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Abstract. In this paper we present an overview and summary of recent
results of the minimum barrier distance (MBD), a distance operator
that is a promising tool in several image processing applications. The
theory constitutes of the continuous MBD in R

n, its discrete formula-
tion in Z

n (in two different natural formulations), and of the discussion
of convergence of discrete MBDs to their continuous counterpart. We
describe two algorithms that compute MBD, one very fast but returning
only approximate MBD, the other a bit slower, but returning the exact
MBD. Finally, some image processing applications of MBD are presented
and the directions of potential future research in this area are indicated.

1 Introduction

Distance functions and their transforms (DTs, where each pixel is assigned the
distance to the closest seed pixel) have been used extensively in image process-
ing applications. Since Rosenfeld and Pfaltz defined distance transforms on the
binary images in the 1960’s [16,17], a huge number of distance transform meth-
ods have been developed in theoretical and application setting. The classical,
binary DTs are useful, for example, for measurement and description of binary
objects. Distance functions and transforms that are defined as minimal cost
paths in general images include geodesic distance [9], fuzzy distances [19], and
the minimax cost function; they have been used, for example, in segmentation
and saliency detection [18]. The most common algorithms for computing dis-
tance transforms are: (i) raster scanning methods, where distance values are
propagated by sequentially scanning the image in a pre-defined order [1,5]; (ii)
wave-front propagation methods, where distance values are propagated from
low distance value points (the object border) to the points with higher distance
values, using data structure containing previously visited points and their cor-
responding distance values, until all points have been visited [15,21]; and (iii)
separable algorithms, where one-dimensional subsets of the image are scanned
separately, until all principal directions have been scanned [4,20].
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Recently, we introduced in [22] the minimal barrier distance (MBD) func-
tion, based on the minimal length of the interval of intensity values along a
path between two points, see Fig. 1. The MBD differs from traditional distance
functions in a number of aspects. For example, the length of a path may remain
constant during its growth until a new stronger barrier is met on the path. This
subtle shift in the notion of path length allows the new distance function to cap-
ture separation between two points in a “connectivity”-sense. Our experiments
have shown that the MBD is stable to noise, seed point position [3,10,22,23].
The MBD has many interesting theoretical properties, and has been shown to
be a potentially useful tool in image processing [3,7,10,22,25].

Fig. 1. One-dimensional example of the minimum barrier. Left: The graph of a function
(blue) and, for each x on the horizontal axis, the maximum and minimum value attained
in [0, x] (red). Right: The pointwise difference between the maximum and minimum
values – the minimum barrier. The minimum barrier distance between two points in
an image is defined by a path with minimum barrier between the points. (Color figure
online)

This paper collects and compares published results on the MBD and presents
them in a unified framework. In Sect. 2, the MBD is defined on R

n with the
two equivalent formulations ρ (Eq. 2) and ϕ (Eq. 3). In Sect. 3, their discrete
counterparts ρ̂ (Eq. 4) and ϕ̂ (Eq. 5) are defined in Z

n. Section 4 gives results on
convergence between the different versions of MBD. The different MBD versions
are related as follows:

The arrows indicate conceptual relations. The top row shows the continuous
formulations and the bottom row the two different discrete versions.

Section 5 describes the algorithms for computation of DTs. The MBD based
on ρ̂ is, similar to [8], not smooth in the sense of [2,6]. As a consequence, exact
DTs for ρ̂ cannot be computed as efficiently as for ϕ̂, but both approximate
algorithms and efficient algorithms for exact computation have been developed.
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These are given in Sect. 5.1. Section 5.2 shows that DTs for ϕ̂ can be efficiently
computed by standard wave-front propagation techniques. Applications in image
processing are presented in Sect. 6.

2 The Minimum Barrier Distance in R
n

We consider bounded maps f : D → R and their graphs A = {(x, f(x)) : x ∈ D}.
When f : D → [0, 1] the set A can be seen as a fuzzy subset of D with f being
its membership function.

