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Abstract. Radiomic analysis in cancer applications enables capturing
of disease-specific heterogeneity, through quantification of localized tex-
ture feature responses within and around a tumor region. Statistical
descriptors of the resulting feature distribution (e.g. skewness, kurto-
sis) are then input to a predictive model. However, a single statistic may
not fully capture the rich spatial diversity of pixel-wise radiomic expres-
sion maps. In this work, we present a new RADIomic Spatial TexturAl
descripTor (RADISTAT) which attempts to (a) more completely char-
acterize the spatial heterogeneity of a radiomic feature, and (b) capture
the overall distribution heterogeneity of a radiomic feature by combin-
ing the proportion and arrangement of regions of high and low feature
expression. We demonstrate the utility of RADISTAT in the context of
(a) discriminating favorable from unfavorable treatment response in a
cohort of N =44 rectal cancer (RCa) patients, and (b) distinguishing
short-term from long-term survivors in a cohort of N =55 glioblastoma
multiforme (GBM) patients. For both datasets, RADISTAT resulted in
a significantly improved classification performance (AUC =0.79 in the
RCa cohort, AUC =0.71 in the GBM cohort, based on randomized cross-
validation) as compared to using simple statistics (mean, variance, skew-
ness, or kurtosis) to describe radiomic co-occurrence features.
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1 Introduction

Radiomics has recently shown great promise for predicting disease aggressive-
ness and subtype [1]. Radiomic texture features capture pixel-wise “image tex-
ture” through quantification of local changes in image intensity values in rela-
tion to their pixel-wise arrangement within a target region of interest (ROI) [2].
Radiomics therefore may play an important role in characterizing tissue het-
erogeneity on radiographic imaging, based on the presence of different tissue
subtypes within and around a tumor which may affect disease outcome. For
example, in glioblastoma multiforme (GBM), the tumor region includes varied
tissue types such as edema, necrotic core, and enhancing tumor. Similarly, in
rectal cancer (RCa) patients that undergo neoadjuvant chemoradiation, treat-
ment effects such as fibrosis and ulceration are present both within and proximal
to the tumor region. As a result of such significant intra-tumoral heterogeneity,
the resulting radiomic response within and around these tumors appears highly
varied (see Figs.1(a) and (f) for representative radiomic heatmaps in RCa).
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Fig. 1. Representative radiomic feature maps for 2 different rectal cancer patients,
derived from post-chemoradiation MRI, with (a) poor, and (f) favorable treatment
response. Note that the radiomic feature distributions significantly overlap (b), suggest-
ing that statistical descriptors may not be able to differentiate between these patient
groups. The radiomic feature is then partitioned into H (red), M (yellow), and L (cyan)
expression values, shown in (c), (g), overlaid with magenta vectors to indicate connec-
tions between different expression clusters. The resulting (d), (h) textural and (e), (i)
spatial phenotype that comprise RADISTAT show clear differences between the two
patients.

The radiomic feature expression of a tumor ROI is commonly described using
statistics of the feature distribution (e.g. skewness, kurtosis), which are then
input to a machine learning classifier to make a class label prediction. While
statistical descriptors may adequately describe the overall range of feature values
in the tumor ROI, they may not adequately capture the spatial arrangement of
differential feature expression (i.e. regions of high and low feature expression).
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Thus, a statistical characterization of a radiomic feature representation may not
fully characterize the underlying tissue heterogeneity.

In this paper, we present a new RADIomic Spatial TexturAl descripTor
(RADISTAT) to capture (a) the spatial phenotype of radiomic expression, i.e.
how sub-compartments of low and high radiomic expression are spatially located
relative to one another within the ROI, and (b) the textural phenotype associ-
ated with radiomic expression, i.e. whether an ROI exhibits a predominance of
low or high expression sub-compartments. Figures 1(c) and (g) depict represen-
tative feature expression sub-compartments on a radiomic heatmap, based on
quantizing the image into 3 expression levels (high, medium, and low).

We demonstrate the utility of RADISTAT in the context of two significant
clinical problems. First, distinguishing favorable response to chemoradiation in
RCA (no metastatic nodes or distant metastasis present after treatment) from
poor response, via post-treatment magnetic resonance imaging (MRI). Second,
differentiating long-term from short-term survivors with glioblastoma multiforme
(GBM), using treatment-naive MRIs.

