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Abstract. For every hospital, it is desirable to fully utilize its operat-
ing room (OR) capacity. Inaccurate planning of OR occupancy impacts
patient comfort, safety and financial turnover of the hospital. A source
of suboptimal scheduling often lies in the incorrect estimation of the
surgery duration, which may vary significantly due to the diversity of
patient conditions, surgeon skills and intraoperative situations. We pro-
pose automatic methods to estimate the remaining surgery duration in
real-time by using only the image feed from the endoscopic camera and
no other sensor. These approaches are based on neural networks designed
to learn the workflow of an endoscopic procedure. We train and evalu-
ate our models on a large dataset of 120 endoscopic cholecystectomies.
Results show the strong benefits of these approaches when surgeries last
longer than usual and promise practical improvements in OR manage-
ment.

Keywords: Remaining duration prediction · Surgical workflow
analysis · Operating room management · Deep learning · Recurrent
neural networks

1 Introduction

The surgery department is one of the busiest units in a hospital. This creates the
need for an accurate surgery duration prediction. It plays an important role in
optimizing the resources of the surgical facility, especially since high expenditure
mainly comes from: (1) duration overestimation leading to underutilization of
resources and (2) duration underestimation causing high patient waiting time [7].
Additionally, a more deterministic time table improves patient safety by reducing
the duration of anesthesia, ventilation and time spent in the intensive care. How-
ever, it is difficult to optimally allocate the OR resources due to the uncertainty
of interventional duration, caused by the diversity of patient conditions, surgeon
skills and the variety of intraoperative situations. For instance, [12] reports that
general surgeons underestimated the time required for the procedure by 31 min
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in average, while anaesthesiologists underestimated it by 35 min. A recent study
over 157 cholecystectomy procedures [5] has also shown that there is a large vari-
ation of patient preparation and waiting time (47± 17 min), while it typically
requires 25 min to prepare the patients.

Several approaches have been proposed to address the OR scheduling prob-
lem, aiming to preoperatively predict the surgery duration. For instance, the
“Last 5 Case” estimate, proposed in [9], predicts the surgery duration based on
the procedure-surgeon historical data. Other data, such as patient’s age [2], oper-
ational (e.g., OR assignment and assigned surgical team) and temporal factors
(e.g., the weekday, month, and year) [8] have also been investigated to predict
the surgery duration. However, such preoperative approaches still face challenges
due to the uniqueness and unpredictability of each surgical procedure.

One possible solution to these challenges is to dynamically adapt the schedule
as the day progresses. Typically, verbal communication with the surgical staff can
be used to obtain an estimate of the remaining surgery duration (RSD). However,
this disrupts the smoothness of surgical workflow and may compromise the safety
in the OR [14]. Thus, semi-automatic methods, such as the one presented in [3]
which requires the input of anaesthesiologist during surgery, are not desirable
to predict the RSD. Other signals, such as surgical tool usage [10,11], surgeon’s
right hand [10], and low-level task representations (i.e., tool, organ, and action)
[4] have also been used to perform the RSD prediction.

However, in these studies, the signals are obtained through manual annota-
tion, which currently renders the methods impractical for intraoperative appli-
cations. In [5], the activation of the electrosurgical device was utilized to answer
the question: “should the next patient be called now?” The pipeline is con-
strained to start the detection after the procedure has progressed for 15 min
and assumes that the next patient should be prepared 25 min before the surgery
ends. These constraints render the method less broadly applicable than general
RSD estimation.

Recently, it has been shown that visual information contains more discrim-
inative features than tool binary signals to perform surgical phase recognition
[13]. In this paper, we argue that the visual information also contains discrimi-
native characteristics for RSD prediction. To the best of our knowledge, this is
the first work to address such a problem by relying solely on visual information
from videos. Here, we propose and evaluate two approaches to perform RSD
prediction during cholecystectomy procedures. In the first approach, we use the
prediction of the current surgical phase and phase statistics to estimate the RSD.
In the second approach, we directly perform RSD prediction via regression from
the video information available up to the current time. For both approaches, we
propose a pipeline consisting of a convolutional neural network (CNN) and a
long short-term memory (LSTM) network. These approaches are compared to
two baselines: the first baseline estimates the RSD by relying on simple statistics
of surgery durations, while the second relies on an expert observer to manually
indicate surgical phase transitions.

