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Abstract. This papers introduces a definition of digital primitives based
on focal points and weighted distances (with positive weights). The pro-
posed definition is applicable to general dimensions and covers in its
gamut various regular curves and surfaces like circles, ellipses, digital
spheres and hyperspheres, ellipsoids and k-ellipsoids, Cartesian k-ovals,
etc. Several interesting properties are presented for this class of digital
primitives such as space partitioning, topological separation, and connec-
tivity properties. To demonstrate further the potential of this new way
of defining digital primitives, we propose, as extension, another class of
digital conics defined by focus-directrix combination.

Keywords: Digital primitive · Focus · Hypersphere · Ellipse ·
Ellipsoid · k-ellipse · Cartesian oval · Conic

1 Introduction

In this paper we introduce digital primitives defined by a weighted focal set.
Continuous geometric objects defined by foci have been well studied but nothing,
to our knowledge, has been proposed so far in digital geometry.

The word focus is the Latin word for fireplace. This comes from classical
experiment which consists in converging the sunlight, in the focal point of a
lens, on a piece of paper to ignite it. Focal points play a fundamental role in
the geometry of lenses and study of lenses played an important role in the early
development of mathematical physics. The historic importance of the research
in optics can even be traced in our common language with expressions such as
“staying focused”.

Classically a foci based continuous geometric object is defined as all the
points such that the sum of the distances to the foci is a constant. The distances
may have different weights in an even more general definition [9]. In this paper
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we introduce foci defined digital geometric primitives. The definition we propose
covers digital objects with multiple foci, in arbitrary dimension. Our definition
includes weighted distances with positive weights. Contrary to the continuous
definition, in the definition that we propose, the weighted sum of the distances
to the foci is not a constant but lies in an interval. This definition generalizes the
Andres digital hyperspheres [1,2] that has only one focal point. We show that
with a well defined interval, we can prove some important topological properties
for our digital objects such as (n − 1)-separation and (n − 2)-connectivity prop-
erties. With an appropriate sequence of such intervals, it is easy to see that we
can provide a space partition by such foci based digital primitives.

In a second part of the paper, we propose two extensions. Firstly, we pro-
pose an immediate extension of the definition that allows to define m-separating
digital foci based primitives. As a second extension, we propose a new type of
digital conics whose definition is based on a focal point and a directrix. Again,
it is possible to show that we have topological separation properties. This illus-
trates that the exploration on the possibilities provided by this new approach
offers many opportunities for further research.

After this introduction and basic notions and notations, we introduce in
Sect. 2.1, our definition of foci based digital objects and propose several funda-
mental properties of such objects. In Sect. 3, we propose two types of extensions:
foci and directrix defined digital objects with properties, and boundary foci
based digital objects with properties. We conclude and discuss perspectives in
Sect. 4.

Basic Notions and Notations

Let {e1, . . . , en} denote the canonical basis of the n-dimensional Euclidean vector
space. Let Z

n be the subset of R
n that consists of all the integer points. A digital

(resp. Euclidean) point is an element of Z
n (resp. R

n). We denote by xi the i-th
coordinate of a point or a vector x, that is its coordinate associated to ei. We
denote by ci the i-th element of a list or sequence C. A digital (resp. Euclidean)
object is a set of digital (resp. Euclidean) points. When not otherwise stated,
the distance we are considering in this paper is the Euclidean distance d(·) with
d(p, q) =

√∑n
i=1(pi − qi)2 for p, q ∈ R

n.
For all k ∈ {0, . . . , n−1}, two integer points p and q are said to be k-adjacent

or k-neighbors, if for all i ∈ {1, . . . , n}, |pi−qi| ≤ 1 and
∑n

j=1 |pj − qj | ≤ n−k. In
the 2-dimensional plane, the 0- and 1-neighborhood notations correspond respec-
tively to the classical 8- and 4-neighborhood notations. In the 3-dimensional
space, the 0-, 1- and 2-neighborhood notations correspond respectively to the
classical 26-, 18- and 6-neighborhood notations [8].

