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Abstract. Localizing the center of the spinal cord on MR images is a
critical step toward fully automated and robust quantitative analysis,
which is essential to achieve clinical utilization. While automatic local-
ization of the spinal cord might appear as a simple task, that has already
been addressed extensively, it is much more challenging to achieve this
across the large variation in MRI contrasts, field of view, resolutions and
pathologies. In this study, we introduce a novel method, called “OptiC”,
to automatically and robustly localize the spinal cord on a large vari-
ety of MRI data. Starting from a localization map computed by a linear
Support Vector Machine trained with Histogram of Oriented Gradient
features, the center of the spinal cord is localized by solving an optimiza-
tion problem, that introduces a trade-off between the localization map
and the cord continuity along the superior-inferior axis. The OptiC algo-
rithm features an efficient search (with a linear complexity in the num-
ber of voxels) and ensures the global minimum is reached. OptiC was
compared to a recently-published method based on the Hough trans-
form using a broad range of MRI data, involving 13 different centers,
3 contrasts (T>-weighted n=278, Ti-weighted n=112 and Ty -weighted
n=263), with a total of 441 subjects, including 133 patients with trau-
matic and neurodegenerative diseases. Overall, OptiC was able to find
98.5% of the gold-standard centerline coverage, with a mean square error
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of 1.21 mm, suggesting that OptiC could reliably be used for subsequent
analyses tasks, such as cord segmentation, opening the door to more
robust analysis in patient population.

Keywords: Spinal cord - MRI - Detection * Localization *+ Segmenta-
tion - Global optimization - Machine learning

1 Introduction

Detecting the spinal cord (SC) on MRI data is important for automating quan-
titative analysis pipelines, such as SC segmentation or template registration.
For example, about 20 published SC segmentation methods still require manual
intervention for initialization [1] and could be made fully automatic if preceded
by a robust SC centerline localization. While detecting the SC seems like an easy
image analysis task at a first glance, it is in fact challenging to make it robust
and accurate across a variety of cord shapes, vertebral levels, pathologies, image
resolutions and orientations, types of contrast and common image artifacts (e.g.,
susceptibility, motion, ghosting, blurring, Gibbs).

Some existing automatic methods are based on the characteristic shape of
the cord using Hough transform detection with vesselness filtering [2], active
contour [3], or max-flow approach [4]. Other methods use image-based strategies
by pattern [5] or atlas [6] registration. While these recent automatic algorithms
have shown good performances [1], they are often limited to specific contrast
and resolution.

In this paper, we introduce a new accurate, automatic, fast and robust
method (OptiC) to localize the center of the SC. OptiC is based on a standard
machine learning method combined with a distance-transform-based global opti-
mization. To demonstrate its performance on non-curated data (i.e. effectiveness
versus efficiency), OptiC is validated across a large dataset (n=653) involving a
variety of image quality, contrast and pathologies.

2 Method

The OptiC method models the SC centerline as a continuous curve following the
superior-inferior (S-I) axis. To find it, a map of the most probable SC localization
is computed using standard object detection tools. An optimization problem
compromising this map with the spine continuity is then solved to take into
account the global tubular shape of the SC.

Spinal Cord Localization Map. Detection task of a given object can be mod-
eled as a classification problem predicting the presence of that object in a given
image-patch. Here, to localize the SC, a classifier is trained on patches contain-
ing (positive) and not containing (negative) the SC. Then, for a testing image,
the classifier confidence of SC presence within each patch is assigned to the
corresponding voxel, resulting in a SC localization map S.
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Spinal Cord Centerline Extraction. The SC centerline is modeled as a regularized
curve in a trade-off between the localization map values and the SC continuity.
Consequently, the centerline curve could be expressed as the solution of the
following optimization problem of the cost function C":

n—1

min  Cp_1(co, .. Cpn_1) = mln ZS s +/\Z||cz+1—czH (1)

COyeersCn—1 Cn—1

with A, a penalization coefficient; c,, the SC center and S,, the localization
map on the z™ slice; n, the number of slices in the 3D input MRI volume.
The first term represents the classifier confidence of the SC localization, whereas
the second term is a regularization term to enforce the SC continuity between
adjacent slices.

In the following section, a novel algorithm is proposed to solve this problem
efficiently. The robustness of the SC localization is ensured by the finding of the
global minimum of the optimization problem.

