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Abstract. The increased number of challenges for comparative eval-
uation of biomedical image analysis procedures clearly reflects a need
for unbiased assessment of the state-of-the-art methodological advances.
Moreover, the ultimate translation of novel image analysis procedures
to the clinic requires rigorous validation and evaluation of alternative
schemes, a task that is best outsourced to the international research com-
munity. We commonly see an increase of the number of metrics to be
used in parallel, reflecting alternative ways to measure similarity. Since
different measures come with different scales and distributions, these are
often normalized or converted into an individual rank ordering, leaving
the problem of combining the set of multiple rankings into a final score.
Proposed solutions are averaging or accumulation of rankings, raising the
question if different metrics are to be treated the same or if all metrics
would be needed to assess closeness to truth. We address this issue with a
data-driven method for automatic estimation of weights for a set of metrics
based on unsupervised rank aggregation. Our method requires no normal-
ization procedures and makes no assumptions about metric distributions.
We explore the sensitivity of metrics to small changes in input data with an
iterative perturbation scheme, to prioritize the contribution of the most
robust metrics in the overall ranking. We show on real anatomical data
that our weighting scheme can dramatically change the ranking.

1 Introduction

In recent years, an increasing number of challenges are organized at international
conferences in medical image analysis and computer vision as more and more
imaging data sets are accessible [1-3]. These open and public challenges provide
an ideal forum for researchers in both academia and industry to participate,
with the goal of gaining a better understanding of the performance of various
algorithms on a specific image analysis task. However, defining a set of metrics
to evaluate a particular image analysis algorithm is a non trivial problem. In
many cases, there are several metrics that need to be considered instead of
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only one. How to combine and balance the different metrics is an important
issue, but usually the weights assigned to different metrics are chosen to be
uniform or based on the organizers experience. This is not optimal, as changing
to a different set of weights can lead to a different rank of all the participants.
From the perspective of a participant, a given rank ordering declares a winner
and awards prize and prestige. However, the spirit of a challenge is to better
understanding the benefits and drawbacks of the various algorithms rather than
produce a leaderboard ordering. Challenge results may have further reaching
effects, for example on commercial product development, method refinement, or
inspire the design of new algorithms.

In [4], the STAPLE algorithm takes a collection of segmentations as input
and estimates true segmentations as well as a measure of the performance level of
each input, which enables assessment of the performance of automatic image seg-
mentation methods. In [5], an evaluation of 14 nonlinear deformation algorithms
was conducted by using three independent statistical analyses with overlap, vol-
ume similarity, and distance measures. A set of measures for the validation of
diffusion tensor imaging (DTI) tractography is proposed in [6], and applied the
proposed methods to evaluate atlas building-based tractography. The BRATS
challenge was analyzed in [1] to explore the reason some algorithms worked bet-
ter than others. The work of [7] proposes ordering metrics by their bias towards
a set of defined segmentation properties. While [7] helps inform which metrics
to include, it does not give a solution for combining metrics.

In this paper we combine a data-driven, unsupervised rank aggregation
scheme with a perturbation based analysis of metric sensitivity to automati-
cally compute weights for a set of metrics. Our method does not require nor-
malization of metrics and makes no assumption about the distribution of metric
values. Rather, the estimation of weights and corresponding rank ordering is
determined entirely by the data and the specific image analysis task. We show on
real anatomical data that by applying the proposed scheme, the final rank order
may dramatically change, a result we hope will raise awareness in the community
about shortcomings of current ad-hoc evaluation methods. Results demonstrate
that the iterative procedure results in weights that reflect contributions of each
metric in a plausible way, thus providing improved insight into overall rank
aggregation. Our methodology provides transparency on aggregation that may
help future challenge organizers to evaluate the best set of metrics beforehand
based on existing data. We also advocate for our method as an exploratory tool,
as the resulting weight for each metric, each usually representing a different
aspect of similarity (overlap, surface distance, sensitivity to outliers, etc.), pro-
vides essential information for algorithm assessment. Finally, we reiterate that
the motivation of our work is to better understand the performance of various
algorithms, not to produce a de facto leaderboard ordering.

2 Methodology

The principal behind this rank aggregation scheme, introduced in [8], is that
reliable metrics rank submissions in a similar manner. Metrics that produces an
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ordering that tend to agree with a collection of other metrics will be given a
higher weight. Conversly, metrics that produce inconsistent rankings will receive
lower weights. Central to the concept of consistent orderings is the stability of
metrics. We propose to measure sensitivity of metrics to small perturbations of
the input data. The insight is that metrics that are robust to small changes to
input should receive a higher weight, and those metrics that produce different
orderings under perturbations should receive lower weights.

