class of determinate processes [15].

Definition 4 [15]. We say that a protocol P is determinate if whenever

(P, ∅)
�1,...,�n=====⇒ (P,ϕ), and (P, ∅)

�1,...,�n=====⇒ (P ′, ϕ′), then for any test R1
?= R2,

we have that:

(R1 = R2)ϕ if, and only if (R1 = R2)ϕ′.

Determinacy of a protocol can be achieved through sufficient syntactic condi-
tions, e.g. enforcing action-determinism [9]: all executions of an action determi-
nate process ensure that we cannot reach a process P where the same action
may lead to two different processes, e.g. we forbid the set of processes generated
by (out(c, a).P1) ‖ ((out(c, b).P2) but allow (out(c1, a).P1) ‖ ((out(c2, b).P2).
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Action-determinism is automatically checked by AKISS. Whenever processes are
not determinate, the above equivalence can be used to disprove trace equiva-
lence, i.e., find attacks. The capability of AKISS to under approximate trace
equivalence consists in finding a one-to-one mapping between each process of P
and Q such that the pair of processes, which are determinate by construction,
are equivalent. Such an approach is still possible with our procedure. In this
paper we develop a procedure which checks trace equivalence on determinate
processes and may be used for finding attacks on general processes.

3 Modelling Using Horn Clauses

Our decision procedure is based on a fully abstract modelling of a process in
first-order Horn clauses which has initially been developed in [15] and adapted
to support the Xor operator in [8]. In this section we recall the main definitions
and theorems of [8].

3.1 Predicates

We define the set of symbolic runs, denoted u, v, w, . . ., as the set of finite
sequences of symbolic labels:

u, v, w := ε | �, w

with � ∈ {in(c, t),out(c), test | t ∈ T (Σ,N ∪ X ), c ∈ Ch}
The empty sequence is denoted by ε. Intuitively, a symbolic run stands for

a set of possible runs of the protocol. We denote u �E v when u is a prefix
(modulo E) of v.

We assume a set Y of recipe variables disjoint from X , and we use capital
letters X,Y,Z to range over Y. We assume that such variables may only be
substituted by terms in T (Σ,Npub ∪ W ∪ Y).

We consider four kinds of predicates over which we construct the atomic
formulas of our logic. Below, w denotes a symbolic run, R,R′ are terms in
T (Σ,Npub∪W ∪Y), and t is a term in T (Σ,N ∪X ). Informally, these predicates
have the following meaning (see Fig. 2 for the formal semantics).

(P0, ϕ0) |= r�1,...,�n if (P0, ϕ0)
L1−−→ (P1, ϕ1) . . .

Ln−−→ (Pn, ϕn)
such that �i =E Liϕi−1 for all 1 ≤ i ≤ n

(P0, ϕ0) |= k�1,...,�n(R, t) if when (P0, ϕ0)
L1−−→ (P1, ϕ1)

L2−−→ . . .
Ln−−→ (Pn, ϕn)

such that �i =E Liϕi−1 for all 1 ≤ i ≤ n, then ϕn �R t

(P0, ϕ0) |= i�1,...,�n(R, R′) if there exists t such that (P0, ϕ0) |= k�1,...,�n(R, t)
and (P0, ϕ0) |= k�1,...,�n(R′, t)

(P0, ϕ0) |= ri�1,...,�n(R, R′) if (P0, ϕ0) |= r�1,...,�n and (P0, ϕ0) |= i�1,...,�n(R, R′)

Fig. 2. Semantics of atomic formulas
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– rw holds when the run represented by w is executable;
– kw(R, t) holds if whenever the run represented by w is executable, the message

t can be constructed by the intruder using the recipe R;
– iw(R,R′) holds if whenever the run w is executable, R and R′ are recipes for

the same term; and
– riw(R,R′) is a short form for the conjunction of the predicates rw and

iw(R,R′).

