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Abstract. Freeform structures play an important role within contempo-
rary architecture. While there is a wealth of excellent tools for the digital
design of free-form geometry, the actual fabrication on the architectural
scale is a big challenge. Key issues in this context are free-form surfaces
composed of panels which can be manufactured at reasonable cost, and
the geometry and statics of the support structure. The present article is
an extended abstract of a talk on the close relation between geometric
computing for free-form architecture and discrete differential geometry.
It addresses topics such as skins from planar, in particular quadrilateral
panels, geometry and statics of supporting structures, structures in force
equilibrium.

1 Introduction

The mathematical and computational challenges posed by free-form shapes in
architecture are twofold. One is rationalization which means approximating a
given design surface by a collection of smaller parts which can be individually
manufactured and put together. There is a great variety of constraints imposed
on the individual parts, most having to do with manufacturing. The second
challenge is design of free forms. The goal here is to develop tools which allow
the user to interactively design free forms, such that key aspects of statics and
fabrication are taken into account directly in the design phase. Meanwhile there is
a wealth of results on these topics, and we want to point to the survey article [13].

2 Freeform Skins from Planar Panels and Associated
Support Structures

Steel-glass constructions usually require a decomposition of freeform skins into
flat panels, which leads us to the question of rationalization with polyhedral sur-
faces, and designing with polyhedral surfaces. The combinatorics of meshes plays
an important role here: It is very easy to represent a given shape by a triangle
mesh, and in fact the majority of freeform skins which exist are based on trian-
gle meshes. However there are drawbacks: On average 6 edges meet in a vertex,
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so structures based on triangle meshes have complicated nodes. Further, they tend
to be heavier than structures based on quad meshes. This has led to a new line of
research into PQ (planar quad) meshes, which are meshes whose faces are planar
quadrilaterals. Here an important link to discrete differential geometry is estab-
lished: Combinatorially regular quad meshes decompose into two families of mesh
polylines which can be seen as discrete versions of the parameter lines on a smooth
surface. A quad mesh is then interpreted as a discrete version of a parametric sur-
face. Properties of quad meshes relevant to architecture turn out to be equiva-
lent to properties relevant in discrete differential geometry (in particular, the inte-
grable systems viewpoint of discrete differential geometry, see [3]).

This connection between smooth surfaces and discrete surfaces is very impor-
tant in investigating the degrees of freedom available for rationalization and
design: E.g. a PQ mesh constitutes a discrete version of a so-called conjugate net-
work of curves [9]. Meshes where the edge polylines appear smooth will need to
approximate a conjugate network of curves. The conjugate networks are known
and in theory there are many, but we nevertheless can draw the conclusion that
in connection with practical considerations (e.g. angles between edges) there
might be little flexibility or even no satisfactory network at all which serves as
guidance for a PQ mesh (see Fig. 1).

Fig. 1. Differential geometry informing rationalization. (a) The Cour Visconti roof in
the Louvre (image courtesy Waagner-Biro Stahlbau). It was intended to be built in
a lightweight way, possibly as a quad mesh. (b) A rationalization of this surface as
a quad mesh with planar faces and smooth edge polylines must follow a conjugate
network of curves, but these networks have unacceptable singularities. (c) If zigzags
are allowed, rationalization as a PQ mesh with regular combinatorics is possible. For
the actual roof, however, a different solution with both triangular and quadrilateral
faces was found.
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An important special case are nearly rectangular panels. Aside from aesthetics
there are fundamental geometric reasons for constraining a PQ mesh to some
form of orthogonality between edges. As it turns out, such meshes are discrete
versions of principal curve networks, and the known nice behaviour of the surface
normals along the curves of such a network translates to good properties of the
support structure associated with the quad mesh, see Fig. 2. One is able to design
so-called torsion-free nodes [9,11]. Research in this direction also led to progress
in discrete differential geometry itself, in particular a new curvature theory for
discrete surfaces [4]. Direct design of torsion-free support structures with quad
combinatorics is related to special parametrizations of congruences. This word
refers to a 2-dimensional system of straight lines and constitutes a classical topic
of differential geometry. Its discrete incarnation turned out to be quite useful
and has been explored systematically. We used it in connection with shading
and guiding light by reflection, see [17] and Fig. 3.

Fig. 2. Torsion-free support structures. The Chadstone shopping mall in Melbourne
features a steel-glass roof in the shape of a planar quad mesh. The member corre-
sponding to an edge is aligned along the support plane (yellow) of that edge, and the
intersection of members in a node is defined by the node axis (red) where support planes
meet. This behaviour of node axes is analogous to the behaviour of surface normals
along principal curvature lines (original photo: T. Burgess, imageplay).

