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Abstract. Noninvasive reconstruction of cardiac electrical activity from
surface electrocardiograms (ECG) involves solving an ill-posed inverse
problem. Cardiac electrophysiological (EP) models have been used as
important a priori knowledge to constrain this inverse problem. How-
ever, the reconstruction suffer from inaccuracy and uncertainty of the
prior model itself which could be mitigated by estimating a priori model
error. Unfortunately, due to the need to handle an additional large num-
ber of unknowns in a problem that already suffers from ill-posedness,
model error estimation remains an unresolved challenge. In this paper,
we address this issue by modeling and estimating the a priori model
error in a low dimensional space using a novel sparse prior based on
the variational approximation of LO norm. This prior is used in a pos-
terior regularized Bayesian formulation to quantify the error in a priori
EP model during the reconstruction of transmural action potential from
ECG data. Through synthetic and real-data experiments, we demon-
strate the ability of the presented method to timely capture a priori
model error and thus to improve reconstruction accuracy compared to
approaches without model error correction.
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1 Introduction

Noninvasive electrophysiological (EP) imaging aims at a mathematical and com-
putational reconstruction of cardiac sources from high density electrocardiogram
(ECG) signals. It requires solving an inverse problem with severe ill-posedness,
especially when cardiac sources are solved transmurally throughout the 3D
myocardium. To overcome this challenge, an important approach is to incor-
porate a constraining model encoding a prior: physiological knowledge about
the electrical activity inside the heart. Examples of such models include simple
step jump functions [9] to describe the activation of action potential, parame-
terized curve models to describe the spatiotemporal wavefront evolution [5], and
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biophysical EP models to describe the dynamics of action potential via differ-
ential equations [6,10]. While the use of such a priori models is effective in
regularizing the ill-posed problem, often the inaccuracy and uncertainty of the
model itself creates errors and uncertainty in the solution [4]. This issue of model
inaccuracy and the resulting solution uncertainty has been studied with convex
relaxation of the original problem of EP imaging [4]. Similarly, uncertainty in
the inverse solution of EP imaging due to model error, and its consideration
to improve the clinical interpretation was explored in [11]. While these works
have highlighted the importance of model error in EP imaging, addressing these
errors when the prior knowledge is in the form of a complex physiological model
remains a challenge.

Outside EP imaging, the issue of error and uncertainty in model prediction
has been an active area of research in weather and climate forecasting. One com-
mon approach is to model the error as a zero-mean Gaussian distribution with
an unknown covariance to be inferred from data. To address high dimensional-
ity, the covariance matrix is usually parameterized by a small set of parameters,
such as via a linear combination of basis matrices weighted by parameters to
be learned from data [3]. Another common approach is to model the error, for
example as a function of error in model parameters [7]. In either case, the key is
to exploit the prior knowledge about the nature of the error to reduce dimension.

In this paper, we exploit the low-dimensional nature of cardiac wavefront
propagation to formulate a sparse model for the prediction error made by a
a priori EP model. Wavefront, which can be thought as the spatial gradient of
action potential, is always localized in a small region at a time. This provides the
motivation to focus on the model inaccuracy in the spatial gradient (i.e., error
of the predicted wavefront), which will reduce the dimension of the unknown
error while preserving the accuracy of the low-dimensional representation of the
inverse solution. To do so, we present a posterior regularized Bayesian approach
to the reconstruction of transmural action potential from ECG data, in which a
generalized Gaussian distribution is formulated to model the sparse error in the
gradient domain. A variational lower bound of the generalized Gaussian distribu-
tion is derived, based on which we quantify the model error while simultaneously
reconstructing the action potential. As we will show mathematically, solution of
the inference problem will amount to iteratively estimating the prior covariance
matrix of the predicted action potential, such that the condition of sparsity in
error is satisfied. In both synthetic and real-data experiments, we demonstrate
the ability of the presented method to timely capture the prediction error in
the a priori EP model, and thereby to deliver more accurate reconstructions of
action potential compared to approaches without model error correction.

