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Abstract. Digital watermarking applications have a voracious demand
for large sets of distinct 2D arrays of variable size that possess both
strong auto-correlation and weak cross-correlation. We use the discrete
Finite Radon Transform to construct “perfect” p × p arrays, for p any
prime. Here the array elements are comprised of the integers {0,±1,+2}.
Each array exhibits perfect periodic auto-correlation, having peak corre-
lation value p2, with all off-peak values being exactly zero. Each array,
by design, contains just 3(p− 1)/2 zero elements, the minimum number
possible when using this “grey” alphabet. The grey alphabet and the low
number of zero elements maximises the efficiency with which these per-
fect arrays can be embedded into discrete data. The most useful aspect
of this work is that large families of such arrays can be constructed. Here
the family size, M , is given by M = p2 − 1. Each of the M(M − 1)/2
intra-family periodic cross-correlations is guaranteed to have one of the
three lowest possible merit factors for arrays with this alphabet. The
merit factors here are given by v2/(p2 − v2), for v = 2, 3 and 4. Whilst
the strength of the auto-correlation rises with array size p as p2, the
strength of the many (order p4) cross-correlations between all M family
members falls as 1/p2.

Keywords: Perfect arrays · Low cross-correlation arrays · Discrete pro-
jection · Finite Radon Transform · Watermarking

1 Introduction

We are motivated by the many watermarking applications, like [2,7,8], for which
one needs large families of arrays that have both low off-peak auto-correlation
and cross-correlation. For example, to provide watermark tags for each frame
of a 5 min YouTube 120 fps video requires about 36,000 arrays. If all of these
tags are unique and have a low cross-correlation, it is possible to easily isolate
and verify any individual frame within a 5 min sequence. A family comprised of
39,600 perfect arrays, each of size 199×199, would suffice for such an application.
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The cross-correlation between functions f and g is given by

Cfg(s) = f ⊗ g =
∑

f(s) · g(s − r) (1)

where r, a shift variable, is taken over all coordinates of g, and s covers the
domain of f . Auto-correlation corresponds to the case where f = g. Perfect
arrays have periodic auto-correlation with constant off-peak values. For a p × p
array, the peak is p2 with zero elsewhere (or p2 − 1 peak and −1 elsewhere), and
cross-correlation between all family members have only ±p values.

Previous work [11] used the Finite Radon Transform (FRT) to construct p×p
pseudo-noise arrays in families of size M = p (where p is a 4N − 1 prime) that
had optimal periodic auto-correlation and cross-correlation, that meet the Welch
correlation bounds [12]. These families of (Legendre) arrays have an alphabet of
a single zero element with the remainder being equal numbers of ±1 elements.
“Grey” versions of these array families were also constructed that have integer
alphabets (with integer values ranging between ±√

p). Recovery of a “grey”
array, A, embedded in “grey” data, B, can be advantageous, as A ⊗ (A + B) ≈
2A ⊗ A if we choose to embed A in those parts of B where A ≈ B.

Subsequent work [10] extended the size of these array families (M) to multi-
ples of p, typically M ≈ 3p. This was done by blending the original array family
with distinct arrays either derived from the original array auto-correlations, or
with new arrays, also built using the FRT, but with their families generated using
different (but equivalent) Hadamard matrices. The only concession made when
extending the family size beyond p is that the strength of each cross-correlation
now lies in a range of statistically predictable values, at or just above the lowest
possible levels.

Further extension of the size of a family of arrays well beyond p is difficult
as it is hard to constrain the range of cross-correlation values. The rapidity of
this rise is, in part, due to the depth of the array alphabet. A binary array
(or any array with mostly ±1 values) has only so many combinations that can
simultaneously sustain high auto- and low cross-correlation. The “grey” versions
of the p × p Legendre arrays constructed in [11] can support a much larger and
more diverse range of well-correlated structures. The combinatorial diversity of
grey perfect arrays also makes them significantly more secure and resistant to
hacking.

