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Abstract. The Mojette Transform (MT) is an exact discrete form of
the Radon transform. It has been originally defined on the lattice Zn

(where n is the dimension). We propose to study this transform when
using the densest lattices for the dimensions 2 and 3, namely the lattice
A2 and the face-centered cubic lattice A3. In order to compare the legacy
MT using Zn, versus the new MT using An, we define a fair comparison
methodology between the two MT schemes. In particular we detail how
to generate the projection angles by exploiting the lattice symmetries
and by reordering the Haros-Farey series. Statistic criteria have been also
defined to analyse the information distribution on the projections. The
experimental results study shows the specific nature of the information
distribution on the MT projections due to the high compacity of the An

lattices.

Keywords: Mojette Transform ·Discrete tomography · Lattices ·Dens-
est lattices · Haros-Farey series

1 Objectives of the Study

The Mojette transform is an exact discrete form of the Radon transform [1]
defined for specific rational projection angles. Guédon et al. originally developed
this transform and its corresponding inverse in 1995, in order to represent an
image as a set of discrete projections which can be chosen highly redundant (i.e.
a frame description). Since 1995, the MT proprieties have been largely explored
(spline MT, reconstructability of convex regions, MT in high dimensions, multi-
resolution MT, etc.), and a lot of applications have been found (data communi-
cation and storage, Mojette discrete tomography, Mojette based security, etc.).
Nevertheless, the MT has been mainly defined, studied and applied using the
lattice Zn (where n is the dimension of the initial lattice to transform). We
propose to study this transform when using densest lattices, because we expect
that the lattice high compacity will improve the MT performances when repre-
senting the data. In the paper we naturally start the study by considering the
first dimensions 2 and 3 for which the densest lattices are known.
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The paper is organised as follows: in the second section, basics on MT and
lattices are given. We focus on the MT proprieties (direct/inverse transform,
projection matrix, conditions of reconstructability) that are used in the paper,
and the densest lattices for the dimensions 2 and 3 (namely the lattice A2 and
the face-centered cubic lattice A3) are also presented, the lattice density will
be also defined at this level. A fair comparison method between the two MT
schemes has to be defined, in order to compare the legacy MT using Zn, versus
the new MT using An. The comparison methodology is detailed in the third
section where we explain in particular how to generate the truncated lattice
containing the data to transform, and how to generate the projection angles by
exploiting the lattice symmetries and by reordering the Haros-Farey series. The
fourth section gives the experimental results, and it explains the statistic criteria
used to analyse the specific nature of the information distribution on the MT
projections. A conclusion and perspectives are given in the last section.

2 Basics on Mojette Transform and Lattices

2.1 The Mojette Transform

Direct Transform. The Mojette transform is an exact discrete form of the
Radon transform defined for specific rational projection angles. Following the
work of M. Katz [2], Guédon et al. originally developed this transform and
its corresponding inverse in 1995, in order to represent an image as a set of
discrete projections. The rational projection angles θi are defined by a set of
discrete vectors (pi, qi) as θi = tan(qi, pi), with the condition that qi and pi are
coprime (i.e. gcd(pi, qi) = 1), and qi is restricted to be positive except for the
case {pi, qi} = (1, 0). The transform domain of an image (or any truncated 2D
lattice) is a set of projections where each element (called bin) corresponds to the
sum of the pixels centered on the line of projection. This is a linear transform
defined for each projection angle by the operator:

[Mf ](b, p, q) = projp,q(b) =
∞∑

k=−∞

∞∑

l=−∞
f(k, l)Δ(b + kq − lp); (1)

where (k, l) defines the location of an image pixel, b is the index of a bin, and
Δ(n) is the Kronecker delta function, equals to 1 when n = 0 and 0 otherwise.
The line of projection is represented by b = kq − lp, and then Δ(b + kq − lp) is
equal to 1 only for the pixels on this line. The previous Eq. 1 can be rewritten
in a matrix form:

Mft(b, p, q) =
∑

k

∑

l

f(k, l)Δ
(

B − P2→1

[
k
l

])
;

=
∑

k

∑

l

f(k, l)Δ
([

b
] − [−q p

] [
k
l

])
;

(2)
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where P2→1

[
k
l

]
is the projection matrix.

Equation (2) can be generalised to higher dimensions. In 3D, a projection
plane is defined by a discrete vector (p, q, r) with gcd(p, q, r) = 1. In the same
way, the projection planes are built from a discrete 3D volume f(k, l,m). Bins
are discrete points onto the projected plane, indexed by a vector B =

[
b1 b2

]t.
The 3D Mojette transform can then be defined as [1, Chap. 3], [3]:

Mf(b1, b2, p, q, r) =
∑

k,l,m

f(k, l,m)Δ

⎛

⎝B − P3→2

⎡

⎣
k
l
m

⎤

⎦

⎞

⎠ ;

=
∑

k,l,m

f(k, l,m)Δ

⎛

⎝
[
b1
b2

]
− P3→2

⎡

⎣
k
l
m

⎤

⎦

⎞

⎠ .