A k-path is a sequence of integer points such that every two consecutive points
in the sequence are k-adjacent. A digital object C is k-connected if there exists a
k-path in C between any two points of C. Let us suppose that the complement of
a digital object E, Z

n\E admits a set of k-connected components C, or in other
words that there exists no k-path joining integer points of any two connected
components of the set C then E is said to be k-separating, or k-tunnel free, in Z

n.
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If there is no path from any two connected components of the set C then E is
said to be 0-separating or simply separating.

2 Foci Based Digital Primitives

2.1 Definition

The classical continuous primitives that are defined by a set of focal points can
be summarized by the following definition.

Definition 1. A foci based continuous nD primitive is defined as all the con-
tinuous points: {

x ∈ R
n :

k∑

i=1

αid (x, fi) = r

}

where f is the list of foci f = (f1, . . . , fk) with fi ∈ R
n, αi ∈ R

∗+ the weight of
the distance to focus fi, and r ∈ R the generalized radius.

This definition covers hyperspheres (with one only focus traditionally called
the center of the hypersphere), ellipsoids and k-ellipsoids (with respectively two
and k foci, and all weights equal to unity), Cartesian ovals and k-Cartesian ovals
(with respectively two and k focal points and arbitrary non-zero weights).

We are now going to introduce a digital version of this definition with
some restrictions. Firstly, let us note that a digital primitive is generally not
defined mathematically by an implicit equation {p ∈ Z

n : g(p) = 0} because
there is usually no particular reason for an integer point to lie on the con-
tinuous curve g(x) = 0. Instead, J.-P. Reveillés [3,7] proposed to define a
digital line as the digital points in a band defined by a thickness interval{
p ∈ Z

2 : 0 ≤ ap1 + bp2 + c < ω
}
. This captures the general idea that digital

primitives are based on grid points where neighborhoods are defined by points
that are at a certain, non-zero, distance from each other. To define topologically
sound objects, this distance between neighboring points has to be part of the
digital definition. This idea of defining primitives as points with an interval has
been extended by E. Andres to circles and hyperspheres [1,2] with definitions
based on annulus in 2D, concentric hyperspheres in nD. We now propose a new
extension for foci based primitives.

Definition 2. A foci based digital nD primitive Fn
k (f, α, r) is defined as all the

integer points verifying

Fn
k (f, α, r) =

{
p ∈ Z

n :

(
k∑

i=1

αi

)(
r − 1

2

)
≤

k∑
i=1

αid (p, fi) <

(
k∑

i=1

αi

)(
r +

1

2

)}

where, f is the list of foci f = (f1, . . . , fk) with fi ∈ R
n, αi ∈ R

∗+ the weight
of the distance to focus fi, and r ∈ R the generalized radius.
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Let us note that Definition 2 is slightly less general than Definition 1, since
we are considering only strictly positive weights for the digital primitives. This
restriction comes from the fact that we are seeking digital primitives with some
specific topological properties (see Sect. 2.2) that do not stand with this def-
inition if some weights are taken negative. Let us note that if the general
radius is too small then the digital object might be empty. For instance, if
∑k

i=1

(
r + 1

2

)
< mink

i=1

(∑k
j=1 d (fi, fj)

)
, then the digital primitive will be

empty.
The Andres digital hypersphere [1,2] of center c and radius r has been defined

as the set H(c, r):

H(c, r) =

{

p ∈ Z
n :

(
r − 1

2

)2

≤
n∑

i=1

(pi − ci)
2

<

(
r +

1
2

)2
}

It is easy to see that H(c, r) = Fn
1 ((c) , (1), r) (see Fig. 1). A Andres digital

hypersphere is a foci based digital primitive with one focal point, classically
called the center of the hypersphere.

Fig. 1. Andres circle F2
1 (((0.1, 0.2)) , (1), 3.5) and Andres sphere F3

1 (((0.1, 0.2, 0.3)),
(1), 3.5)

Definition 2 defines a new type of 2D digital ellipse, the foci based digital
ellipse F2

2 ((f1, f2), (1, 1), r) with two focal points and equal weights of 1 (or
any strictly positive equal weights) and a new type of foci based digital ellipsoid
En
2 ((f1, f2), (1, 1), r) (see Fig. 2). Contrary to some classical or more recent digital

ellipse definitions [4–6], the digital ellipses are not limited to axis aligned ellipses.
Another major property of this definition is that it is dimension independent.