A path from p to q (where p, q ∈ D and D ⊂ R
n) is any continuous function

π : [0, 1] → D with p = π(0) and q = π(1). The symbol Πp,q (without subscripts,
when p and q are clear from the context) is used to denote the family of all such
paths. We consider functions f : D → R such that

– f is bounded;
– f is continuous;
– D ⊂ R

n is path connected, that is, for every p, q ∈ D there exists a path
π : [0, 1] → D from p to q.

The barrier of a path π : [0, 1] → D is the number

τ(π) = max
t

f(π(t)) − min
t

f(π(t)) = max
t0,t1

(

f(π(t1)) − f(π(t0))
)

. (1)

The maxima and minima in Eq. 1 are attained due to the Extreme Value Theo-
rem. The minimum barrier distance between p, q ∈ D is the number

ρ(p, q) = inf
π∈Πp,q

τ(π). (2)

2.1 Metricity

Definition 1. A function d : D × D → [0,∞) is a metric on a set D provided,
for every x, y, z ∈ D,

(i) d(x, x) = 0 (identity);
(ii) d(x, y) > 0 for all x �= y (positivity);
(iii) d(x, y) = d(y, x) (symmetry);
(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

It is easy to see that metricity property (ii) does not hold for the minimum
barrier distance (take a constant function f for example). Metricity properties
(i), (iii), and (iv) are obeyed, and the minimum barrier distance is therefore a
pseudo-metric [22].
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2.2 Alternative Formulation

Now, the mapping ϕ : D × D → [0,∞) is defined by two separate paths, via the
formula

ϕ(p, q) = inf
π1∈Πp,q

max
t

f(π1(t)) − sup
π0∈Πp,q

min
t

f(π0(t)). (3)

In Theorem 1 below, we see that the mappings ϕ and ρ are identical under mild
assumptions on the set D.

Recall, that a set D ⊂ R
n is simply connected, provided it is path connected

and for all p, q ∈ D the paths π0, π1 ∈ Πp,q are homotopic, that is, there exists
a continuous function h : [0, 1]2 → D, known as a homotopy between π0 and
π1, such that h(·, 0) = π0(·), h(·, 1) = π1(·), and the maps h(0, ·), h(1, ·) are
constant. Intuitively, the homotopy condition means that D has no holes.

Theorem 1 ([22]). If D ⊂ R
n is simply connected, then the mappings ρ and ϕ

are equal, that is, ρ(p, q) = ϕ(p, q) for all p, q ∈ D.

3 The Minimum Barrier Distance in Z
n

In the digital setting, we consider the (bounded) functions ̂f : ̂D → R, where
the digital scene ̂D is a finite subset of a digital space 〈φZn, α〉, where φ is a
positive number and α is an adjacency relation such that two points in φZn

are α-adjacent provided that no coordinate differs by more than φ and that
the points differ in exactly one coordinate. Note that this is equivalent to the
standard 6-adjacency [11] in a 3D digital space.

A digital path in a subset ̂D of the space 〈φZn, α〉 is any ordered sequence
π̂ = 〈π̂(0), π̂(1), . . . , π̂(k)〉 of points in ̂D such that π̂(i) and π̂(i − 1) are α-
adjacent for all i ∈ {1, 2, . . . , k}. If π̂(0) = p and π̂(k) = q, we say that the path
π̂ is from p to q. For a fixed set ̂D, a family of all paths in ̂D from p to q is
denoted by ̂Πp,q (with the subscripts omitted when p and q are clear from the
context). Note that the digital paths are denoted by π̂, while the paths in the
continuous space R

n are denoted by π.
In what follows, we assume that the digital scenes ̂D are of the rectangular

form ̂Dφ = D ∩ φZn, where D = {x ∈ R
n : Li ≤ x(i) ≤ Ui} for some real

numbers Li, Ui such that Li < Ui for all i. In particular, any two points in ̂D
are connected by a path.