(3)

Moreover, in order to obtain a simple and unique index method for the vector of
projection, the following conventions are taken [1, Chap. 3]: r ≥ 0 and q ≥ 0 if
r = 0. The projection P3→2 matrix can then be defined as following [1, Chap. 3]:

P3→2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 0 −p

r

0 1 − q
r

]
if r �= 0 and q �= 0;

[
1 −p

q 0
0 0 1

]
if r = 0 and q �= 0;

[
0 1 0
0 0 1

]
if r = 0 and q = 0.

(4)

This matrix is not optimal as it does not use entire displacement (i.e. ratios
are used in this matrix) which creates point with non integer coordinates. Other
matrices P exist and can be generated from the direction projections as presented
in DGCI 2005 [4]. The full and detailed explanations in order to generate the
matrix P from the direction projection (v1, v2, . . . , vn) are given in [4,5].

The projection of a 3D regular lattice on a plane with the vector (p, q, r)
always produces a 2D regular lattice, according to the vector (p, q, r) [3].

Projection Matrix and Reconstructibility. The reconstructability is the
ability to ensure the exact reconstruction of any information using only a set of
viewpoints. In other words, a region is reconstructible by a set of projections if
a unique correspondence exists between the region and the set of projections [6].
The conditions determining if a set of Mojette projections is sufficient for invert-
ing the transform depends strongly on the discrete shape of the region support
under projection. Simple rules exist when the shape is convex [1, Chap. 4]. For
rectangular regions, the Katz criterion solves this problem [2]. The reconstruc-
tion conditions for any convex region were derived by Normand [1, Chap. 4].
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In 2D, each projection direction vector (pi, qi) is associated with a two-pixels
structuring element Bi (2PSE). Taking G as the region support formed by the
successive dilations of the structuring elements Bi, the convex region is recon-
structible if and only if it can not contain G [6]. In other words, a convex region
(i.e. an image) is not reconstructible if and only if the dilation result by 2PSE
is not included in the image support [1, Chap. 4]. This can be also rephrased
as: an image of convex support C is reconstructible if and only if the successive
erosions of the C formed by the structuring elements Bi gives an empty set [6].

In 3D, the method is extended [3, Chap. 4]: each projection direction vector
(pi, qi, ri) is associated with a two-voxels structuring element, and any convex
3D region R is reconstructible by a set of projections SI , if the dilation of the
two-voxels structuring elements produces a form D than is not included in R.

2.2 The Lattices

Lattices. A lattice Λ is a regular arrangement of points in a n-dimensional
space. Λ is characterised by its basis [7, (Chap. 1)] or correspondingly by its
generator matrix :

MΛ =

⎡

⎢⎢⎢⎣

v11 v12 . . . v1m

v21 v22 . . . v2m

...
...

...
...

vn1 vn2 . . . vnm

⎤

⎥⎥⎥⎦ . (5)

By combination of the basis vectors, the lattice fundamental parallelotope is
constructed. This parallelotope, when repeated, can fill the whole space with
just one lattice point in each copy.

Different lattices have been studied to solve different problems as sphere
packing problem, sphere covering problem, kissing number, fast quantization,
etc. In the paper we focus on the Zn lattice, and on the densest lattices for the
dimensions 2 and 3, respectively A2 and A3.

A sphere packing is an arrangement of non-overlapping identical spheres
within a containing space. The lattice is then constituted with the spheres cen-
ters, and the densest packing maximises the volume occupied by the spheres.
The lattice density can be defined by:

Δ =
vol. of one sphere

vol. of the fundamental region
=

vol. of one sphere
det(MM tr)

1
2

. (6)

Zn lattices. The integer lattice is defined as [7, (Chap. 4)]:

Zn = {(x1, . . . , xn)|xi ∈ Z}. (7)

Its generator matrix is the identity matrix. The densities of the lattices Z2 and
Z3 are respectively ΔZ2 = π

4 = 0.785... and ΔZ3 = π
6 = 0.524...

We will exploit the lattice symmetries for the MT. The Zn automorphism
group consists of all possible symmetries that are obtained by vector coordinate
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permutation and/or sign change, the set of permutations has a cardinality of
(2nn!). So, after removing the sign changes (e.g. (a, b) and (−a,−b) are the
same vector but with opposite direction), Z2 and Z3 counts respectively 4 (see
Fig. 1) and 24 symmetries (see Fig. 2).