With Definition 2, we propose the first definition of a digital k-ellipse and
k-ellipsoid: Fn

k ((f1, . . . , fk) , (1, . . . , 1), r) (see Fig. 3). And lastly, it allows to
define foci based digital Cartesian ovals with weighted distances F2

k (F, α, r)
(See Fig. 4). As we can see, this simple definition allows to define a wide range
of new types of digital objects.
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Fig. 2. Foci based digital ellipse F2
2 (((0.1, 0.2), (5.1, 3.1)) , (1, 1), 4.5) and ellipsoid

F3
2 (((0.1, 0.2, 0.3), (5.1, 3.1, 1.1)) , (1, 1), 4.5)

Fig. 3. 3-ellipse F2
3 (((0.1, 0.3), (2.1, 2.3), (−2.1, 4.3)) , (1, 1, 1), 3.5) and 3-ellipsoid

F3
3 (((0.1, 0.3, 0.5), (2.1, 2.3, −2.5), (−2.1, 4.3, −5.5)) , (1, 1, 1), 5.5)

Fig. 4. Cartesian oval F2
3 (((0.1, 0.3), (2.1, 2.3), (−2.1, 4.3)) , (2, 0.5, 0.5), 3.5) and

F3
3 (((0.1, 0.3, 0.5), (2.1, 2.3, −2.5), (−2.1, 4.3, −5.5)) , (2, 0.5, 0.5), 5.5)



Digital Primitives Defined by Weighted Focal Set 393

2.2 Properties

Let us have a look now at the properties of such digital objects. As we will
see in what follows, the foci based digital primitives have interesting structural
properties:

Theorem 1. A foci based digital nD primitive Fn
k (f, α, r) is (n − 1)-separating

in Z
n.

Let us, for the sake of simplicity of language, call the Euclidean region(s)
defined by

∑k
i=1 αid (x, fi) <

(∑k
i=1 αi

) (
r − 1

2

)
the interior of the digital object

and the region(s) defined by
∑k

i=1 αid (x, fi) ≥
(∑k

i=1 αi

) (
r + 1

2

)
the outside.

Let us note that nothing in Definition 2 requires the inside or outside regions
to be composed of a singular connected component. A good example is given by
hyperbolic type curves that divide space into three regions and not two.

Proof. Let us consider two digital points a and b and E = Fn
k (f, α, r) a foci based

digital nD object such that a is inside E and b outside E:
∑k

i=1 αid (a, fi) <(∑k
i=1 αi

) (
r − 1

2

)
and

∑k
i=1 αid (b, fi) ≥

(∑k
i=1 αi

) (
r + 1

2

)
.

Here we suppose that the inside of E contains at least one digital point.
Since

∑k
i=1 αid (a, fi) <

(∑k
i=1 αi

) (
r − 1

2

)
, we have −∑k

i=1 αid (a, fi) ≥
−

(∑k
i=1 αi

) (
r − 1

2

)
+ ε with ε a strictly positive real value.

This means that
∑k

i=1 αi (d (b, fi) − d (a, fi)) >
(∑k

i=1 αi

)
.

Since d is a distance, it verifies the triangular inequality d (fi, a) + d(a, b) ≥
d (fi, b). With αi > 0, this means that αid(a, b) ≥ αi (d (fi, b) − d (fi, a)).

Therefore
(∑k

i=1 αi

)
d(a, b) ≥ ∑k

i=1 (αi (d (fi, b) − d (fi, a))) >
(∑k

i=1 αi

)
,

and thus d(a, b) > 1. Now, it is easy to see that if there exist a (n − 1) path
linking a to b without intersecting the object then there has to be a point on
the path inside that is (n−1)-neighbor to a point outside. The distance between
two such points is at least 1 which proves that E is (n − 1)-separating in Z

n. ��
Let us note some important points here. Nowhere in this proof (or more

generally in the definition) appears the type of distance. So far in the images we
have considered the Euclidean distance but that any distance. It is the triangular
inequality property of the distance that is used in the proof.

The next proposition concerns partitioning properties similar to those already
seen for the Andres circles and hyperspheres [1,2]. For the sake of simplicity,
we are going to consider, in what follows, foci based digital primitives with
consecutive integer general radii. In all generality, it can be any set of consecutive
sequence of radii as long as the difference between two consecutive radii is one.