However, the balance theorem ensures that the sum of the array values dic-
tates the sum over all correlation values [3]. This ensures that alphabets spanning
a wide range of greys also require a rapid increase in the number of zero ele-
ments in those perfect arrays (see Sect. 5). The number of zero elements in a
perfect-correlation array increases with the square of the values of the non-zero
elements. Arrays containing a large number of zero elements have reduced oper-
ational efficiency, as the zero terms “change nothing” when embedded into any
local data.

For these reasons, we have investigated construction of perfect p × p arrays
with a restricted grey alphabet of just {0,±1,+2}. We introduce a minimal
number, (p − 1)/2, of elements having value +2, thus requiring 3(p − 1)/2 zero
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terms in each array. The balance of these array values (always a clear majority)
are either ±1. The presence of a relatively few extra zeroes reduces the efficiency
of these arrays, by O(1/p), but this becomes less significant for large p. Very large
numbers of such arrays can be made, where each array contains a fixed proportion
of each grey element. We can then select large families of arrays, where the intra-
family array cross-correlations are restricted to the lowest possible levels.

Section 2 reviews the important link between the correlations of arrays and
the correlations between projection of those arrays. This link permits the con-
struction of 2D perfect arrays from 1D perfect projections. Section 3 reviews
the Finite Radon Transform, a discrete projection scheme whose inverse back-
projection permits exact reconstruction of any p × p set from p + 1 discrete pro-
jections, for p prime. Section 4 reviews the use of affine transforms as a means to
produce many distinct variants of a perfect array that retain the original array
and correlation properties. Section 5 introduces a method to construct perfect
arrays with a fixed “grey” alphabet and tightly bounded cross-correlation values.
It then shows how to assemble a large family of such arrays. Section 6 presents
some results for example array families. Ways to improve this technique and
future work are highlighted in Sect. 7.

2 Projection Preserves Moments and Correlations

The central slice theorem [1] states that projected views of a distribution pre-
serve the Fourier transform of the distribution. This is the main result underlying
image reconstruction methods for computed tomography. As a corollary of the
central slice theorem, moments and correlations of a distribution are also pre-
served under projection. This means, for example, that the auto-correlation of
the projected view of some object is equal to the same projected view of the full
object auto-correlation [4,6]. The projections of any distribution inherit that
distribution’s correlation properties.

We use this result in reverse to construct arrays with any desired correlation
properties. For example, we assemble a set of 1D projections, each having perfect
auto-correlation. We then reconstruct from that set a 2D object that inherits
their perfect auto-correlation [10,11].

The cross-correlation Cfg between function f and g is defined in Eq. (1).
Correlations are termed periodic where the sum of the products of overlapped
functions is taken over cyclic boundary conditions and termed aperiodic when
zeroes extend the function boundaries. Auto-correlation is the case where f = g.
The correlation results as presented here are for periodic arrays. In practice,
the aperiodic correlation results are more relevant. However, there the boundary
conditions are usually not zero, but depend on the values of the data in which
the arrays are embedded.

3 Using 1D FRT Projections to Build 2D Arrays

We exploit the correlation-preserving property of projections as given in Sect. 2.
The discrete Finite Radon Transform [5] is used to provide a unique and exact
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reconstruction of any 2D p × p object from its p + 1 1D projected views. Here
p must be prime to ensure the (cyclically wrapped) projections are uncoupled,
as each projection fully tiles a p × p array, exactly once, at all positions, in a
distinct pattern.

Projection R(t,m) of an image I(x, y) starts from translate t, 0 ≤ t < p.
Usually t is defined as one of the pixels along the top row of a p× p image. Each
1D projection is comprised of p parallel rays, where each ray sums p pixel values
in I(x, y) that are located at p steps beginning from t, each step being m pixels
across and one pixel down, wrapping periodically around the ray as required,
where 0 ≤ m ≤ p. Projections 0 and p are column and row sums of I(x, y),
respectively.

R(t,m) =
∑

I(〈t + my〉p, y) (2)

where 〈j〉p means j modulus p. Back-projecting each of the p+1 1D projections
across a zeroed p × p array at the complemented angles (m′ = p − m) and
normalising the result recovers, exactly, the 2D data that was projected.