In view of Theorem 1, there are two natural ways of defining the discrete
minimum barrier distance for ̂f : ̂D → R, the discretization of the formula for
ρ(p, q) and of that for ϕ(p, q):
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– Discretization I

ρ̂(p, q) = min
π̂∈̂Πp,q

(

max
i

[

̂f(π̂(i))
]

− min
j

[

̂f(π̂(j))
]

)

, (4)

– Discretization II

ϕ̂(p, q) = min
π̂1∈̂Πp,q

max
i

[

̂f(π̂1(i))
]

− max
π̂0∈̂Πp,q

min
j

[

̂f(π̂0(j))
]

. (5)

We know from [22] that each of the functions ρ̂ and ϕ̂ is a pseudo-metric on ̂D

and that ϕ̂(p, q) ≤ ρ̂(p, q) for all p, q ∈ ̂D.

4 Convergence Properties

Next we will see, in Theorem 2, that if ̂f : ̂Dφ → R is a discretization of a
continuous function f defined on a rectangular region D, then, for a sufficiently
small φ, the numbers ϕ̂(p, q) and ρ̂(p, q) well approximate ϕ(p, q) = ρ(p, q).

Theorem 2 (Theorem 2 in [22]). Let D be a rectangular region in R
n and

f : D → R be continuous. Let ρ̂ and ϕ̂ be the discrete minimum barrier distance
functions for the sampling ̂f of f on ̂Dφ, that is, with ̂f(p) = f(p) for all p ∈ ̂Dφ.
Then, for every ε > 0 there exists a φ0 > 0 such that for every φ ∈ (0, φ0]

|ρ̂(p, q) − ρ(p, q)| < ε and |ϕ̂(p, q) − ϕ(p, q)| < ε for all p, q ∈ ̂Dφ.

More precisely, this holds for any φ0 > 0 such that |f(x) − f(y)| < ε/4 for any
x, y ∈ D with ‖x − y‖ ≤ φ0

√
n/2.

Since, by Theorem 2, the values ρ̂(p, q) and ϕ̂(p, q) converge, as φ → 0, to
ρ(p, q) = ϕ(p, q), we obtain the following corollary.

Corollary 1 (Corollary 1 in [22] and Theorem 1 in [3]). Let ̂Dφ, ̂f , ρ̂
and ϕ̂ be as in Theorem 2. Then

max
p,q∈ ̂Dφ

|ρ̂(p, q) − ϕ̂(p, q)| → 0 as φ → 0.

More precisely, let ε = max
{

| ̂f(x) − ̂f(y)| : x, y ∈ ̂Dφ are (3n − 1)-adjacent
}

,

with ̂f as in Theorem 2. Then

0 ≤ ρ̂(p, q) − ϕ̂(p, q) ≤ 2ε for all p, q ∈ ̂Dφ.
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5 Discrete Distance Transform Computation

Efficient distance transform computation is crucial for most applications of dis-
tance transforms. As described in the introduction, many different computation
approaches have been proposed, including raster scanning and wave-front prop-
agation. In image segmentation, it is natural to compute DTs from seed points
in the background and in the object and then assign each point to a seed from
which it has the minimal distance. In practice, this is often computed efficiently
by propagating different labels from object and background seed points together
with the distance values. In this way, the points get labeled during the DT
computation, resulting in efficient computation of the labeling/segmentation.
As described above, the MBD originally is formulated in the continuous space
and offers two natural discretizations. This leads to two different problems to
solve when developing methods for computing the DT, one for each discretiza-
tion. Computing the DT of Discretization I turns out to be fairly easy, whereas
computing it for Discretization II is an intricate problem.

5.1 Distance Transform Computation of Discretization I, ρ̂

Approximate Computation. By propagating the minimum barrier, i.e., the
minimal interval of minimum and maximum value by a wave-front propagation
approach using auxiliary data structures that hold the minimal and maximal
attained values, an approximate distance transform can be computed [3,22]. We
call the algorithm the Dijkstra approximation algorithm (Algorithm 1 in [3]).
The minimum barrier distance based on ρ̂ is not smooth in the sense of [2,6]
and, as a result, the obtained distance transforms is not error-free [3,14,22,25]
with this approach. However, Zhang et al. [25] gave an error bound and also
showed that for a very restricted class of 2D images, the approach gives exact
minimum barrier distance transforms, see Theorem 3 which is here adapted to
the Dijkstra approximation algorithm.