2.1 Rank Aggregation

Let G = (g1,...,9n,) represent a number of ground truth data for N, tasks.
For example, these could be segmentations for N, = 5 different cases. A single
ground truth could be assembled from several expert sources using label fusion,
STAPLE [4], or a custom algorithm [1]. Let X = (X, ..., Xng) be Ng submis-
sions to the challenge, where each submission X; = (z¢, ..., aszNg) represents a set
of N¢g items to be directly compared to the set of ground truth data G. Let
M = (M, ..., Mn,,) represent a collection of metrics, where for a given g € G
and z € X;, a metric M(g, z) returns a scalar value. Let R = (Ry, ..., Ry,,) be
the ordinal rankings (ranking functions) corresponding to metrics M evaluated
on all submissions. For example, R; is the ordinal ordering (1, 2, ..., Ng) of all
the submissions under metric function M;.

We require an aggregate ranking function A(R,G,X) = ZZ\Q{ w; R (G, X)
as linear combination of orderings R; (given by metric M;) to produce an overall
ranking. This linear combination is parameterized by weights W = (w1, ..., wn,,)
which can be thought of as a probability density function (vaM w; = 1).

For a given submission item x and its corresponding ground truth g, we can
compute the average ranking across all metrics defined as

_ 2 Ri(g,)

Ny (1)

p(g, )
The mean value p(g,z) value can then be used to capture the variance of
any individual ranking R; under metric M; by o;(g,z) = [Ri(g,7) — u(g, z)]?. A
small value of o; suggests that metric M; produces an ordering in agreement with
the other metrics and should be given a higher weight, while large values of o;
represent disagreement from the majority and will be receive a lower weight. Note
that the computation of mean and variance here is with respect to the orderings
given by the metric, not the metrics themselves. That way, no normalization of
metrics is required, and no assumptions about the distribution of metric values
is assumed.
We can then pose this as an optimization problem, to find weights which
minimize o; over all submissions:

Ny

arg‘;/nin Z Z Z w;oi(g,x) (2)

geGzeX i=1
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Algorithm 1. Unsupervised Rank Aggregation

1: Input: R[G, X, M] > Values for all ground truth, submissions, and metrics
2: w— 1/Num > Initialize uniform weights
3: while ( ¢ < maxlterations) and (not converged) do

4 for all g in G do
5 for all z in X do

Nt
6: u(g,x) — Zﬁ%}w > Compute average ranking for this item
7 for all M in R do
8 Vs — (Rlg,z, M] — u(g,x))? > Compute gradient
9 why — Wy exp(-AVuy) > Update weight

Zjvzklf w;ilexp(fz\ijw)
10: t— 1+ 1
11: return w

with the constraint that ZfVM w; = 1 and 0 < w; < 1. The gradient with respect
to a given w; is

Vwi = [Rl(gax) - M(g,$)]2, (3)

which can be used to derive a gradient descent scheme [8], summarized in
Algorithm 1.

Example: Consider a synthetic example where the true ranking is {1, 2, ...,
15}. We have 10 total ranking functions of varying accuracy, summarized in
Table 1. The first three ranking functions give the correct ordering. The next
three ranking functions return a list close to the correct ordering, created with 5
random swaps of adjacent items. The next two ranking functions are unreliable,
with 5 random swaps of any two items in the ordering. The final two ranking
functions are purely random orderings.

The method detects that the first three ranking functions are the most con-
sistent and assigns the highest weight of 0.176. The next three ranking functions
are less consistent and receive a slightly lower weight of 0.168, 0.146, and 0.146.
The next two ranking functions are inconsistent and are given weights 0.002 and
0.008. The final two random ranking functions are correctly given weights of 0.
With the estimated weights, the correct ordering of {1, 2, ..., 15} is produced.
The ranking with uniform weights is the incorrect ordering {3, 2, 1, 4, 5, 7, 8, 6,
10, 9, 12, 11, 13, 15, 14}.