Fig. 1. Symmetries in Z2 (without sign change).

Fig. 2. Symmetry in Z3 (without sign change).

An lattices. The An lattice (for n ≥ 1) can be defined as [7, Chap. 4]:

An = {(x0, x1, . . . , xn) ∈ Zn+1|x0 + x1 + · · · + xn = 0}. (8)

The generator matrix is

MAn =

⎡

⎢⎢⎢⎢⎢⎣

−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1

⎤

⎥⎥⎥⎥⎥⎦
. (9)
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An is the densest lattice for dimensions 2 and 3. A3 is also known as the
face-centered cubic lattice (FCC). The densities of the lattices A2 and A3 are
respectively ΔA2 = π√

12
= 0.9069... and ΔA3 = π√

18
= 0.7405....

The set of permutations of the automorphism group of the lattice A2 (respect.
A3) has a cardinality of 16 (respect. 48). After removing the sign changes, 6
symmetries (respect. 12 symmetries) remain [7, Chap. 4] (see also the Figs. 3
and 4).

Fig. 3. Symmetries in A2 (without sign changes).

Fig. 4. Neighbors of the point (0, 0, 0) in A3 [8]

2.3 Projections and Haros-Farey Sequences

The Haros-Farey sequence gives the set of rational angles in a centered square
or cube, this sequence is used to enumerate the MT projections (up to the
reconstructability conditions).
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In 2D, the Haros-Farey sequence of order N , denoted FN , is the ordered
sequence of irreducible ratios included between 0 and 1, where the denominator
is less than or equal to N . In order to get FN+1 from FN , a median ratio a12

b12
is inserted between each ratio a1

b1
and a2

b2
of FN , such as a12 = a1 + a2 and

b12 = b1 + b2 if a12 < N + 1 and b12 < N + 1 [5]. F1, F2, F3 are given as an
example:

F1 =
{

0
1
,
1
1

}
; F2 =

{
0
1
,
1
2
,
1
1

}
; F3 =

{
0
1
,
1
3
,
1
2
,
2
3
,
1
1

}
. (10)

Each ratio ( q
p ) of the sequence is used in order to generate a corresponding

projection (p, q) of the 2D MT.
In 3D, according to [5], the Haros-Farey sequence of order N , denoted by F̂N ,

is the set of points ( y
x , z

x ) such that gcd(x, y, z) = 1, between [0, 0] and [1, 1], and
which denominator x does not exceed N . In other words, a point ( y

x , z
x ) ∈ F̂N

if x ≤ N , 0 ≤ y ≤ x, 0 ≤ z ≤ x and gcd(x, y, z) = 1. Let A1( y1
x1

, z1
x1

) and
A2( y2

x2
, z2

x2
), two points of F̂N−1 such as x1 + x2 = N . The middle point between

A1 and A2 has the coordinates ( y1+y2
x1+x2

, z1+z2
x1+x2

) [5]. Below, F̂1, F̂3, F̂3 are given as
an example, where each point ( y

x , z
x ) is written as (x, y, z) [5]:

F̂1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} ;

F̂2 = {(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 0), (2, 1, 1), (2, 2, 1)} ;

F̂3 = F̂2

⋃
{(3, 1, 0), (3, 1, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2),

(3, 3, 1), (3, 3, 1)} .

(11)

The sequence is used in order to generate the (p, q, r) projections of the 3D MT,
with (p, q, r) representing the point ( q

p , r
p ).

3 Comparison

This section explains how the truncated lattices were constructed and how the
projections were selected. The proposed criteria of comparison are also presented.

3.1 Methodology of Comparison

The goal is to compare the legacy MT using the Zn lattice, with the MT using
the densest lattice. Each lattice (Zn or An) is truncated such that they have the
same number of points Npoints.

Construction of the Truncated Lattices. The first step is to create the
truncated lattice. In order to do that, an iterative process is used, where from
the 0 point, at each loop, we find the lattice points on successive embedded
spheres. Locally, a basic pattern is used which gives for a lattice point its closed
neighbours (see Figs. 2 and 4). The growing lattice process is stoped when the
number of points Npoints is reached (Npoints is given by the user). Each point of
the truncated lattices is set to a unitary value.
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Selection of Projections. The minimal number of projections are chosen
for the truncated lattice to be exactly reconstructible. Projection vectors are
produced by sorting fractions of Haros-Farey series according to their squared
Euclidean norms, i.e., respectively x2 + y2, x2 + y2 + z2, k2 + l2 − kl and xx +
yy + zz − yz − xz in lattices Z2, Z3, A2 and A3. For example, with F5 sorted:

F5 =
(

0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1

)
;

SortZ2(F5) =
(

0
1
,
1
1
,
1
2
,
1
3
,
2
3
,
1
4
,
3
4
,
1
5
,
2
5
,
3
5
,
4
5

)
;

SortA2(F5) =
(

0
1
,
1
1
,
1
2
,
1
3
,
2
3
,
1
4
,
3
4
,
2
5
,
3
5
,
1
5
,
4
5

)
.