A (ground) atomic formula is interpreted over a pair consisting of a process
P and a frame ϕ, and we write (P,ϕ) |= f when the atomic formula f holds for
(P,ϕ) or simply P |= f when ϕ is the empty frame. We consider first-order formu-
las built over the above atomic formulas and the usual connectives (conjunction,
disjunction, negation, implication, existential and universal quantification). The
semantics is defined as expected, but the domain of quantified variables depends
on their type: variables in X may be mapped to any term in T (Σ,N ), while
recipe variables in Y are mapped to recipes, i.e. terms in T (Σ,Npub ∪ W).

3.2 Statements and Saturation

We now identify a subset of the formulas, which we call statements. Statements
will take the form of Horn clauses, and we shall be mainly concerned with them.

Definition 5 [15]. A statement is a Horn clause of the form H ⇐
ku1(X1, t1), . . . , kun

(Xn, tn) where:

– H ∈ {ru0 , ku0(R, t), iu0(R,R′), riu0(R,R′)};
– u0, u1, . . . , un are symbolic runs such that ui �E u0 for any i ∈ {1, . . . , n};
– t, t1, . . . , tn ∈ T (Σ,N ∪ X );
– R,R′ ∈ T (Σ,Npub ∪ W ∪ Y); and
– X1, . . . , Xn are distinct variables from Y.

Lastly, vars(t) ⊆ vars(t1, . . . , tn) when H = ku0(R, t).

In the definition above, we implicitly assume that all variables are universally
quantified, i.e. all statements are ground. By abuse of language we sometimes
call σ a grounding substitution for a statement H ⇐ B1, . . . , Bn when σ is
grounding for each of the atomic formulas H,B1, . . . , Bn.

In [15], the authors present a saturation-based procedure sat that given a
ground process P produces a fully abstract set of solved statements sat(P ). The
procedure starts by translating P and the equational theory into a finite set of
statements. Then this set is saturated by applying Horn clause resolution rules.
Finally, if the procedure terminates (which is guaranteed for subterm convergent
equational theories), the set of solved statements K produced by the saturation
procedure is a sound and complete abstraction of P : any statement that holds on
the protocol P is a logical consequence of K. The notion of logical consequence
is formalised through the (infinite) set He(K).
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Definition 6 [8]. Given a set K of statements, H(K) is the smallest set of
ground facts that is closed under the rules of Fig. 3. We define He(K) to be the
smallest set of ground facts containing H(K) and that is closed under the rules
of Fig. 4.

CONSEQ EXTEND

f =
(
H ⇐ B1, . . . , Bn

)
∈ K

σ grounding for f B1σ ∈ H(K), . . . , Bnσ ∈ H(K)

Hσ ∈ H(K)

ku(R, t) ∈ H(K)

kuv(R, t) ∈ H(K)

Fig. 3. Rules of H(K)

REFL
iw(R, R) ∈ He(K)

CONG
iw(R1, R

′
1), . . . , iw(Rn, R′

n) ∈ He(K) f ∈ Σ

iw(f(R1, . . . Rn), f(R′
1, . . . R

′
n)) ∈ He(K)

EXT
iu(R, R′) ∈ He(K)

iuv(R, R′) ∈ He(K)
EQ. CONSEQ.

kw(R, t) ∈ H(K) iw(R, R′) ∈ He(K)

kw(R′, t) ∈ He(K)

Fig. 4. Rules of He(K)

Theorem 1 [8]. Let K = sat(P ) for some ground process P . We have that:

– P |= f for any f ∈ K ∪ He(K);

– If (P, ∅)
L1,...,Ln−−−−−−→ (Q,ϕ) then

1. rL1ϕ,...,Lnϕ ∈E He(K);
2. if ϕ �R t then kL1ϕ,...,Lnϕ(R, t) ∈E He(K);
3. if ϕ �R t and ϕ �R′ t, then iL1ϕ,...,Lnϕ(R,R′) ∈E He(K).

4 Algorithm

We first introduce a few notations and preliminary definitions. We start by intro-
ducing the recipe function: its goal is to associate a sequence of labels to a sym-
bolic run and a positive process (in the labels we replace the input terms of the
symbolic run by the recipes used to deduce them).