Proposition 1. A set of foci based digital nD objects with consecutive general
radii is partitioning space:
For r1, r2 ∈ Z, r1 �= r2, we have Fn

k (f, α, r1) ∩ Fn
k (f, α, r2) = ∅,

and for r ∈ N, 	∞
r=−∞Fn

k (f, α, r) = Z
n.
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Proof. The property is a direct consequence from the definition: the intervals[
r1 − 1

2 , r1 + 1
2 [ and

[
r2 − 1

2 , r2 + 1
2 [ are disjoint for r1, r2 ∈ Z, r1 �= r2. And

the intervals of consecutive integer general radii r partition the natural number
set 	∞

r=−∞
[
r − 1

2 , r + 1
2 [ = Z. ��

This property is a direct extension of the space partitioning property already
seen for the Andres hyperspheres [2]. It is interesting here to note that this prop-
erty comes directly in contradiction with another property that is often sought
which is minimal thickness. It is easy to see that it is not possible to parti-
tion space with, for example digital ellipses, without having local non-uniform
thickness. Even for the most regular of all those type of figure, circles, this is
not possible. Another point to be made about the local thickness of this digital
curves and surfaces comes from the proof of Theorem 1. In the proof, the radius
disappears when we consider the distance between a point inside and outside the
digital object. What that means is that the proposed bounds

(∑k
i=1 αi

) (
r ± 1

2

)

are the bounds that ensure that all the curves and surfaces that partition space
(independently of r) are (n−1)-separating. From a general perspective, this can
be understood quite easily. For a very large generalized radius r, all the focus
points become basically one focus point and the shape of the focus based prim-
itives becomes a hypersphere. It is not very difficult to see that the minimal
thickness to ensure the (n − 1)-separation property is r + 1

2 − (r − 1
2 ) = 1 (one

can always divide the formula of Definition 2 by
∑k

i=1 αi).

Fig. 5. Partitioning ellipses and partitioning ellipsoids.

Figure 5 illustrates the partitioning property of foci based digital primitives.
Note that in the 2D case presented in the figure with focal points (0.1, 0.3) and
(5.1, 3.3), the ellipses of radii 0, 1 and 2 are of course empty since the distance
between both foci is around 5.83 and with two foci and weights of 1, the definition
is given by 2r − 1 ≤ d(p, f1) + d(p, f2) < 2r + 1.

3 Extensions

Let us know look at some extensions of proposed Definition 2 of digital foci based
primitives. The first extension is an immediate extension of the definition to more
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general thicknesses which allows more general separation properties. The second
extension corresponds to the classical approach where a digital conic is defined
by a focal point and a directrix.

3.1 m-Separating Digital Foci Based Primitives

At first, let us expand Definition 2 to include foci based nD primitives that are
m-separating, for 0 ≤ m < n − 1 rather than only (n − 1).-separating (Fig. 6).

Fig. 6. Foci based digital 0-separating ellipse F2,0
2 (((0.1, 0.2), (5.1, 3.1)) , (1, 1), 4.5)

Definition 3. The m-separating foci based digital nD primitive is defined by:
Fn,m

k (f, α, r) ={
p ∈ Z

n :

(
k∑

i=1

|αi|
)(

r −
√

n − m

2

)
≤

k∑
i=1

αid (p, fi) <

(
k∑

i=1

|αi|
)(

r +

√
n − m

2

)}

Proposition 2. The digital primitive Fn,m
k (f, α, r) is m-separating in Z

n.

Proof. The proof for the separation property is similar to the one of Proposition
1 with simply a different constant. It results in d(a, b) >

√
n − m which proves

that the digital object is m-separating. ��

3.2 Primitives with One Focal Point and a Directrix

There are many different ways of defining 2D conics. One way is to define a
conic with a focal point, a directrix (a straight line) and a constant e called the
eccentricity. We are going to propose now a digital definition of conics based on
such parameters:

Definition 4. A digital conic C(f, L, e) in 2D is given by

C(f, L, e) =
{

p ∈ Z
2 : −e + 1

2
≤ d(p, f) − e · d(p, L) <

e + 1
2

}
(1)

where f ∈ R
2, L ⊂ R

2, e > 0 denote the respective focal point, directrix, and
eccentricity of the corresponding real conic.
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Fig. 7. Conics C((−2, 2), L, e), for directrix L passing through (−5, −5) and (5, 2) and
eccentricity e = 0.5, 0.7, 1.0, 2.0 from left to right.