2 Previous Work and Novel Contributions

A few groups have recently examined alternate characterizations of radiomic
features. In GBMs, an appreciation has emerged for looking at separate tumor
sub-compartments, albeit using volumetric [3] or radiomic histogram [4] analysis
alone. Similarly, sub-compartment-based radiomic analysis of breast MRI [5]
and lung FDG PET/CT [6] have demonstrated success for predicting patient
response to treatment as well as patient survival. In the work most closely related
to our own [7], a gaussian mixture model of multi-parametric MR intensities was
employed to define sub-compartments in GBMs. Spatial point pattern analysis
was then used to perform a neighborhood analysis of these sub-compartments.

In contrast, RADISTAT leverages a more detailed radiomic characterization
of tissue heterogeneity, compared to using MR intensities alone. By discretiz-
ing the rich information embedded in a radiomic heatmap into more stratified
expressions, the spatial and textural relationships between the resulting radiomic
“compartments” can be quantified. Sub-compartments on the radiomic feature
expression map are defined through a unique 2-stage process: (1) superpixel clus-
tering of the radiomic feature to identify spatially similar regions, and (2) re-
partitioning the superpixel map to define sub-compartments based on a desired
number of “expression levels” (e.g. high, medium, and low, when considering 3
expression levels). Finally, RADISTAT involves the computation of 2 distinct
features: (1) the overall spatial arrangement of different sub-compartments with
respect to one another, and (2) the overall proportions of different expression
levels for the radiomic feature. Note that as far as we are aware, this is the first
attempt at combining a spatial and proportional characterization of pixel-wise
radiomic expression maps.
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3 Methodology

A radiomic feature expression scene is denoted Z = (C, f), where C is a spatial
grid of pixels ¢, in R? or R?. Every pixel, ¢ € C, is associated with a radiomic
feature value f(c). The range of Z is normalized to lie between 0 and 1 (represen-
tative radiomic feature scene is visualized as a heatmap in Fig. 2). Computation
of the RADISTAT descriptor comprises the following steps:

1. Superpixel Clustering of Radiomic Feature Maps: Superpixel clus-
tering of 7 is performed using a modified version of the simple linear iter-
ative clustering (SLIC) algorithm [8], to generate K clusters, Cr C C,
ke {1,...,K}. Note that in the modified SLIC implementation, K is implic-
itly defined based on 2 parameters: (1) the minimum number of pixels in a
cluster («), and (2) the distance between initial cluster seeds (). Thus for
each combination of o and 3, different clusterings of Z will be obtained. Based
on superpixel clustering, Z is quantized to obtain a cluster map Z = (C,9),
where for every ¢ € Cy C C, g(c) is the average radiomic feature value
within the cluster Cy. Note that Z is normalized such that min(g(c)) = 0 and
max(g(c)) = 1. The result of Step 1 is illustrated in Fig. 2, where the colors
now represent dominant clusters of 7.

2. Re-partitioning of Superpixel Clusters into Expression Levels:
Firstly, a user-defined parameter B, which captures the desired number of
expression levels, is identified. The choice of B essentially dictates how fine
a variation in radiomic feature values is captured by RADISTAT. Using this
input parameter B, the range of 7 is split into B equally spaced bins, yield-
ing B + 1 thresholds 0,5 € {0,..., B}. Based on the normalized range of 7,
6o = 0 and 0p = 1. These 0; are used to re-quantize 7 into an expression
map, Z = (C, h), where Ve € C, h(c) = 0;, if 0,1 < g(c) < 6;. As T only
has B unique values, any adjacent clusters which exhibit the same expres-
sion value are merged to yield M distinct partitions. A partition is defined as
Con = {c|h(c) = 6;}, where m € {1,..., M}, and C,, C C. For ease of nota-
tion, we also define the expression value of a partition C,, as H (C'm) =0;,if
Ve € G, h(c) = 6;.