(12)

Before choosing another projection in the Haros-Farey, all equivalent projec-
tions by rotation are generated. The number of equivalent projections by rotation
depends on the lattice (for instance, 3 other projections for the Z2 lattice, and
5 other projections for the A2 lattice).

In order to know if the truncated lattice is exactly reconstructible using the
set of selected projections, the shape of successive dilatations of the projections
directions is generated, as explained in Sect. 2.1. The truncated lattice is exactly
reconstructible only when its radius is inferior or equal to the radius of the
generated figure.

3.2 Comparison Criteria

Global criteria were used to compare the information distribution on the MT
projections.

Redundancy. Redundancy is given by the following equation [1, Chap. 3]:

Red =
nbbins

nbpoints
− 1. (13)

If redundancy is positive, it represents the percentage of extra bins compared to
the number of points. If redundancy is negative, then there is no reconstructabil-
ity of the truncated lattice. Here, by construction, Red is positive but small.

Number of Bins. Bi is the number of bins on the i-th projection (i.e. the
i-th projection length). The mean B̄, and the variance V ar(B), can be then
calculated as following:

B̄ =
1
n

n∑

i=1

Bi, V ar(B) =
1
n

n∑

i=1

(Bi − B̄)2, (14)

where n is the number of projections in the set. This criteria measures the
difference of the number of bins in the projections. The smaller V ar(B) for
different projections, the higher those projections carry the same amount of
information.
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Number of Points per Bin. For the test case, each lattice point is set to
1, so each bin value (on every projections) equals to the number of points that
contribute to the bin. The mean (considering all projections) is computed as:

Mean(points per bin) = b̄ =
1
m

m∑

i=1

bi, (15)

where m is the total number of bins (considering all projections) and bi is the
value of the i-th bin. The higher the mean, the higher bins represent more points.
This is directly related to the density of the lattice.

4 Experimental Results

In this section, the main results are presented and discussed. All the experiments
were done in 2D and 3D, but we shall concentrate here onto the 3D case because
it generalises the 2D case.

Fig. 5. Truncated lattice radius (a), Total number of bins (b), and Redundancy (c).
The blue (resp. red) curves characterise the A3 (resp. Z3) lattice. (Color figure online)
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The first feature displayed on Fig. 5(a) is the truncated lattice radius value
computed from Npoints, the number of generated points. For Npoints > 400, the
curves show the higher compacity of A3 on Z3.

The higher total number of bins of Z3 (see Fig. 5(b)) explains its higher
redundancy (see Fig. 5(c)).

The next features are the number of bins Mean (Fig. 6(a)) and Variance
(Fig. 6(b)) according to the number of generated points. Concerning these 2
features, it seems that the two lattices perform almost equally, but the Fig. 6(c)
shows that the projections number is different for the 2 lattices, a finer analysis
at the projections level is then necessary.

Fig. 6. Number of bins: Mean (a) and Variance (b), and Number of projections (c).
The blue (resp. red) curves characterise the A3 (resp. Z3) lattice. (Color figure online)

We then use histograms. The Fig. 7 compares the projections densities con-
sidering the number of points Mean per projection. And the Fig. 8 compares
the projections densities considering their lengths. The histograms with A3 are
slightly more uniform than the ones with Z3, it shows the higher regularity of
the projections when using A3, these results are due to the high compacity of
this lattice.
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Fig. 7. Histograms of the number of points Mean per projection for Z3 (a), and A3 (b).

Fig. 8. Histograms of the projections length for Z3 (a), and A3 (b).

5 Conclusion and Perspectives

In this paper, we examined the behaviour of densest lattices in 2D and 3D from
their discrete Mojette projections point of view. Exactly, the study focused on
the 3D case because it generalises the 2D one. The analysis of Mojette Transform
projections, when comparing the legacy MT with Z3 versus the MT with A3,
shows some interesting differences both in terms of dimensions and in terms
of projections regularity. Since the software has been developed to manage any
dimension and lattice, future work will focus on higher dimensions. Indeed it
seems interesting to try higher dimensions in order to see if the gap between An

and Zn lattices still increases.
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