4 Affine Transforms Preserve Correlations

Just as discrete projection preserves correlation, so too does affine transforma-
tion. For example, a 2D affine transformation (reversibly) maps each pixel (x, y)
of a prime p×p 2D image to a new location (x′, y′). Under matrix multiplication
in homogeneous coordinates (modulus p):

⎡

⎣
x′

y′

1

⎤

⎦ =

⎡

⎣
a b e
c d f
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

where the values, 0 ≤ a, b, c, d, e, f < p, are arbitrary integer transform coeffi-
cients, provided only that the upper matrix [a b; c d] has non-zero determinant
(modulus p).

The coefficients e and f serve as a discrete translation vector; hence we always
set these to 0, as simple translations of an array exhibit the same (periodic)
correlations. When [a b; c d] = [j −i; i j], the affine transform rotates the array
by the discrete angle i:j, when [a b; c d] = [j i; i j], the affine transform skews
the array by vector i:j.

With 4 arbitrary affine transform coefficients, a single 13 × 13 perfect array
A thus has 124 distinct affine variations, each of which has perfect correlation,
since the original A is perfect. The very many cross-correlations between these
arrays will vary from being optimally low through to many cases where the trans-
formed array is a cyclic shift of A (equivalent under periodic correlations). For
watermarking applications, sign changed, reflected or transposed arrays should
be avoided.

For p×p arrays, we know in advance the exact set of angles i:j that correspond
to the complete set of p + 1 discrete projections of the FRT for a p × p array [9].
If we avoid the simple axial rotations 1:0 (90◦) and 0:1 (0◦), we can, without
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redundancy, rotate each original array A by affine coefficients i:j to obtain up to
p − 3 distinct copies A′ of each A, whilst preserving the original correlation
properties. Affine skews for angles ±1:1 are skipped, because they yield a zero
determinant. Similarly, for all p = 4n + 1 primes, there is one set of degenerate
rotations ±i:j (and ±j:i) that are skipped, for the case i2 + j2 = p2, which also
has zero determinant [9].

5 Construction of a Family of Perfect Arrays with
Alphabet {0,±1,+2}

In this section, we detail the construction of families of perfect p×p arrays using
the alphabet {−1, 0,+1,+2}. The FRT is employed to construct perfect arrays
using distinct cyclic shifts. Affine rotations can then be used to extend the size
of the array family.

5.1 Array Construction

Discrete 1D “delta” functions (or unit impulses) of length p, for example [1 0
0 0 0 0 0], can be used to create the p + 1 FRT projections (as done in [11]).
A delta function has a perfect 1D auto-correlation, hence so too will any 2D
array reconstructed from these 1D delta projections by applying the FRT inverse
transform.

We want to minimise the number of zeroes in the 2D array reconstructed
from these projections. This requires that the 1D rays back-projected from each
view angle (m1) must intersect with the rays from other angles (m2) at as many
distinct array positions as possible. This condition can be achieved by judicious
adjustment of the (circular) phase shift of each delta function, for example from
[1 0 0 0 0 0 0] to something like [0 0 0 1 0 0 0].

In the FRT, each ray (m, t) is back-projected [5] as the line that passes
through the image points (x, y), where

x = −my + t. (3)

We want to ensure that the delta impulse from projection m1 intersects with
the delta impulse from projection m2 at a distinct point (x12, y12) for each pair
m1, m2. We assign

t = 1/m (4)

for 1 ≤ m ≤ p − 1, and substitute into (3) so the rays for projections m1 and
m2 have

x12 = −m1y12 +
1

m1
= −m2y12 +

1
m2

y12(m2 − m1) =
1

m2
− 1

m1
=

−(m2 − m1)
m1m2
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which intersects at (x12, y12) =
(