Correlation: Inherent to the task of evaluating segmentation is the problem of
metric selection and correlation. Indeed, similarity metrics are often highly cor-
related, or nearly identical in the case of dice and Cohen’s kappa. As our method
favors metrics which are in agreement with other metrics, we must address metric
correlation. Guided by the work of [9], we carefully choose a collection of met-
rics to capture a wide range of metric properties while limiting the use of highly
or perfectly correlated metrics. We include overlap based metrics dice, global
consistency error, sensitivity, and specificity; surface based metric Hausdorff dis-
tance (95th percentile); information theoretic measure mutual information; and
volume based measure volumetric similarity.
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Table 1. Synthetic example where true ranking is {1, 2, ..., 15}. Ranking functions
1,2,3 are perfect, 4,5,6 contain small errors, 7,8 contain large errors, and 9 and 10 are
random.

Ranking functions | Ordering Weights
1,2,3,4,5,6,7,8,09, 10, 11, 12, 13, 14, 15| 0.176
1,2,3,4,5,6,7, 8,9, 10, 11, 12, 13, 14, 15 0.176
1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15 0.176
2,1,3,5,6,4,8,7, 10,9, 11, 12, 13, 14, 15 0.168
2,1,4,5,3,6,7,8,9, 10, 11, 12, 14, 15, 13| 0.146
1,3,24,5,6,7, 8,10, 11, 9, 12, 13, 14, 15| 0.146
13,2,3,4,5,6,8, 1,9, 10, 12, 7, 11, 14, 15 | 0.002
13,2, 3,4,5,6,8,1,9, 10, 12, 7, 11, 14, 15| 0.008
11,8,2,6,1,15,9, 4,12, 3,7, 5,14, 13,9 0
6,15, 1,8, 2,12, 14, 5, 4, 3, 10,9, 7, 13, 11| 0

O |00 ||| U= | W N~

Ju—
=]

2.2 Assessing Stability with Perturbations

The traditional domains for rank aggregation, such as elections or meta-search,
deal with ordinal rankings from the onset. That is to say, there is a collection
of rankings provided by different ranking functions, but the inner workings of
the ranking functions are either not available or not defined. In the meta-search
example, the ranking functions are often proprietary, and for elections the rank-
ing functions are based on personal preference. In these situations, the only
recourse is to deal with the rankings directly.

In this work, we have the unique opportunity to systematically explore the
ranking functions themselves. We propose to do this by assessing the stability and
robustness of metrics by small perturbations to the input data. The intuition is
that metrics that are robust to small perturbations provide more consistent rank
ordering and should receive higher weights. Conversely, a metric where a small
change in input data leads to a large change in the resulting ordering should be
considered too sensitive to reliably discriminate differences, and should receive
a lower weight. Combining perturbations with rank aggregation allows metric
weights to reflect the sensitivity of the metrics on the specific image analysis
task, completely determined by the data.

The method works by iteratively applying perturbations to ground truth
data, and re-estimating weights using the scheme in Sect. 2.1, while keeping a
running average of estimated weights. The necessary component is a method (or
methods) to perturb ground truth data. A perturbation method could be general
purpose deformations such as rigid transformations, or could be a custom algo-
rithm designed with expert knowledge to accurate mimic anatomical variability.
Whatever the method used to make small modifications to ground truth, the
key is to produce a number of unique perturbations to fully probe each metric
for reliability.
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Algorithm 2. Rank Aggregation with Perturbations

1: w20 > Initialize weights
2: for (i = 1;i < numPerturbations; i++) do

3: for all g € G do

4: § < PerturbData(g) > Choose a perturbation method
5: for all X € X do

6: z «— x € X corresponding to g

T for all M € M do

8: R[g,z, M] «— M(g,x) > Ranking based on metric M
9: w «— w + RankAggregation(R) > Compute weights (alg. 1)

10: w « w/numPerturbations > Final weights are averaged over all perturbations

3 Experimental Validation

Data: We test our rank aggregation scheme on an artificial challenge to seg-
ment the corpus callosum, a flat bundle of fibers which connect the left and
right hemisphere of the brain. The 2D contour of the corpus callosum is clearly
visible in mid-sagittal slices from 3D brain MRI. Our data consists of 10 unique
subjects (2D sagittal slices) that are repeated 3 times each to form a dataset
of 30 images, where the image ordering is randomly permuted. Submitters were
asked to manually outline the 30 corpus callosum structures using itksnap [10],
without knowledge that it was 10 subjects repeated 3 times each. In total, 6
submitters provided outlines, which can be considered 18 unique submissions
by taking into account the repeated nature of the data. For evaluation, ground
truth segmentations were obtained by a deformable active contour model [11].
An example corpus callosum segmentation is shown in Fig. 1.