Definition 7. Given a positive process P and a symbolic run �1, . . . , �k we define
a function recP (�1 . . . �k) = L1 . . . Lk where

Li =
{
in(c,R) if �i = in(c, t) and k�1...�i−1(R, t) ∈ H(sat(P ) ∪ K)
�i otherwise

and K = {kε(Xi, xi) | 1 ≤ i ≤ n, vars(�1, . . . , �k) = {x1, . . . xn},X1, . . . Xn ∈
Y are pairwise distinct and fresh}.
Note that several functions may satisfy the specification of this definition.
Here we consider any possible implementation of this specification,e.g., the one
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presented in [15]. The complicated case is when the symbolic label is an input:
in that case we need to retrieve the corresponding recipe in sat(P ). As the sym-
bolic labels may not be closed we simply enhance sat(P ) with a recipe X for
each variable x (the set K).

To check equivalence between processes we rely on the notion of reachable
identity test written RIdL1,...,Lk

(R,R′) where L1, . . . , Lk are (not necessarily
ground) labels and R,R′ (not necessarily ground) recipes. For a test t we denote
by lbl(t) its sequence of labels L1, . . . , Lk. For commodity reason, we also define
a reachability test as: RL1,...,Lk

=̂RIdL1,...,Lk
(0, 0).

Given a ground process P and a test t the predicate VerP (t) checks whether

t holds in P . We define VerP (RIdL1,...,Lk
)(R,R′) to hold when (P, ∅)

L1σ,...,Lkσ
=======⇒

(P ′, ϕ) and (Rσ = R′σ)ϕ where σ is a bijection from vars(L1, . . . , Lk, R,R′) to
fresh names {c1, . . . , cn}. Finally the predicate is lifted to protocols and we write
VerP(t) for ∃P ∈ P. VerP (t).

We note that when VerP (t) holds and P is positive then VerP (tσ) holds for
any σ, as equality is stable by substitution. However, a disequality may hold
when instantiated by distinct fresh names, while a different instantiation may
make the test fail.

Next we define the process rm�=(P ) which simply removes all inequality tests.

Definition 8. Let P be a process such that P = P1.[t1 �= t′1].
P2. . . . .[tm �= t′m].Pm+1 and P1.P2. . . . .Pm+1 is positive. We define the process
rm �=(P )=̂P1. . . . .Pm+1.

Given a process P we define the set of reachable identity tests TestRId(P ).

TestRId(P ) = {RIdL1,...,Lk(R, R′) |
ri�1,...,�k (R, R′) ⇐ ku1(X1, x1), . . . , kun(Xn, xn) ∈ sat(rm�=(P )),
L1, . . . , Lk = (recP (�1, . . . , �k))σ where σ = {Xj �→ Xmin{i|xi=xj} | 1 ≤ j ≤ k},

VerP (RIdL1,...,Lk(R, R′))}

We also define reachability tests TestR(P ) for a process P :

TestR(P ) = {t | t ∈ TestRId(P ), ∃L1, . . . , Lk, t = RL1,...,Lk
}

We note that we can only apply the sat function to positive processes. If P
was already a positive process VerP (t) would hold for each of the constructed
tests because of the soundness of sat. However, in general, Verrm �=(P )(t) may
hold while VerP (t) does not hold, which is why we explicitly test the validity of
t in P .

In [15] it is shown that given a positive ground process P and a positive
determinate protocol Q, we have that

P �t Q iff ∀t ∈ TestRId(P ). VerQ(t)

which can be used to check trace inclusion between protocols (as P �t Q iff
∀P ∈ P.P �t Q) and trace equivalence (as P ≈t Q iff P �t Q and Q �t P).
This result does however not hold for processes with disequality tests.
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Example 4. Let P = in(c, x).out(c, a) and Q = in(c, x).[x �= a].out(c, a). We
have that P �≈t Q but all tests that hold on P also hold on Q (and vice-versa).

In particular Rin(c,X).out(c) ∈ TestR(P ) holds in Q, as (Q, ∅)
in(c,c1).out(c)=========⇒ (0, ϕ)

for a fresh name c1.

Whenever a test holds on rm�=(P ) but not on P , it must be that a disequality
test in P did not hold. We therefore compute the complement of a process, which
is the set of positive processes which transforms a disequality into an equality
and removes remaining disequalities.