1
m1

+ 1
m2

, −1
m1m2

)
. Alternatively, we can assign

t = m2 (5)

for 1 ≤ m ≤ p − 1, and substitute into (3) so the rays m1 and m2 have

x12 = −m1y12 + m2
1 = −m2y12 + m2

2

y12(m2 − m1) = m2
2 − m2

1 = (m2 − m1)(m2 + m1)
y = m1 + m2 and x = −m1m2

which intersects at (x12, y12) = (−m1m2,m1 + m2).
Assigning projection m to have cyclic shift t = 1/m or t = m2 imposes a

strong symmetry on the FRT matrix, as each projection m has a negative coun-
terpart m′ = p − m = −m, and then m2 = m′

2, and 1/m = −1/m′. The “near-
orthogonality” of these shift assignments is evident in the “pseudo-Hadamard”
constructed from the p × p matrix product of the shifted delta functions of the
FRT, B, with the shifted impulses of its transpose, shown as B∗BT , in Fig. 1 (a)
for t = 1/m and (b) for t = m2. We use the term near-orthogonal to reference
the fact that there are few non-zero elements that lie off the diagonal of B ∗BT .

Fig. 1. FRT projection matrices for a 2D array built from 1D phase shifted delta
functions, for p = 7, (a) t = 1/m, (b) t = m2. The pseudo-orthogonality of these phase
shifts is shown on the right via the matrix product of their 2D FRT arrays
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Typical arrays reconstructed from FRT’s that are built using delta functions
where the phase-shift t for projection m are given by t = 1/m are shown in
Fig. 2a and for t = m2 in Fig. 2b. Note that these perfect p × p arrays all have
sum = p. All arrays made this way will have the same histograms: for the 49
elements in each 7 × 7 array, 18 elements have value −1, 9 are zero, 19 are +1
and 3 are +2 elements, giving sum = 7.

We extend the size of the array families by computing FRT matrices with
shifts, t, that are linear multiples of (4, 5), modulus p, which then undergo many
affine rotations and skews. Combining these operations can produce some dupli-
cated arrays. Although every distinct FRT set corresponds to a unique array,
some scaled mapping of the FRT variables m and t can be degenerate. For exam-
ple, the FRT of the transpose of a p × p array, BT (m, t), can be obtained from
shuffling the FRT of the original array, B(m, t), by m′ = 1/m and t′ = −t/m (as
the transpose maps projection angle x:y to y:x). The shifts of Eq. (4) are thus
very close to a transpose operation. Similar structural overlaps in reconstructed
arrays can result from axial rotations or symmetric reflections.

Fig. 2. 7× 7 arrays reconstructed from (a) FRT Ba from Fig. 1 (a). (b) Bb from Fig. 1
(b). (c) The auto-correlation for arrays (a) and (b) is perfect. (d) The cross-correlation
between (a) and (b) has type L2. This example shows the strongest cross we accept.

We assign frequencies k, l, m and n to the occurrence of grey elements −1,
0, +1 and +2 respectively in any p × p array. The FRT translates, t, arrange
the (p − 1) projections to have distinct intersections as pairs, yielding (p − 1)/2
elements with value +2 in the final array, thus fixing n = (p − 1)/2. The sum
over all p2 elements of a p × p array is then

− 1 · k + 0 · l + 1 · m + 2 · (p − 1)/2 = p. (6)
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The sum of the array auto-correlation values, by the balance theorem [3],
means

(−1)2 · k + (0)2 · l + (+1)2 · m + (+2)2 · (p − 1)/2 = p2. (7)

From (6), m−k = 1 and from (7), m+k = p2−2p+2, giving m = (p−1)2/2,
k = m + 1 and l = 3(p − 1)/2. Any p × p array (with p prime) made using the
FRT with these values of t will have a fixed histogram for its element values, −1
through +2, as [(p − 1)2/2, 3(p − 1)/2, (p − 1)2/2 + 1, (p − 1)/2].

The fixed histogram of element values permits quantification of the merit
factors for the periodic cross-correlation of these arrays. The merit factor (MF)
is defined as the square of the peak correlation value divided by the sum of all
p2 −1 off-peak values. Perfect arrays are, by definition, spectrally flat. All cross-
correlations between pairs of spectrally flat arrays are also spectrally flat by the
convolution theorem, and hence those cross-correlations are also perfect arrays
themselves.