Theorem 3. [25] Let ̂f be an integer-valued 2D image (n = 2) on a rectangular
domain ̂D and let

̂f ′ =

⌊

̂f

ε

⌋

ε,

where ε = max
{

| ̂f(x) − ̂f(y)| : x, y ∈ ̂D are (3n − 1)-adjacent
}

. If the set of seed
points is an α-connected set, then the absolute error in the distance map obtained
by the Dijkstra approximation algorithm on ̂f ′ is strictly less than ε.

The following Corollary holds since if ε = 1 in Theorem 3, then the maximum
absolute error is integer valued and strictly less than 1, that is, equal 0.
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Corollary 2. Let ̂f be an integer-valued 2D image (n = 2) on a rectangular
domain ̂D. If max

{

| ̂f(x) − ̂f(y)| : x, y ∈ ̂D are (3n − 1)-adjacent
}

= 1 (i.e., if
ε in Theorem 3 is 1) and if the set of seed points is an α-connected set, then
the absolute error in the distance map obtained by the Dijkstra approximation
algorithm on ̂f is error-free.

Exact Distance Transform Computation. Computing the exact discrete
MBD efficiently for general images is far from trivial, but it is fairly easy to
check if there exists a path between two points in a digital space within a given
interval: threshold the image at the lower and upper limits of the interval and
check if the two points are connected in the so-obtained connected regions. This
approach gives a simple, but computationally very inefficient way to compute
the minimum barrier distance transform: for a given seed point, compute for
each interval the set of points it is connected to after the thresholding procedure
explained above. The distance between the seed point and another given point
is the minimum of all such intervals, for which they are connected.

A slightly more efficient approach is to loop over all possible lower bounds
of the interval and compute a minimax transform from a given seed point. The
minimum barrier distance is then obtained by a min-operator of the so-obtained
distance maps.

This idea can be further optimized by sorting the priority queue in an efficient
way. By popping points from the queue based on the upper limit of the attained
barrier and propagating and pushing points to the queue based on the lower
limit of the barrier while storing the minimum barrier attained at each point, it
has been proved that an error-free algorithm can be obtained [3].

5.2 Distance Transform Computation of Discretization II, ϕ̂

The transform ϕ̂(p, ·) can be efficiently computed since the path cost functions
maxi

[

̂f(π̂1(i))
]

and minj

[

̂f(π̂0(j))
]

are smooth in the sense of [2,6] and can
therefore be computed by Dijkstra’s algorithm, where wave-front propagation is
used to compute lowest cost paths by local propagation [3,22].

6 The Minimum Barrier Distance in Image Processing
Applications

Since color images are used in most applications, an important extension of the
MBD is the vectorial MBD, where vectorial, i.e., multi-band images, are used
as input. Different versions of the vectorial MBD were developed by K̊arsnäs et
al. [10] and applied to interactive color image segmentation, where images are
segmented by manually placed seed points in the image background and in the
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object together with a label propagation approach to segment color images.
Instead of considering the one-dimensional interval, K̊arsnäs et al. consider
the diameter and volume of the bounding box as well as the diameter of the
(hyper-)volume of a convex hull in feature space (e.g. the RGB color space) as
the basis for the path cost. This shift in the MBD cost function definition leads to
additional problems in how the exact distance transform is computed. However,
in [10], an approximate method based on Dijkstra-like wave-front propagation
is used to compute the vectorial MBD.

The vectorial MBD on color images is used as a pre-processing step by Grand-
Brochier et al. [7] in a comparison of different pre-processing step methods for
image segmentation. They assume that the object is centered within the image
and compute the DT from a single seed point in the center of the image. The
pixels with low distance values are then assumed to be object pixels.

A slightly different, and more successful, approach based on a real-time imple-
mentation of the MBD by raster-scanning until convergence is presented by
Zhang et al. [25]. They detect salient objects in images as follows. As initial-
ization, the image border pixels are set to seed points. Using the assumption
that the object does not touch the image border, the pixels with high distance
values are those that belong to the object. They use a raster-scanning approach,
where each row is scanned, first from upper left to lower right and the from lower
right to upper left, until convergence, which is very well suited for parallel imple-
mentations. By a GPU implementation based on the raster-scanning technique,
real-time performance, 80 MBD DTs per second, is achieved.