2 Bayesian Formulation with Error Modeling

The relation between ECG and transmural action potential can be described by
a quasi-static approximation of the Maxwell’s equations for an electromagnetic
field [10]. Solving these equations numerically on a subject-specific heart-torso
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model, a linear forward model can be obtained as y;, = Huy, where H is called
the forward matrix, and y, and uj respectively denote a vector of ECG and
action potential at any time instant k. The inverse problem constitutes the esti-
mation of uy given data y, for all time k.

One of the important constraints used to regularize the ill-posed inverse prob-
lem of ECG is the cardiac EP model describing the spatiotemporal propagation
of the action potential inside the heart [6,10]. Assuming that the temporal evolu-
tion of the action potential follows a markov model, the action potential at every
time instant k£ can be predicted from its value at the previous time instant using
the a priori EP model. Without the loss of generality, the two-variable Aliev-
Panfilov model [1] is adopted in this paper for this purpose. We drop subscript
k for clarity for the rest of the paper.

One common way to calculate the posterior distribution of u is to apply Bayes
theorem as p(u|Uprev, ¥) = p(y|u)p(u|upres)/p(y), where u,,, is the estimated
action potential at previous time instant. In addition, we are also interested in
calculating posterior distribution of u such that the value of u is constrained
within its physiological range, i.e.,—90mV < u < 20mV. This is achieved by
finding a distribution r(u) which minimizes the Kullback-Leibler (KL) diver-
gence KL(r(u)||p(u|upres,y)) from r(u) to p(u|upre,,y). This is equivalent to
finding an optimum solution of following convex problem [12]:

p(u‘Y7upTev) = min KL(r(u)”p(u‘uprev))7/r(u) logp(y|u)du

i
r(u)
st (1) € Ppost (1)

where Ppos: denotes the subspace of Gaussian distributions whose mean lie in
the range [—90mV,20mV].

Likelihood Function: The forward model is incorporated in the likelihood
function given by p(y|u, 8) = N (y|Hu, 371I) where 8~! denotes the unknown
variance of data error and the inverse variance, 3, follows a Gamma distribution.

Prior Distribution with Error Modeling: The prediction from the a priori
EP model is incorporated into a prior distribution on u.

U=y + 7 =tpg +N(0,Cpg) + 7 = tpg + 7 (2)

where upq = f(Upres) represents the distribution predicted by EP model, f(-)
represent the corresponding function and 7) represents model error. Because f(-)
is nonlinear, u,q is calculated by taking a set of samples from the estimated
posterior distribution of upyey, passing them through the EP model, and fitting
a Gaussian distribution to the output samples. In most existing works that use
such a model to constrain the reconstruction of u, 7 is assumed to be a zero-
mean Gaussian error with a known covariance that is experimentally adjusted for
sub-optimal reconstruction accuracy [10]. In our case, we absorb all the uncer-
tainties into error vector § = N(0,C,q) + 7. To directly estimate 7, however,
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will translate to the estimation of a high-dimensional covariance matrix that is
infeasible given the limited ECG data. We address this problem by modeling
the prediction error 1 to be sparse in the spatial gradient domain, utilizing the
knowledge about the spatial sparsity of the action potential wavefront. Let D
denote a spatial gradient operator on the cardiac mesh, we denote the error in
the gradient domain as x = Dn.