Definition 9. Let P be a process such that

P = P1.[t1 �= t′1].P2. . . . .[tm �= t′m].Pm+1

and P1.P2. . . . .Pm+1 is positive. We define the complement of P , comp(P ) to be
the set

{P1.P2. . . . .Pi−1.[ti = t′i].Pi. . . . .Pm.Pm+1|1 ≤ i ≤ m}

We easily see that we have the following property.

Lemma 1. Let P be a process and t a test. We have that

Verrm �=(P )(t) iff either VerP (t)or Vercomp(P )(t)

Lastly, before explaining our algorithm we need to introduce the shrink
operator on processes which is used in conjunction with the Inst operators on
sequences of labels. Given a process P and a sequence of labels lbl we define a
process that only executes instances of lbl (up to test actions which are ignored).
In the following we suppose that variables in Y,X and names in N are totally
ordered by an order <Y , <X resp. <N .

Definition 10. Let P be a process, lbl a sequence of labels, σ an increasing
bijection from vars(lbl) ∩ Y to a set of fresh and pairwise distinct term variable
in X , θ an increasing bijection from vars(lbl) ∩ Y to a set of fresh and pairwise

distinct names in N , such that (P, ∅)
L1θ,...,Lnθ
=======⇒ (P ′, ϕ). Let lbl0 be the sub-

sequence of lbl obtained by removing all test labels. We define shrinklbl(P ) as
shr∅lbl0(P ) where

– shrvlbl([s ∼ t].P ) = [s ∼ t].shrvlbl(P ) for ∼∈ {=, �=}
– shrvout(c)·lbl(out(c, t).P ) = out(c, t).shrvlbl(P ),
– shrvin(c,R)·lbl(in(c, x).P )

= in(cs,X1σ). . . . .in(cs,Xnσ).in(c, x).[x = Rϕθ−1σ].shrvars(R)∪v
lblσ (P )

where vars(R) ∩ Y \ v = {X1, . . . , Xn} and Xi < Xi+1,
– 0 otherwise

and cs is a dedicated channel not appearing in P .
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Note that the function shrink depends on the chosen bijection but this only
changes the process up to alpha renaming. Note that we cannot force an execu-
tion to contain an instance of a particular recipe R. The inserted test [x = Rϕσ]
only ensures that the input of x is produced by some recipe R′ such that
(Rσ = R′)ϕ. We therefore additionally add inputs in(cs, xi) which will allow
us to retrieve instance Rθ of R that yields the same protocol message as R.

Definition 11. Let lbl, lbl′ be sequences of labels. If

in(lbl) = in(cs, R
1
1) . . . in(cs, R

n1
1 ).in(c1, R1). . . . .in(cs, R

k
1) . . . in(cs, R

nk
k ).in(ck, Rk);

in(lbl′) = in(c1, R′
1). . . . .in(ck, R′

k) and vars(R′
i) \

⋃
j<i

vars(R′
j) = {X1

i , . . . , Xni
i }

with Xj
i < Xj+1

i then we define Inst(lbl, lbl′) = {Xj
i �→ Rj

i | 1 ≤ i ≤ k, 1 ≤ j ≤
ni}. Otherwise Inst(lbl, lbl′) = ⊥.

Example 5. Let P = in(c, x).out(c, 0) be a process and lbl = in(c, 〈Y, 0〉),out(c)
a sequence of labels. Consider two bijections σ = {Y �→ y} and θ =
{Y �→ a}. The process shrinklbl(P ) = in(cs, y).in(c, x).[x = 〈y, 0〉].out(c, 0)
allows to identify the recipes Y such that (P,ϕ) lblσ−−→ (P ′, ϕ′). Indeed,
assume TestR(shrinklbl(P )) contains r = Rin(cs,h(0)).in(c,〈h(0),0〉.out(c), then rτ =
Rin(c,〈h(0),0〉.out(c) where τ = Inst(lbl, lbl(r)) is such that Verrτ (P ) and lbl(rτ) is
an instance of l.

The algorithm Equiv for verifying trace equivalence on determinate processes
is detailed in Algorithm 1.