Fig. 3. Torsion-free support structures for shading and lighting. By cutting out and
assembling the strips shown above one creates a torsion-free support structure capable
of reflecting light into prescribed patterns. This arrangement of planes and lines dis-
cretizes the notion of torsal parametrization of a line congruence. The strips correspond
to the two families of developable surfaces which make up the congruence (the system
of normals of a surface along principal curvature lines is a special instance of this).
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The previous paragraphs did not give an exhaustive list of the correspon-
dences between discrete surfaces and smooth parametric surfaces which have
already been used in the context of freeform architecture. In particular we did
not mention semidiscrete surfaces relevant to structures with bent glass [12].

3 Structures in Static Equilibrium

Statics obviously is of paramount importance in architecture and building con-
struction. It is therefore important that aspects of statics play a role already
in the first stages of design. It is a long-term goal to create design tools which
incorporate constraints relating to geometry, fabrication and statics while being
still fast enough to allow interactive modeling. We are currently far from this
goal, but partial results have been achieved. We start our summary by mention-
ing the thrust network method [1,2]: Maxwell’s ideas on graphical statics are the
basis of a method to treat systems of equilibrium forces which act in surface-like
geometries. By separating vertical and horizontal components one is led to a
discrete Airy potential polyhedron, which is a finite element discretization of the
Airy stress potential well known in 2D elasticity theory. Compressive stresses
are characterized by convexity of the stress potential.

A particularly nice application of this method is self-supporting masonry
which is stable even without mortar, see Fig. 4. It is possible to interpret forces
resp. stresses in differential-geometric terms, and we refer to [14,16] for this
“geometrization” of the force balance condition, and for a treatment of the so-
called isotropic differential geometry which occurs here. The direct interactive
design of meshes (in particular polyhedral surfaces) with additional force balance
conditions is a special case of constrained geometric modeling, see [15].

Recently we have worked on material-minimizing structures, see Fig. 4. This
optimization problem was originally proposed in a groundbreaking paper by

Fig. 4. Self-supporting and weight-optimal structures. (a) This masonry vault with
holes contains a network of compressive forces which is in equilibrium with the dead-
load, implying the remarkable fact of stability of the structure when built of bricks even
without mortar. Interactive design of such self-supporting surfaces is possible [15,16].
(b) The search for quad meshes with planar faces and minimal weight in the sense of
M.G.M. Michell’s limit of economy is converted into computing a variant of principal
curves, by a suitable differential-geometric interpretation [8].
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M.G.M. Michell [10] and is meanwhile formulated in modern language [18]. Our
work, like others mentioned in this paper, is based on a differential-geometric
interpretation of the subject of interest which, in this case, is the volume of
members of a structure based on a mesh, and also the forces acting in these
members. For example, 2-dimensional optimal trusses are characterized by Airy
potential surfaces of minimal total curvature in the sense of isotropic geometry.
This topic and its extension to shells is treated by [8] (Fig. 4).

Fig. 5. Nonstandard notions of fairness. Here a given smooth surface is approximated
by a polyhedral surface (a) of prescribed local combinatorics (b). The concept of fairness
employed in the computation is based on existence of local approximate symmetries.

4 On Fairness, the Importance of Regularizers and
Structures Beyond Discrete Differential Geometry

In all examples mentioned above, fairness plays an important role in identifying
those discrete structures which meaningfully correspond to smooth objects. On
a technical level, fairness functionals are used as regularizers in optimization and
in iterative constraint solvers. There are, however, many different ways to express
fairness computationally. The standard quadratic fairness energies composed of
iterated differences might not be appropriate for meshes like the one shown by
Fig. 1c. The zigzag polylines might be fully intentional, but they cause high (bad)
values of such a fairness energy. Recently, alternative approaches to fairness have
been successfully employed in creating polyhedral patterns [6]. They are based on
existence of local approximate symmetries. An interpretation in terms of standard
concepts of discrete differential geometry is still open. A difficult topic in general
are fairness functionals of high nonlinearity, e.g. those involving kink angles. A
fairness measure based on angles only [7] has led to a new concept of smoothness
of discrete surfaces [5]. Recently we have investigated a functional defined as the
sum of edge lengths times absolute value of kink angles. Its “isotropic” version
surprisingly turns up in connection with material minimization (see previous
paragraph). The shape of minimizers is a topic of current research; we conjecture
that at least in negatively curved areas they are principal meshes.
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