In deterministic cases in the field of compressed sensing [2], it has been shown
that a Lp-norm constraint with 0 < p < 1 can be used to promote sparsity, where
the sparsity increases as p decreases towards 0. In order to use the same concept
in a probabilistic setting, we propose a generalized Gaussian distribution as a
prior distribution over variable x, with the value of p ~ 0 to approximate the
effect of a LO norm constraint:

px(xlar) = [T, € exp(—=l) (3)

where z;,7 = 1,--- , N are independent elements in the vector x, « is the para-
meter of distribution and C' is normalization constant. The prior distribution of
u can then be obtained by replacing x = Dn = D(u — @,4) in Eq. (3):

p(ultyg) o px(D(u — a,q)) (4)

3 Posterior Regularized Bayes for EP Imaging

Variational Lower Bound: The posterior distribution in Eq. (1) is analytically
intractable given the generalized Gaussian prior as defined in Eq. (4) due to
presence of absolute value in the exponent. Below we present a solution strategy
based on its variational lower bound.

Lemma 1. exp(%) > exp (—% - 2%”(2—72_)17%2) NV >0,z e R,a>0 [§]
Theorem 1. Let © = (x1,x9,...xN) be a vector with independent components
each following a generalized normal distribution with same parameters o, p. then,

c’ ' Ax 2—p,a’ 2
> — —_(— ) - P72
plale) > o exp(~ 22 )exp< S RED WY

i

Proof. Using Lemma 1 in prior distribution as defined in Eq. (3), we have

p(xla) > S exp(= 3, 55) exp (- 3, 22 (22) 77 ) (5)
= G exp(—2A%)exp (—25(2) 72 1,077 (6)

where A = diag(\), C' = CY, and A = 771 is used in Eq. (6) O
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Theorem 1 gives us a variational lower bound for the generalized Gaussian dis-
tribution defined in Eq. (3). Applying it to Eq. (4), we obtain a variational lower
bound for the prior distribution of p(u|u,q) as follows:

p(ul,g) > g(ufaya, A, a)

c’ —(u—1,0))"D"AD(u — @) 2—p(oz72)ﬁ Z)‘#)

X OéiNeXp( B 9 D

i

(7)

Inference: The posterior distribution in Eq. (1) can now be solved by maxi-
mizing the variational parameters of prior distribution as defined in Eq. (7). It is
achieved by following two steps: (1) estimate parameters A, o and 8 by Expec-
tation Maximization (EM), and (2) obtain the posterior distribution of u by
posterior regularized Bayes [12].

Parameters A\, o and [ are estimated using EM by marginalizing over hidden
variable u where the two steps: E step and M step are iterated until convergence.
In the E-step, we take expectation and obtain a function £ as

‘C(av 67 >‘) = Eq(u) [lOg (p(u,y|a, >‘a /8)) + lOg(ﬂ)] (8)

where Ey [ ] denotes the expectation with respect to the posterior distribution
of u with fixed parameters oia, 3,4, Aota Obtained in previous iteration. The
M-step consists of the following maximization:

Qnews ﬁneun Anew = argmax ‘C(av 6a A) (9)
a,B,

It is noteworthy that for fixed values of parameters, the prior distribution as
defined in Eq. (7) is Gaussian with the covariance matrix (D’ AD) ™" and A =
diag(X). This gives an interesting interpretation of the presented EM procedure
as an iterative process to estimate the prior covariance matrix. In specific, if we
focus on the wavefront Du, the diagonal element of the matrix A™! describes
the variance of each individual element in Du. We will show in Sect.4 how this
estimated variance is related to the a priori model error.

Once the values of parameters &, B , X are obtained by the EM procedure, 5\, &
are plugged in Eq. (7) to obtain prior distribution g(u|t,q, A, &, ) which is then
used in Eq. (1) to obtain posterior distribution. Since a Gaussian distribution is
specified by mean and covariance, the minimization of (1) is done over a space
of mean vectors and covariance matrices satisfying the given constraints.

4 Results

While we described a general algorithm for model error estimation, we test it for
the detection of errors in a priori EP model due to the presence of myocardial
scar tissue. Using synthetic and real data experiments, we compare the perfor-
mance of the proposed method to that without model error estimation [10].
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Fig. 1. Snapshots of the action potential at different time instants. For each method
at each time instant, the figure on the left shows the prediction from the a priori EP
model; the figure on the right shows the estimated result.