Theorem 2. Let P and Q be two determinate protocols. Then we have that

P ≈t Q iff Equiv(P ≈tQ)

The algorithm proceeds as follows. For each P ∈ P we check whether all
traces of P are included in Q. For this we compute the set RidP of reachable
identity tests that hold in P and that need to be checked on Q. We next pick
a test rid from the set (and remove it from the set, denoted rid := pop(RidP ))
and check whether this test holds for some process Q in Q. If this is not the case
we violate trace equivalence. Otherwise we need to perform additional checks:
indeed even if the test rid holds, an instance of rid might not hold on Q but still
hold in P . Consider the following simple example:

P = in(c, x).out(c, a) Q1 = in(c, x).[x �= a].out(c, a)
Q = {Q1, Q2} Q2 = in(c, x).[x = a].out(c, a)
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Algorithm 1. Decision procedure for P ≈t Q
Function Check(P, Q)

Input: Process P , protocol Q
Output: Boolean

RidP := TestRId(P );
while RidP �= ∅ do

rid := pop(RidP );
SQ := {Q ∈ Q | VerQ(rid)};
if SQ = ∅ then return false;
Q := pop(SQ);

foreach Q ∈ comp(shrinklbl(rid)(Q)) do

RQ := {r ∈ TestR(Q) | |lbl(r)| = |Q|};

foreach r ∈ RQ do

σ := Inst(lbl(r), lbl(rid));
if VerP (Rlbl(rid)σ) then RidP := RidP ∪ {ridσ};

return true

Function Equiv(P, Q)
Input: Protocols P, Q
Output: Boolean

return
∧

P∈P Check(P, Q) ∧∧Q∈Q Check(Q, P)

Note that P ≈t Q. Let rid = RIdin(c,X).out(c)(a, a). This test holds in Q1. How-
ever, the more instantiated test RIdin(c,a).out(c)(a, a) would not hold. (Note that
the test may actually only fail because reachability is violated.) We therefore
need to identify the instances of rid Q1 that do not hold on Q1. The process
shrinkQ(lbl(rid)) defines the process that only verifies instances of rid. Comput-
ing its complement defines the processes that verify the instances of rid that are
not verified by Q: in our example we would identify the test r = Rin(c,a).out(c),
as computing the complement transforms [x �= a] into [x = a]. Finally, we check
whether r is verified by P . If this is the case, we add the more instantiated test
RIdin(c,a).out(c)(a, a) to the set RidP of tests to be checked. We note that the fact
that Q1 does not verify r, but P does is not yet a violation of trace equivalence:
another trace in Q may well verify the instantiated test. In our example, indeed
the process Q2 verifies RIdin(c,a).out(c)(a, a).

Theorem 2 above ensures partial correctness, i.e., soundness and complete-
ness. We now state that total correctness only depends on the termination of
sat.

Theorem 3. If procedure sat terminates then procedure Equiv terminates.

As it was shown in [15], termination of sat is ensured for a wide class of subterm
convergent equational theories. While sat may not terminate in generalon other



16 I. Gazeau and S. Kremer

theories such as xor, or blind signatures, the tool does terminate in practice
on a wide range of examples [8,15] (and Theorem 2 ensures the correctness of
the result).

5 Implementation and Case Studies

5.1 The AKISS Tool

In addition to parallel composition P ‖ Q and conditionals AKISS also supports
non-deterministic choice P + +Q, sequences P :: Q and phases P >> Q, which
are convenient for defining complex scenarios under which we analyse protocols.
A sequence P :: Q contains all sequences of a trace of P followed by a trace of
Q while the set of traces for a phase P >> Q contains all traces made of the
beginning of a trace of P followed by a full trace of Q.

We model unlinkability for two sessions in each of the protocols below as
follows:

P 1
A >> P 2

A ≈ P 1
A >> P 2

B

The attacker first interacts with a first session of protocol P executed by A,
denoted P 1

A. Then, in a new phase he interacts with a second session of the
protocol, which is either executed by A (process P 2

A) or by B (process P 2
A). The

protocol P satisfies unlinkability if the two scenarios cannot be distinguished.
Note that the use of the phase operator is preferable to the sequential composi-
tion, as an attacker may not be able to finish the first session completely before
starting the second session.