For example, when B = 3 (corresponding to low, medium, and high
expression), the thresholds 6; = {0,0.33,0.67,1}. The resulting 7 will only

l Input: Radiomic Feature Scene l l Step 1: Superpixel Clustering l l Step 2: Expression Level Re-partitioning l l Step 3: Phenotype Extraction

Fig. 2. Methodology for computing RADISTAT for a radiomic feature scene.
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have 3 unique values, {0.33,0.67,1} but can have M distinct partitions, as
multiple partitions C,, can have the same expression value. Step 2 in Fig.2
depicts the result of Z for B = 3, where each of the 3 colors represents a
different expression level (low (cyan), medium (yellow), and high (red)).

3. Computing the Textural Phenotype: This is obtained by quantifying
the fraction of each of B expression levels in Z. For B = 3, this means
calculating what fraction of 7 exhibits low, medium, or high expression. For
each expression level 6; and Vj = {1, ..., B},

The resulting feature is a 1 x B vector T = [11,...,Tg]. This is visualized via
the top bar plot in Step 3 of Fig. 2.

4. Computing the Spatial Phenotype: This is based on quantifying the
adjacency for each pairwise combination of B expression levels in Z. Con-
sidering the case of low (L), medium (M), and high (H) expression (i.e.
B = 3), there are 3 pairwise combinations: L-M, L-H, M-H. The adja-
cency of L-M is obtained by counting number of times that Z has parti-
tions with low and medium expression adjacent to each other (similarly for
L-H and M-H). For this, an adjacency graph G = (V, E) is defined, where
V ={vn},m € {1,..., M}, comprises the centroids of each of M partitions
from Step 2; and E = {emn},m,n € {1,..., M}, is a set of edges. An edge in
F is defined when,

{1, it C,, adjacent to Cn,m #*n

0, otherwise

For every pair of expression levels 6; and 6;, ¢,j € {1,..., B}, the adjacency
is calculated as,

Srm = Zemn,where H(Cy,) = 0; and H(C,) = 0;. 3)

The resulting feature is a 1 x N vector ¢ = [¢1,...,sn], where N = (g) is the

total number of expression level pairs in Z. This is shown in the bottom bar
plot of Step 3 in Fig. 2.

5. Constructing RADISTAT descriptor: RADISTAT is constructed by con-
catenating ¢ and T to yield a 1 x (B + N) vector.

4 Experimental Design

4.1 Data Description

Dataset 1: A retrospective cohort of 44 RCa patients who underwent neoadju-
vant chemoradiation were imaged with 3 Tesla T2-w MRI prior to rectal excision.
Patients were histologically classified as favorable response to treatment (n = 32)
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or poor (n = 12) response. Favorable response in the context of rectal cancer
is defined as the absence of residual disease from metastasizing or spreading to
surrounding lymph nodes, which is extremely difficult to determine on visual
inspection of the MRI.

Dataset 2: A cohort of 55 patients with GBM were initially diagnosed using
Gadolinium-contrast (Gd-c¢) T1-w MRI and were studied retrospectively for time
to overall survival (OS). Following standard treatment regimes (chemoradia-
tion or surgery), 26 patients were reported to have long-term survival (OS >
540 days) and 29 patients reported short-term survival (OS < 240 days).

4.2 Implementation Details

Figure2 demonstrates the workflow of RADISTAT, and its implementation in
the context of clinical problems in RCa and GBM. For each dataset consid-
ered, a representative 2D section was obtained from the middle of isotropically
resampled volumes, and the region of interest was annotated by an expert radi-
ologist. 12 gray level co-occurrence matrix (GLCM) features were extracted on
a pixel-wise basis [9] from every 2D section. These were entropy, energy, iner-
tia, correlation, information measures 1 and 2, sum and difference averages,
variances, and entropies. The number of feature expression levels was fixed at
B = 3, corresponding to high, medium, and low radiomic expression levels.

Parameter sensitivity was evaluated for different combinations of super-
pixel parameters (o € {3,5,7}, 8 € {5,10,15,20}) and all 12 GLCM features
(240 combinations). Each combination was evaluated using a linear discrimi-
nant analysis (LDA) classifier, in order to differentiate the 2 patient groups in
each cohort. Classifier performance was evaluated using 25 runs of 3-fold cross-
validation. Optimal combination of superpixel parameters for each feature was
selected based on averaging the area under the receiver-operator curve (AUC)
across all 25 runs. @« = 7 and 8 = 5 were empirically found to be optimal
parameters based on highest AUC for each problem and were used for further
evaluation.