2.1 Optimization Problem Resolution

Several approaches could be used to solve Eq. 1: a brute force algorithm would
find the global minimum but would be time consuming (O(s™) where s is the
number of pixels per slice and n the number of slices), gradient descent would be
fast but it does not ensure to find the global minimum. Here, a novel algorithm is
presented to find the global minimum very efficiently, in O(s-n), using distance-
transforms. To do so, a sequence (M},) is introduced as:

Mi(zr) = min  Cg(zg,...,x). (2)

TOyeesTh—1
Since min,, , My_1(zp—1) = ming, . 4., Cno1(Zo,...,2p_1), the center
solution on the last slice is given by ¢, 1 = argmin, _ M, _1(2,_1).
This sequence (M) can be expressed to satisfy the following recurrence
relationship:

Mk(ack): mm ZS Z, +)\Z||zz+1 z.|%,

o Tk—1

M, _ _
—Sk(zK) + A min {kl)(\xkl) + ||k — xk—1||2} ;

= —Sk(xr) + AD (Mre-1/x) (z).
with D the image transform defined as D(f)(z) = min, f(y) + ||z — y|*. This

recurrence relation enables to infer the centerline, solution of the Eq. 1. Indeed,
given ¢, cx_1 can be expressed as:

. M1 (x—1)
C—1 = argmin ——=——
Tk—1

= N (Me-/2) (cx).
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with N the image transform defined as N(f)(z) = argmin, f(y) + ||z — y|>. D
and N can be interpreted respectively as the distance transform and nearest
neighbors transform of an image, which can be computed very efficiently (with
linear complexity), as proposed in [7,8].

The resolution of Eq.1 is formalized in Algorithm 1. The sequences (M)
and (N) are first computed using distance and nearest-neighbor transforms,
respectively. The SC centerline sequence (¢i) is then inferred by backtracking
on the nearest-neighbor-transforms (Ng). As the computation of M} and Ny is
linear, in O(s), the complexity of OptiC is also linear, in O(s.n).

Algorithm 1. Centerline Extraction Procedure: OptiC

1: procedure ExtractCenterline(S, \)
2: MO = —So

3: for z=1:n-1 do

" M. =540 (M5
5: N, =N (M)

6: Cp—1 = argmin, _, Mp—1(Tpn—1)
7: for z=n-2:0 do

8: Cz = z+1(cz+1)

2.2 Implementation Details

For each MRI volume, preprocessing steps involve orienting the image to R-P-1
(Right-to-left, Posterior-to-anterior, Inferior-to-superior), and setting the reso-
lution in the axial plane to 1 mmx 1 mm. Implemented in C++4, OptiC computes
the SC localization map on each 2D axial slice using a Support Vector Machine
(SVM) trained with Histogram of Oriented Gradient features (HOG) [9]. The
HOG features were computed using the OpenCV library [10] with default para-
meters on 32 x 32 patches size and with signed gradients. Note that the use
of small patch size as well as the sophisticated normalization scheme of HOG
makes the computation of the localization map robust to image artifacts and
intensity scale changes.

3 Experimental Results

3.1 Data Sets

This is a retrospective study involving 13 different centers. The dataset is com-
posed of 441 subjects, including 133 patients (Multiple Sclerosis (MS) n=52,
Degenerative Cervical Myelopathy (DCM) n =52, Neuromyelitis Optica (NMO)
n=19, Spinal Cord Injury (SCI) n=5, Amyotrophic Lateral Sclerosis (ALS)
n=>5)). Images were acquired on 3T systems of three vendors: Siemens (n = 437),
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Philips (n=40) and GE (n=176). Contrasts included Ty — weighted (n=278),
T, —weighted (n=112) and Ty — weighted (n =263) images. Spatial resolutions
included isotropic (n=2353, from 0.7 to 1.3 mm voxel size) and anisotropic data
with axial (n=294, in plane: from 0.3 to 0.9 mm, slice thickness: from 2.5 to
24.5mm), or sagittal orientation (n =26, in plane: from 0.4 to 0.7 mm, slice thick-
ness: from 0.8 to 2.8 mm). As ground truth of the SC centerline, the center of
the SC was manually localized on each axial slice of each volume.

3.2 Model Training

Each contrast dataset (Ny¢) was split into two independent subsets: (1) a val-
idation set (Nyqii4, used to train and validate the model) involving 20% of the
healthy controls (HC) randomly selected, (2) a testing set (Nyot — Nyatid, used
to test the trained model) with the patients and the remaining HC. For each
contrast, the model was trained with only one image, selected from the valida-
tion set using a Leave (Nyqi:q — 1) Out cross validation: for each iteration, the
trained model is validated on the Nyq;;q — 1 remaining images by computing the
Mean Squared Error (MSE) between the predicted and ground truth SC center-
lines. The averaged MSE was less than 2 mm for 98.79% of iterations, suggesting
robustness in the choice of the training image. The model used for the rest of
the study is trained with the image having the lowest averaged MSE. Note that
we also evaluated models trained with 5, 10, 15, 20 and 25 images and results
were similar (or slightly worst) as when using only one image for training,.