The lowest possible maximum value of any cross-correlation is ±1 · 2 = ±2
(it cannot be ±1, as one of the 2’s will line up at least once with the majority
of ±1 terms). The sum of all array terms squared is always p2, hence L0, the
lowest possible MF value, is given by L0 = 22/(p2 − 22) = 4/(p2 − 4).

The next level possible cross level, L1, corresponds to a maximum cross-
correlation sum of 3, giving L1 = 32/(p2 − 32). The next possible level has
cross-correlation value = 4, thus L2 = 16/(p2 − 16). The next level L3 = (p −
1)2/(2p − 1), corresponds to arrays where all the ones line up, and finally L4 =
p2/0 = ∞, when the two arrays are identical (and the cross becomes a perfect
auto-correlation).

Here L0, L1, L2, L3 and L4 are the only possible periodic cross-correlation
values between these arrays when built using symmetric 1D projections, for any
array size p. For p = 7, L3 corresponds to a peak cross value of p− 1 = 6. A cor-
relation peak value of 5 is not possible for a cross between these arrays. However
we can construct different arrays (that require an asymmetric set of cyclic shifts
for different projections m in the FRT) to give an alphabet {0,±1, 2, 5}. This
array, for p = 7, contains 27 zeroes, compared to just 9 zeroes for the arrays with
alphabet {0,±1, 2}. These “asymmetrically made” grey arrays also, of course,
still retain perfect auto-correlations.

Note the merit factors L0, L1 and L2 are all < 1 for any prime p > 5, while L3

denotes a strong cross-correlation with MF of order p/2 and L4 means the two
arrays are a perfect match. When selecting arrays to build an extended family,
we restrict the choice of arrays to be only those that yield cross-correlations of
L0, L1 or L2, preferably choosing the sets of arrays that have a larger fraction
of crosses being either L0 or L1.

5.2 Building Array Families

To construct a family of arrays, a set A1 of p − 1 seed arrays is made using the
FRT with delta functions as 1D projections. Each array is made using (4) and
a distinct cyclic shift t = α/m, for 1 ≤ α ≤ p − 1. A second set A2 of p − 1 seed
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arrays is made using (5) and cyclic shifts t = αm2, again for 1 ≤ α ≤ p − 1. The
translates chosen for the remaining FRT projections, for m = 0 and p in set A1,
can be fixed independently of the assigned shifts necessary for the (p−1) paired
intersecting rays. If the m = 0 and p rays are all set to t = 0, the arrays A2 are
the transpose of the arrays in A1, listed in reverse order. A free choice is possible
in the assignments of parameter t for the perpendicular rays m = 0 and m = p
when constructing the arrays for set A1. This permits several distinct perfect A1

families to be constructed whilst using the same pairing rules that fix the array
histogram.

The sets A1 and A2 are pooled to form AP . The seed family AP is then
affine rotated by a selection of the FRT projection angles i:j for that prime p to
produce array family AR. The seed family AP is skewed by selected valid skew
vectors to form array family AS . The two families AR and AS are then pooled
to form a (large) family AT . Any duplicate copies of arrays formed by matched
affine transformations are removed. Each array in AT has perfect periodic auto-
correlation. All intra-family correlations for AT are checked and those pairings
that produce correlation values L3 and L4 are discarded from AT to produce
the final optimal family A.

This method of pooling rotated and skewed arrays ensures all valid possible
variants of A1 and A2 are produced. The final thinned set A then is always
comprised of p2 − 1 arrays. There are also many different ways to thin and
discard pairs of arrays from AT to select the final family A. We select arrays
with the most favourable distribution of cross-correlation values L0, L1 and L2

that best suit a given application.