The evaluation is performed on a large cholecystectomy video dataset, con-
taining 120 cholecystectomy videos.
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In summary, the contributions of this paper are threefold: (1) we propose
a deep learning approach, solely relying on the visual information, to predict
the remaining surgery duration; (2) we perform a wide range of comparisons on
RSD prediction on a large cholecystectomy video dataset; and (3) we show that
the proposed approaches yield promising practical results, especially when the
surgeries are shorter or longer than usual.

2 Methodology

2.1 Methods for RSD Prediction

Näıve Approach. The most straight-forward approach to perform RSD pre-
diction is to use the historical data of the surgeries: at time t during a surgery,
the RSD trsd is obtained by computing max(0, tref − t), where tref is a refer-
ential duration derived from the dataset (e.g., mean or median). The max(·, ·)
operator is used to ensure that trsd is always positive. However, this method
does not take into account any intraoperative information and only relies on the
statistics of the historical data. One way to incorporate intraoperative informa-
tion into the model is by using key time points related to the progression of the
surgery.

Phase-Inferred Estimation. The execution of a surgery is guided by a sur-
gical workflow representing the sequence of the tasks to be performed during
the procedure. Here, we argue that these tasks could be used as intraoperative
information to estimate the RSD since some tasks are performed uniquely at
certain times of the procedure. For example, gallbladder packaging during chole-
cystectomy procedure indicates that the surgery is ending soon. Specifically, we
use surgical phases as key information [13]. We perform RSD prediction by com-
puting max(0, tpref − tp) +

∑N
m=p+1 tmref where tmref is the referential duration of

phase m, tp is the elapsed time in current phase p, and N = 7 is the number
of defined phases. This approach requires the phase information p at each time
step. The best possible phase information could be obtained from an expert
observer, i.e. a clinician who informs the system about phase transitions during
a surgery. To remove the requirement for human intervention, which is expen-
sive and may introduce disruptions in the workflow, we automatically obtain
the phase information by using a deep learning pipeline, consisting of a CNN
and an LSTM network. For CNN, we adopt the residual network architecture
(ResNet) [6]. This network is chosen since it is the state-of-the-art network in
the computer vision community and has outperformed other networks, such as
AlexNet for surgical phase recognition in our early experiments (around 10%
difference in accuracy). We connect the visual features coming from the dense
layer of ResNet to the LSTM network. The output of the LSTM network is
then passed to a dense layer, consisting of N = 7 nodes, the value of each node
represents the confidence being in a certain phase.
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Note that this approach is similar to the idea proposed in [11], where the cur-
rent phase is inferred by a linear HMM and the expected RSD is then computed
from the linear HMM model. The main differences are that we use a stronger
temporal model (LSTM) and rely only on visual input.

Time Regression for RSD. The aforementioned phase-inferred approaches
are strongly driven by the phase information, which only models the surgery
progress in a coarse manner. Therefore, we propose to address the RSD predic-
tion using direct estimation via regression. The RSD regression is carried out
using a deep pipeline similar to the one used for phase recognition. The difference
is that here the LSTM network is trained to perform regression. The output of
LSTM is connected to a dense layer of one node containing the predicted RSD,
which is ultimately smoothed using a 15-second window.

Note that RSD regression is a harder problem than phase classification:
frames with the same RSD label but from videos of different length may belong
to different surgical phases and thus differ significantly in visual appearance.