We compared RADISTAT against 4 statistical descriptors (mean, vari-
ance, skewness, and kurtosis of the radiomic expression distribution), T, and
6. Kruskal-Wallis multiple comparison testing was performed to determine sta-
tistical significance, based on adjusted p-values via the Bonferroni correction.

5 Results

5.1 Distinguishing Treatment Response in Rectal Cancer

Figure 1 shows a representative low and high clinically staged patient for rec-
tal cancer following chemoradiation treatment. The heatmaps shown in the first
column depict the radiomic feature representation of a single GLCM descrip-
tor, correlation, for each pixel, where higher values of correlation are shown
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in red while lower values are shown in blue. Distributions of the radiomic fea-
ture expression between the two patients are shown in the second column. While
there appears to be minimal separation in the distribution curves of the radiomic
expression between the two pathologic responses (second column), re-quantizing
the radiomic heatmap through superpixel clustering and partitioning (third col-
umn) reveals underlying differences in the frequency of binned expression levels
(t, fourth column) and spatial arrangement of the expression clusters (g, fifth
column). The magenta vectors overlaid on the partitioned radiomic expression
level map in column 3 indicate the presence of an adjacent edge between two
different expression level clusters. It is interesting to note that the patient with
favorable response has a higher proportion of medium to high expression and
more graph connections with high expression clusters than the patient with
poor response. The corresponding quantitative results in Fig. 4(a) demonstrate
that RADISTAT significantly outperformed top-ranked statistics for the three
highest performing GLCM features energy, correlation, and difference average
(p < 0.001 for each). RADISTAT typically performed higher than t and was
always comparable with ¢. We also considered the use of a 1 x 4 vector of sta-
tistical descriptors, but this always resulted in a worse AUC than the 3 best
performing statistics (not shown).
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Fig. 3. Representative radiomic feature heatmaps for (a) long-term GBM survivor, and
(f) short-term GBM survivor. The feature distributions in (b) show significant overlap.
When considering (c¢), (g) B = 3 expression levels for RADISTAT, histograms of the
proportion of expression levels and adjacent connections between different expression
levels reveal underlying differences in the (d), (h) textural and (e), (i) spatial pheno-
types between the two survival outcomes.

5.2 Predicting Overall Survival in GBMs

Figure 3 shows representative results for GBM patients with long-term survival
(top row) and short-term survival (bottom row). Radiomic heatmaps and expres-
sion maps shown are for the GLCM feature inertia, which is a measure of con-
trast within a neighborhood of pixels. A markedly greater proportion of medium
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expression as well as more graph connections between low and high expression
compartments was observed in short-term survival GBM patients. RADISTAT
quantitatively outperformed the best statistic and T for the highest performing
GLCM features inertia (p < 0.001), information measure 1 (p < 0.001), and
difference variance (p < 0.001); while achieving marginally higher AUCs than ¢
alone (see Fig. 4(b)).

ﬁ) Rectal Cancer: Distinguishing Response (b) GBM: Predicting Survival Outcome
r 1.0r
B RADISTAT M Spatial [ Texture [ Best Statistic W RADISTAT M Spatial [ Texture [0l Best Statistic

Energy Correlation Difference Average Inertia Information Metric 1 Difference Variance

Fig. 4. Average AUCs across 25 runs of 3-fold cross validation for (a) rectal cancer
dataset, and (b) GBM dataset, for top 3 GLCM features in each experiment. RADI-
STAT (red bars) resulted in a consistently higher performance than any compared
strategy: the best performing statistical descriptor (magenta bars), individual textural
(green) and spatial (blue) components of RADISTAT.

6 Concluding Remarks

In this work, we presented a novel radiomic descriptor, RADISTAT, which
ascribes a combined textural and spatial phenotype to a radiomic feature expres-
sion map to better characterize tissue heterogeneity. In a cross-validation set-
ting, RADISTAT was found to significantly outperform commonly applied sta-
tistical measures for representing the radiomic expression map in the context
of (a) distinguishing favorable from poor treatment response for RCa patients,
and (b) predicting survival in GBM patients. In future work, we will seek to
understand the correlation of RADISTAT with specific pathological phenotypes,
extend its implementation to 3D, as well as apply it across other disease sites.
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