The implementation of the tool and the files corresponding to our case studies
are freely available at https://github.com/akiss/.

5.2 The AKA Protocol

Unlike the simplified version of AKA described in Fig. 1, the actual AKA pro-
tocol [25] provides a mechanism against replay attacks. In addition to the mac
value, both the network and the mobile station store a counter SQN used as a
timestamps: each time the network station starts a session with a same mobile
station, it sends in addition to the random value and the mac an obfuscated
message SQN ⊕ kIMSI containing the incremented value of the counter. The
mobile stores the maximum value which has been received. If the received value
is not strictly greater than this maximum, the mobile sends a synchronization
error message. Otherwise it updates the stored value.

Unlinkability is modelled as explained above: in a first session a mobile station
A interacts with the network station and in a second session either mobile A or
mobile B interact with the network station. The AKISS tool does not allow for
comparison of integer. Instead we just check that the sent value was not the
same as a previous one. Therefore during the first phase, since there was no
SQN value sent to the mobile there is no need to perform a check while in the

https://github.com/akiss/
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second session of the mobile A (in the first scenario) we check that the new SQN
value is distinct from the first time.

Using the AKISS tool we find the (previously known) attack consisting of
observing the first phase and sending the network station’s message of the first
phase in the second one: if the second phase is with the same mobile station
then it sends a synchronization error message while if its another mobile station
it sends a mac error message. Running our tool on a 30 core Intel(R) Xeon(R)
CPU E5-2687W v3 @ 3.10 GHz, the attack is found in 3 min.

5.3 Unlinkability on Some Other Protocols

We also analysed the Basic Access Control (BAC) protocol [26], the Private
Authentication Protocol (PAP) [2] and two RFID protocols [33]: LAK and SLK.

All these protocols use else branches to send error messages except for the
LAK RFID protocol. However, even though this protocol does not contain
branches, the scenarios required for expressing unlinkability does requires the
use of an else branch for the key update. Indeed, when a session succeeds, the
key is updated for the next session, while the previous key is reused in case of
failure. This results into an if then else structure. Finally, for the SLK and LAK
protocols where both the tag and the reader update their data, the scenarios to
consider for two sessions are the following.

Psame = ((TagAa ‖ Readera)>> (TagA ‖ Reader))
++ ((TagA ‖ (Readera >> 0)) :: (TagAu ‖ Reader))
++ (((TagAa >> 0) ‖ Reader) :: (TagA ‖ Readeru))
++ ((TagA ‖ Reader) :: (TtagAu ‖ Readeru))

The roles with index u model the role with a preliminary update
if test then R else R′ where R′ is R with updated values. As the update
test is not defined before all inputs have been received, we introduce Ra for each
role R to be the process where the last input and the update test are missing
(and moreover the construct R >> 0 allows the adversary to stop that instance of
the role even earlier): in this case, the update will not happen anyway. Therefore,
our scenario has four cases depending on whether the tag, the reader, both or
none have reached the update test or not. The scenario where the instances of
the tags corresponds to different tag is similar.

Pdiff = ((TagA ‖ Readera)>> (TagB ‖ Reader))
++ (((TagA >> 0) ‖ Reader) :: (TagB ‖ Readeru))

Note that as we consider a different tag in the second session we do not need to
worry whether TagA was updated or not.

The AKISS tool establishes the equivalence for PAP in 4s. It finds known
attacks on BAC in 1m30, on SLK in 6 s and in 7 h for LAK. The much longer
time for LAK is due to the particular use of xor which leads to complex unifiers.
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6 Conclusion

In this paper we present an extension of AKISS which allows automated verifi-
cation of protocols with else branches. An appealing aspect of our approach is
that we do not modify the saturation procedure underlying the AKISS tool. As
a result we obtain a new decidability result for the class of subterm convergent
equational theories and an effective automated analysis tool. We have been able
to analyse several protocols including the AKA protocol, and RFID protocols
which require both support for xor and else branches.
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