2.2 Training Strategy

Two-Step Optimization. Since ResNet is a large network and the cholecys-
tectomy videos are of long durations, it is difficult to train the complete pipeline
in an end-to-end manner due to memory constraints. To alleviate this problem,
we use a two-step optimization process. First, we train the CNN by finetuning a
pre-trained ResNet model to perform surgical phase recognition so that the net-
work extracts discriminative and semantically meaningful visual features from
the videos [13]. It is beneficial to train the CNN on surgical phase recognition
because, thanks to the surgical workflow, the visual features extracted by the
CNN will then contain information about the progression of surgical procedure,
which is correlated to the RSD. Once finetuned, the CNN is then used to extract
the visual features, which will later be utilized to train the LSTM networks (for
either phase recognition or RSD prediction) on complete sequences.

RSD Normalization for Regression. The regression function has a wide
range of possible values. Since the sigmoid function σ(x), which is used in the
sigmoid cross-entropy loss function, plateaus after x = 6, we normalize the RSD
value by dividing it with the highest duration. At test time, the estimated RSD
is denormalized to obtain the final RSD.

Dataset Balancing. To perform the evaluation, the dataset has to be divided
into subsets. If done improperly, this could lead to an imbalance in the resulting
subsets, e.g., all long videos grouped into the same subset, which is undesirable.
Here, we balance dataset subsets using a genetic algorithm to minimize the fol-
lowing functions: (1) difference between minimal and maximal mean durations
(to encourage similar mean durations among subsets), and (2) negative sum
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of standard deviations of durations in subsets (to encourage diversity of dura-
tions within subsets). The objective functions are chosen to be competing with
each other, so that both inter-subset similarity and intra-subset diversity are
developed.
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Fig. 1. (a) Distribution of the surgery duration T in the dataset with dashed blue
lines indicating the boundaries of Q1 and Q3 (first and third quartiles) of the dataset.
(b, c, d) MAE against RSD prediction for lower, middle, and upper duration ranges.

3 Experimental Setup

Dataset. The dataset contains 120 videos, which is generated by combining
the Cholec80 dataset [13] with additional 40 cholecystectomy videos. All videos
are annotated with the phases defined in [13]. They are recorded at 25 fps and
accumulate over 75 h of recordings. Since the distribution of the surgery dura-
tions is asymmetric (as shown in Fig. 1-a), we compare the mean and median of
durations for the referential durations tref and tpref .

Dataset Split. To train and test the approach, the dataset is split into 4 parts:
T1 (40 videos), T2 (40 videos), V (10 videos), and E (30 videos). Subset T1 is
used to train the CNN, while the combination of T1 and T2 is used to train
the LSTM. The CNN is only trained on T1 to avoid overfitting of the LSTM.
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Subset V is used as validation during both CNN and LSTM training. Ultimately,
subset E is used to evaluate the trained CNN-LSTM pipeline. We perform the
evaluation on the dataset using a four-fold cross validation. We obtain the folds
by employing the aforementioned dataset balancing method.

Training Setup and Parameters. The pipeline is trained and tested at 1 fps.
A 152-layer ResNet model, pretrained on the ImageNet dataset, is finetuned with
batch size 48 on our dataset; while the LSTM is trained on complete sequences
(the longest is 5987 s). In order to mitigate the exploding gradient problem, we
employ gradient clipping. To obtain the best models, we perform an extensive
hyperparameter search, including the LSTM hidden size and dropout rate, using
the training and validation subsets. The training process is considered finished
when there is no improvement observed on the validation subset for 20 epochs.
Models are trained using TensorFlow [1] and NVIDIA Titan X GPUs. At test
time, each model runs at 1 fps on a conventional laptop’s CPU.

Evaluation Metrics. We use mean absolute error (MAE) as evaluation metric,
which is obtained by averaging the absolute difference of the ground truth and
the estimated RSD in second. This is the natural metric for the task, as it is
easily interpretable by clinicians, showing the under- and overestimation of RSD.