6.1 Example Applications of Different Versions of the Minimum
Barrier Distance

In this section, different MBD DTs with different sets of seed points are illus-
trated by DTs of a single image from the MSRA database ([13]). In Fig. 2, all
border pixels of the image are set to seed points (c.f. [25]) and in Fig. 3, a single
seed point is centered in the image (as used in [7]).

In Fig. 2 and Fig. 3, some of the methods described in this paper are illus-
trated by applying them to a color image and its gray-scale version. The examples
show:

– how restrictive the conditions in Corollary 2 are in order to guarantee that
the obtained MBD DT is error-free,

– the exact MBD DT of Discretization I, ρ̂ (Sect. 5.1),
– the Dijkstra approximation of Discretization I, ρ̂ (Sect. 5.1),
– the exact MBD DT of Discretization II, ϕ̂ (Sect. 5.2),
– the color/vectorial MBD DT using the L1-diameter of the bounding box in

the RGB and Lab color spaces, see [10] for details (Sect. 6).
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a b c

d e f

g h i

j k l

Fig. 2. Different versions of Minimum Barrier Distance computed on (a) when all
border pixels are set to seed points. a: Original color image; b: Gray scale image; c: b
smoothed; d: c quantized such that the condition in Corollary 2 holds; e: exact MBD
DT, Discretization I, of b; f: Dijkstra approximation of MBD, Discretization I, of b; g:
MBD, Discretization I of d (exact MBD computed by Dijkstra approximation); h: MBD
DT, Discretization II, of b; i: Absolute pointwise difference between e and f (gray scale
between 0 (no difference) and 28 (maximum difference)) j: Absolute pointwise difference
between e and h (gray scale between 0 (no difference) and 99 (maximum difference))
k: Color MBD of a in the RGB color space. l: Color MBD of a in the Lab color space.
(Color figure online)
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a b c

d e f

g h i

j k l

Fig. 3. Different versions of Minimum Barrier Distance computed on (a) when only
the center pixel is set to seed point. a: Original color image; b: Gray scale image; c: b
smoothed; d: c quantized such that the condition in Corollary 2 holds; e: exact MBD
DT, Discretization I, of b; f: Dijkstra approximation of MBD, Discretization I, of b; g:
MBD, Discretization I of d (exact MBD computed by Dijkstra approximation); h: MBD
DT, Discretization II, of b; i: Absolute pointwise difference between e and f (gray scale
between 0 (no difference) and 38 (maximum difference)) j: Absolute pointwise difference
between e and h (gray scale between 0 (no difference) and 62 (maximum difference))
k: Color MBD of a in the RGB color space. l: Color MBD of a in the Lab color space.
(Color figure online)
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7 Discussion

The basic idea behind the MBD is very easy to explain and MBD is straight-
forward to define, also for color images. Still, the theory of MBD is surprisingly
intricate and holds many interesting and to some extent surprising results, such
as the equivalence between the two formulations ρ and ϕ. Efficient algorithms
for DT computation, together with the algorithm for exact computation, makes
MBD easy to apply in real-life applications. Even though the methods presented
and illustrated here are rather simple applications of MBD, it is a promising
tool for image processing such as segmentation and saliency detection. A more
complex method based on a minimum spanning tree representation together
with the MBD for saliency detection was recently presented in [24].

In R
n, we assume that we have continuous images f : D → R, which we in

practice do not have. However, most image acquisition methods induce smooth-
ing of the image scene by a point spread function, leading to continuous f . See
for example [12] for a discussion. A smooth f can also be found by interpolation
of a digital function (often, just an image intensity function).

Open problems include properties and efficient algorithms for DT computa-
tion of the vectorial MBD, using other feature spaces than the RGB color space,
error bound for the Dijkstra approximation method in arbitrary dimensions, and
parallel implementation of the algorithm for exact DT computation.
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