Metrics: To evaluate each submission with
respect to ground truth, we employ sev-
eral metrics discussed in Sect. 2. We include
dice, global consistency error, sensitivity,
and specificity; Hausdorff distance (95th
percentile); mutual information, and volu-
metric similarity. The metrics were chosen
to capture a wide range of metric properties
while limiting the use of highly or perfectly
correlated metrics, as shown in [9].

Perturbations: We implement 3 pertur-
bation methods. For modeling linear trans-
formations, we use rigid perturbations with
a specified amount of random translation, rotation, and scaling. To model sub-
missions who might over or under segment, we use morphological perturbations
which randomly iterate between dilation and erosion. Finally, to model nonlinear
differences from ground truth, we use B-spline perturbations with randomness

Fig. 1. Corpus callosum shown in red.
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controlled through a Gaussian distributed random sampling for B-spline para-
meters. For each iteration, a random perturbation method is chosen.

Results: We explore our rank aggregation with perturbations framework by
considering 18 submissions of the 10 corpus callosum segmentation tasks. The
submissions are named A-F with suffix denoting the 3 repeated segmentation
tasks. The left side of Table 2 shows the final overall ranking using naive uniform
weights for each metric. Our proposed method estimates weights: dice = 0.33,
mutual information = 0.21, specificity = 0.20, volumetric similarity = 0.12,
Hausdorff distance = 0.10, sensitivity = 0.03, and global consistency error =
0.01. The overall ranking under the computed weights is shown on the right of
Table 2. It is interesting to note that the estimated weights dramatically changed
the overall order as compared to uniform weights. In this case, global consistency
error and sensitivity produce inconsistent orderings under perturbations and
receive a low weight. The distribution of weights has the potential to provide
important insight into why certain algorithms perform well on a given medical
imaging task, which is the true spirit of grand challenges. Such feedback may
serve to inform algorithm refinement, or help steer new algorithm development.
For example, we may gain insight that a particular problem is better solved by
a method based on intensities, contrast, shape models, or physical models.

We also explore how the number of perturbations influences the final esti-
mated weights, as well as the magnitude of perturbations. For “small” pertur-
bations, we set rigid scale parameters to 2 pixels translation, 5° rotation, and

Table 2. For the corpus callosum challenge, the overall ranking using uniform weights
compared to the weights estimated from rank aggregation with perturbations.

Rank|Uniform Weights  Estimated Weights
Submission C2=———=> Submission C2

el e e e
P AN NE R = OO0 W=

Submission C1
Submission C3>€
Submission F3

Submission Al
Submission E3
Submission B2
Submission E2
Submission B1
Submission F1
Submission E1
Submission A2
Submission A3
Submission D3
Submission B3
Submission D1
Submission F2
Submission D2

Submission F3
Submission C3
Submission C1
Submission D3
Submission E3
Submission F1
Submission Al
Submission B1
Submission E2
Submission B2
Submission A3
Submission F2
Submission A2
Submission D2
Submission D1
Submission E1
Submission B3
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Fig. 2. Evolution of weights vs. the number of iterations of perturbations.

5% scale, morphology parameters to 5 iterations, and B-spline variance to 2.0.
For “large” perturbations, we set rigid scale parameters up to 10 pixels trans-
lation, 30° rotation, and 50% scale, morphology parameters to 10 iterations,
and B-spline variance to 15.0. Figure2 summarizes the results of these experi-
ments. For this experiment, large perturbations seem to provide more separa-
tion between metric weights, particularly increasing the weight of specificity and
increasing the relative importance of dice. We also observe faster convergence to
stable weights under small perturbations, as large perturbations introduce more
variability in orderings.

4 Conclusion

We have presented a method to automatically calculate weights for a set of met-
rics which probes the sensitivity of the metrics by exploring changes in rank due
to perturbations to input data. Our method is completely data-driven, requiring
no metric normalization procedures. We showed how our estimated weights can
result in a vastly different ordering compared to uniform weighting. This has the
potential to better inform organizers about the results, and provide additional
insight into the performance of competing algorithms. For example, the distrib-
ution of weights and corresponding ranking changes may provide a clue that a
particular problem is better solved by a method based on intensities, contrast,
shape models, or physical models. Correlation is currently handled by careful
selection of metrics. What remains is to automatically select the best metrics
in addition to their weight, perhaps by integrating the work of [7]. Future work
will explore and validate our method on data from a public challenge.
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