4 Experimental Results

In Table 1, we show the RSD prediction results. It can be seen that the Näıve app-
roach yields the highest MAE. This is expected since this model does not consider
any intraoperative information. When we incorporate the surgical phase infor-
mation, significant improvements can be observed. When we compare our pro-
posed automatic method (PhaseInferred-LSTM) to the semi-automatic method
(PhaseInferred-GT) which requires an expert observer to provide extra infor-
mation during the procedure, there is no significant difference observed in the
results. In other words, we could remove the expert observer in the RSD predic-
tion process without sacrificing the performance of the system. This is thanks to
the high performance for online phase recognition given by PhaseInferred-LSTM,
i.e., 89% accuracy on this dataset.

It can also be seen that the Time-LSTM approach outperforms other meth-
ods, yielding an MAE of 460 s, despite the challenges of predicting RSD via
regression (e.g., high variation on visual appearance for frames with same RSD
labels).

The results in Table 1 also show that the proposed approaches do not signifi-
cantly improve RSD prediction on videos from the middle range (Q1< T ≤ Q3).
This is however expected since the surgery durations in this range are close to
the median of the duration distribution. However, the proposed approaches sig-
nificantly outperform the Näıve approach on surgeries which deviate from the
“average” surgery, i.e., surgeries in lower and upper ranges (T ≤Q1 and T > Q3,
respectively).
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Table 1. RSD prediction results. The MAEs are shown for the complete dataset and
the lower, middle, and upper ranges. Q1 and Q3 are shown in Fig. 1-a.

Method Mean absolute error (MAE in second)

Complete T ≤ Q1 Q1 < T ≤ Q3 T > Q3

Naive Mean 668 ± 481 1036 ± 235 300 ± 177 1035 ± 523

Median 640 ± 478 855 ± 229 281 ± 152 1146 ± 507

PhaseInferred-GT Mean 487 ± 345 668 ± 231 252 ± 117 775 ± 411

Median 479 ± 388 426 ± 195 256 ± 153 978 ± 409

PhaseInferred-LSTM Mean 498 ± 350 611 ± 299 354 ± 266 642 ± 422

Median 487 ± 390 454 ± 282 354 ± 301 749 ± 483

Time-LSTM 460 ± 310 591 ± 234 288 ± 130 672 ± 422

To better understand how accurate the RSD predictions are for practical
applications, we investigate the reliability of the predictions by computing the
MAEs with respect to several RSD predictions (from 5 to 30 min). In other words,
this evaluation indicates how big the error is when the method predicts that the
surgery will end in, for instance, 25 min. The MAEs are computed by using a two-
minute window on the RSD predictions. We perform this experiment on all three
ranges. As depicted in Table 1, all methods perform similarly on the middle range
(Fig. 1-c). This is however not the case on lower and upper ranges (Fig. 1-b and d,
respectively), where the proposed approaches PhaseInferred-LSTM-Median and
Time-LSTM significantly outperform the Näıve approach. On the lower range,
PhaseInferred-LSTM-Median performs better than the Time-LSTM approaches,
however the difference of performance is not significant (i.e., 1.4 min). Note that
the Näıve approach is never able to predict an RSD of 5 min because the surg-
eries in this range are much shorter than the median duration. On the other
hand, the Time-LSTM approach significantly outperforms PhaseInferred-LSTM-
Median on the upper range, yielding more than 9 min improvements in average.
Compared to the Näıve approach, the Time-LSTM approach yields significantly
better results, i.e., improvements by 14 min in average. This shows that our
proposed approaches are more robust to the variation in surgery duration.

5 Conclusions

In this paper, we have presented two real-time approaches which only rely on
the visual information coming from the videos to predict the remaining surgery
duration (RSD) on cholecystectomy procedures. We have shown that the deep
learning pipeline, performing RSD regression, outperformed both Näıve and
semi-automatic methods, which solely rely on statistics and/or manually pro-
vided phase labels. The proposed automated RSD prediction approaches are
particularly beneficial when surgery durations deviate from the average. Over a
large number of surgeries, these methods have the potential to improve patient
safety as well as to significantly reduce the clinical operative costs.
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