Theorem 2. A digital conic C(f, L, e) given by Eq. 1 is 1-separating in Z
2.

A

B
F

L

Proof. Let a and b be two integer points, the former lying
in the interior and the latter in the exterior of C(f, L, e), as
shown in the inset figure. Then,

d(a, f) − e · d(a, L) < −e + 1
2

=⇒ −d(a, f) + e · d(a, L) >
e + 1

2
(2)

and d(b, f) − e · d(b, L) ≥ e + 1
2

. (3)

Adding Eqs. 2 and 3, we get

d(b, f) − d(a, f) + e(d(a, L) − d(b, L)) > e + 1. (4)

We have two possible cases:

(i) d(b, f) − d(a, f) > 1. by triangle inequality, d(a, b) > 1.
(ii) d(b, f)−d(a, f) ≤ 1. By Eq. 4, e(d(a, L)−d(b, L)) > e, or, d(a, L)−d(b, L) >

1, which implies by Pythagorean theorem, d(a, b) > 1.

As d(a, b) > 1 for either case, C(f, L, e) is 1-separating.

4 Conclusion and Perspectives

In this paper we are proposing a new class of digital primitives with definitions
based on focal points. The definition allows any number of foci and weighted
distances. The proposed definition generalizes Andres hyperspheres [1,2]. These
primitives are defined in dimension n, have a space partitioning property, and
their thickness can be controlled so that they are guaranteed to be m-separating
in space. We propose an extension based on a similar principle, where we define
a new class of digital conics defined by a directrix (a straight line), a focal point,
and a parameter e called eccentricity. What we would like to highlight with this
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way of defining digital primitives is that it allows power and flexibility to the
design of digital primitives.

This work has opened many possibilities for future work and further exten-
sions. Instead of focal points, one can imagine considering distances to objects
which could make an interesting link with distance transforms and skeletoniza-
tion. Can we keep topological m-separation properties? As we can see in Fig. 7
for instance, the foci based primitives do not, in general, have a constant thick-
ness. One could imagine primitives that are defined as the outer or the inner
k-connected boundary of the foci based primitives as we have defined them. As
mentioned, the proposed formula ensures that, for a set of foci and weights, the
digital primitives separate space regardless of the generalized radius. Now, what
would we have to change in order to ensure separation for a primitive of a given
generalized radius? It would be interesting to compare such primitives to more
classically defined digital primitives. For that matter, do the classically defined
ellipses, parabola, hyperbola, etc. respect distance sum properties to some focal
point?

In the proof of Theorem1, the only thing that appears is a notion of distance
and the minimal distance to ensure a separation property. As one can see in

Fig. 8. Foci based digital primitives on arbitrary digital surfaces

Fig. 9. A digital ellipse based on the Chebychev distance
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Fig. 10. Conics C((0, 0, 5), L, e), for directrix plane L of equation ax+ by + cz + d = 0
with (a, b, c, d) = (18.02, −33.10, 92.62, 0) and eccentricity e = 0.5, 0.7, 1, 1.4 from left
to right.

Fig. 8, one can define such focus based digital objects on arbitrary digital sur-
faces. It would be interesting to extend such notions to graphs and triangular
meshes (as long as the triangles in the mesh are somewhat regular). Nothing in
the definition limits us to the Euclidean distance. Experimentation with different
distances could be very interesting as well (See Fig. 9 as an example).

It is interesting to notice that nothing in Definition 4 or in the proof of Theo-
rem 2 limits our definition to dimension two. As one can see in Fig. 10, with a 3D
plane as directrix for instance, that one can create digital ellipsoids, paraboloids,
and hyperboloids. One can imagine replacing the plane in 3D by a 3D straight
line.

Lastly, general questions can be raised: how can such primitives be recog-
nized? At what more precise conditions are such primitives empty?
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