In order to assess the benefit of the proposed S-1 axis regularization, OptiC
was compared without (A set to 0 in Eq.1) and with (A set to 1) regulariza-
tion. When A is zero, the centerline is given by the maximal values of the SC
localization map. MSE was 5.72+ 7.17 mm for OptiC(A=0) and 1.21 £1.31 mm
for OptiC(A=1) (averaged across contrasts n =560, paired student t-test for
each contrast gave p-values < 0.001), demonstrating the interest of the regu-
larization. Despite the complex optimization imposed by the 3D regularization,
computation time was on the same ballpark: 14.6 & 5.9 ms per 2D axial slice
for OptiC(A=1) vs. 8.70 £ 3.91 ms for OptiC(A=0) (including reading/writing
tasks, on an iMac i7 4-cores 3.4 GHz 8 Gb RAM). In the rest of the manuscript,
the penalization coefficient A is set to 1.

3.3 Performance Evaluation

Figure 1 shows a comparison between OptiC and a recently-published automatic
SC localization [2], based on Hough transform detection with vesselness filter-
ing (referred as Hough in the following paragraphs). Evaluation metrics were
the localization rate (defined as the percentage of slices for which the predicted
centerline is included in the manually-segmented SC) and the MSE (defined
as the mean squared error between the predicted and the ground-truth center-
lines, calculated per volume). The localization rates were 98.53+4.94% for OptiC
and 40.96+41.78% for Hough (averaged across contrasts n =560, paired student
t-test gave p-values < 0.001). The MSE results, for subjects with a detected cord
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Fig. 1. Localization rate (top) and MSE (bottom) results, compared between Hough
(left distribution plots) and OptiC (right distribution plots), where each point repre-
sents a subject. The best value of each metric is indicated in green in the y-axis. Each
method was evaluated on the 3 contrast testing sets: Tow, Tiw and T5w (from left to
right). The table presents for each method the mean+std and the [5";95!"] percentile
values.

Tiw

N

/ Manual centerline / OptiC centerline

Fig. 2. Examples of automatic SC centerline localization on HC and patients, on Thow
(top), Tsw (bottom) and Tiw (left) images. Comparison between ground-truth (red)
and automatic (blue) SC centerlines on axial and sagittal views.
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(localization rate > 0%), were 1.21 + 1.31 mm for OptiC and 2.79 + 4.50 mm
for Hough (averaged across contrasts n=>560, paired student t-test gave a
p-value < 0.001). Qualitative examples of 3D SC detection are illustrated in
Fig. 2.

Moreover, OptiC outperformed Hough on challenging images such as patho-
logical cases: the localization rates were 97.05 4+ 6.85% for OptiC and 35.63 +
45.18% for Hough, the MSE results, for patients with a detected cord (localiza-
tion rate > 0%), were 1.33 £ 1.39 mm for OptiC and 3.69 £ 5.39 mm for Hough,
averaged across contrasts n =201 (paired student t-test gave p-values < 0.001).

As a proof-of-concept application, OptiC was used for initializing a SC seg-
mentation method which uses propagation of 3D meshes (PropSeg) [2]. Dice
coefficient (DC) calculated between the predicted and the ground-truth seg-
mentations were 0.87 4+ 0.15 when using OptiC initialization versus 0.45 £ 0.43
when using the default initialization (n=2560, paired student t-test gave p-
values < 0.001). OptiC was particularly reliable in pathological cases with a
DC of 0.82 4+ 0.16 versus 0.36 & 0.41 (n=201, paired student t-test gave p-
values < 0.001).

4 Discussion and Conclusion

OptiC can detect SC centerline on MRI data by solving an optimization problem
combining a standard pattern detection algorithm [9] and regularization along
the S-T axis. Key benefits of this combination are (1) robustness to image arti-
facts thanks to the sophisticated normalization HOG scheme [9], (2) anatomical
consistency with the cord continuity thanks to shape regularization, (3) robust-
ness of the localization, ensured by the global minimization of the optimization
problem, and (4) fast computation time, linear with the number of voxels. How-
ever, the current method makes the assumption that the SC is present in each
axial slice. Future work can address this issue by rejecting a slice that does not
contain the SC.

This paper demonstrated the strong performances of the OptiC method to
automatically detect the SC on MRI data. By validating OptiC on a large multi-
contrast/center/resolution/field-of-view dataset, both accuracy and robustness
of this method have been shown, even on challenging subjects with pathological
hyperintense lesions or cord deformations (such as encountered in MS (n=>52)
or DCM (n=52) patients). Moreover, since these good results were obtained
with only one training image, it suggests the possibility to create a new model
if needed (for example, adapted to a new contrast) without requiring a large
amount of training images.

Future work will compare OptiC with other available methods [6], inves-
tigate (i) the impact of adding image preprocessing steps and (ii) the opti-
mization of model hyperparameters, such as SVM and HOG parameters, penal-
ization coefficient A, number of training images, characteristics of the train-
ing image(s) (vertebral coverage, image resolution). Another promising strategy
would be to augment the training data by image rotations around the S-I axis. A
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proof-of-concept application demonstrated the utility of OptiC for improving SC
segmentation, and other applications such as gray matter segmentation or shape
analysis could benefit from the proposed approach.
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