6 Results

Table 1 presents example results for families of p × p arrays where p = 7, 23
and 43 with family sizes 48, 528 and 1848, respectively. In each case, all auto-
correlations within each family are perfect, having peak values of 49, 529 and
1849 respectively. The merit factor (MF) for any intra-family periodic cross-
correlations is either L0, L1 or L2, having the values as listed. The relative
frequencies of the L0, L1 or L2 occurrences are given to highlight the distribution
of cross-correlation values between all family members.

The family of arrays for p = 23 is generated as follows: each of the initial
seed sets A1 and A2 contains p − 1 = 22 perfect arrays. Each of these 23 × 23
arrays contains 529 elements; 242 elements being −1, 33 zeroes, 243 +1 elements
and 11 +2 values. Their periodic auto-correlation peak = 529, with all off-peak
entries = 0. Each of the 231 cross-correlations between the 22 arrays in A1 (and
also between all A2 members) has the minimal MF L0 = 0.00762.

Set AP = (A1 + A2) has 44 distinct arrays. Affine rotation of the set AP ,
by 11 FRT angles, produces 484 more perfect arrays, 396 of which are distinct
(duplicate free). When AP is skewed by 10 FRT angles, another 440 perfect
arrays are produced, of which 308 are duplicate-free. The resulting 396 + 308 +
44 = 748, 23×23 arrays are pooled as set AT . AT is checked for cross-correlations,
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Table 1. Cross-correlation values and their relative frequencies for two sets.

48 7 × 7 perfect arrays

MF L0 = 0.08889 L1 = 0.22500 L2 = 0.48485

Set 1 0.44681 0.44681 0.10638

Set 2 0.36171 0.57447 0.06383

528 23 × 23 perfect arrays

MF L0 = 0.00762 L1 = 0.01731 L2 = 0.03119

Set 1 0.03985 0.84788 0.11227

Set 2 0.03985 0.83428 0.12582

1848 43 × 43 perfect arrays

MF L0 = 0.00227 L1 = 0.00489 L2 = 0.00873

Set 1 0.02220 0.83881 0.15216

Set 2 0.02220 0.83452 0.14328

from which 220 arrays, whose crosses give an MF > 1, are discarded, leaving the
final family A of 748 − 220 = 528 perfect arrays. Two different families of 528
arrays were selected from AT , each has a slightly different distribution of cross-
correlations over the same low cross-correlation merit factors.

Table 1 shows that the MF for the bulk of the intra-family cross-correlation
values are mainly of type L1, but that selecting arrays in different ways can,
at least marginally, alter the proportion of L0, L1 and L2 results. However, the
p = 7 case shows that it is possible to select different families of arrays from AT

that favour the production of more L0 crosses and that minimise the number of
L2 crosses.

7 Conclusions and Further Work

The families of p × p arrays constructed here have perfect auto-correlation
with guaranteed low cross-correlation values between all family members. These
arrays have a restricted grey alphabet (elements of {0,±1,+2}) with a small
number, 3(p−1)/2, of zero elements. This makes them highly efficient and secure
when embedded as watermarks. The fixed frequency of array element values per-
mits selection of p2 − 1 family members that have cross-correlation values with
just three of the lowest possible merit factors, MF = v2/(p2 − v2), for v = 2, 3
and 4.

The size of AT needs to be kept small to avoid excessive computation to do
the cross-correlation checks required to remove arrays that have MF > 1. If AT

has size M , M(M − 1)/2 crosses of size p × p need to be checked. However,
pooling AT to be too small may also restrict the range of distinct or partially
overlapped solution sets A that can be selected from AT . It may be possible to
define a set of affine rotations and skews to directly produce a final set A without
computing the larger intermediate set AT .
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At present, we select the final A arrays by deleting of one of each pair of
arrays in AT that has MF > 1. The order of these deletions can be done in
several different ways. This selection and deletion process could be organised
more strategically.

The FRT can be adapted to reconstruct higher dimensional arrays from 1D
projections. The technique developed here can then be extended to produce
families of nD arrays.

We have yet to examine perfect arrays over other, larger alphabets, even
in 2D, to see if the merit factors of their cross-correlations can also be fixed
algebraically.
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