- variance

Fig. 2. Centre shows spatial map of variance at various locations of the heart at a time.
Two sides show temporal plots of the estimated variance at a site of scar tissue (left)
and healthy tissue (right)

Synthetic Experiments: We test our method in a set of 17 experiments
on image-derived heart-torso models with the myocardial scar set according
to the AHA 17-segment model of the LV. 120-lead ECG data are simulated
and corrupted with 20 dB Gaussian noise for inverse reconstruction. From the
reconstructed action potential, activation time is extracted and scar is identi-
fied as the regions with an activation time larger than a threshold value. The
accuracy of the detected scar is measured with two metrics: (a) dice coeffi-
cient =2(S1NS3)/(S1US,y), where S; and Sy are reconstructed and true regions
of scar, (b) distance from the reconstructed center to actual center of scar.
Figure 1 gives an example where a myocardial scar is located towards the
anterior base of the LV. The a priori EP model, however, assumes normal tissue
property throughout the myocardium. As a result, model error exists in the
predictions made by the EP model once the action potential propagates through
the region of the myocardial scar. Compared to the method without model error
correction, the proposed method is able to make significant improvements in two
fronts: (1) the presented method corrects model errors significantly to drive the
solution closer to the ground truth at each time instant, and (2) the reconstructed
solution is corrected toward the ground truth much earlier in time. As shown in
Fig. 2, higher variance of the wavefront is obtained at the region near myocardial
scar, signifying possible errors in the model at those regions of the wavefront.
This increase in prior variance of wavefront helps make significant data-driven
correction to the a priori prediction. The temporal trace of the variance also
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shows that the estimated variance is consistently higher around the scar than
that around the healthy tissue, suggesting low model errors in the latter region.

Figure 3b lists the quantitative accuracy of the detected scar with and with-
out model error estimation, where a statistically significant improvement of accu-
racy is obtained with model error estimation (unpaired-¢ tests, p < 0.005). Note
that, Without error estimation, late activation due to scar is not captured in
50% of the cases, and the metrics are calculated only from those where late
activation is successfully reconstructed. Several examples of the reconstructed
activation time are shown in Fig.3a, demonstrating the improvement of the
delayed activation reconstructed at the region of myocardial scar by the pre-
sented method.
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Fig. 3. (a) Activation time maps. Regions with high values of activation time corre-
spond to regions of scar. (b) Comparison of the accuracy of scar detection with and
without model error correction.
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Fig. 4. Real data results of activation time maps versus in-vivo bipolar voltage maps.
In bipolar voltage maps, red regions correspond to scar and purple regions correspond
to healthy tissue. In the reconstructed activation time maps, regions of high activation
time correspond to scar

Real-Data Experiment: Two real-data case studies are performed on patients
who underwent catheter ablation due to scar-related ventricular arrhythmia.
From 120-lead ECG data, action potential is reconstructed with and without
model error estimation. Bipolar voltage data from in-vivo catheter mapping is
used as reference to evaluate the detected scar regions. As shown in Fig. 4, in
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Case 1, the presented method with model error correction is able to identify the
area of scar at both the anterior and inferior base. In contrast, reconstruction
without error correction is only able to find scar in the inferior basal region.
For Case 2, results from both methods are similar if one were to look at the
region of high activation time (red region). However, at the mid-lateral region
where voltage map shows the presence of scar, the activation time in the recon-
struction with error correction is still high (green), while it is low (blue) for the
reconstruction without error correction.

5 Conclusion

This paper presents a novel approach to model and estimate the error in a priori
EP models by exploiting its sparsity in the gradient domain. Experiments show
promising results in the ability of the presented method to timely capture the
error in the a priori model at the correct spatial location. The next step would
be to utilize the estimated variance to correct the model, e.g., by facilitating the
estimation of its spatial parameters.
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