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Abstract. Most aggressive tumors are systemic, implying that their
impact is not localized to the tumor itself but extends well beyond the
visible tumor borders. Solid tumors (e.g. Glioblastoma) typically exert
pressure on the surrounding normal parenchyma due to active prolifera-
tion, impacting neighboring structures and worsening survival. Existing
approaches have focused on capturing tumor heterogeneity via shape,
intensity, and texture radiomic statistics within the visible surgical mar-
gins on pre-treatment scans, with the clinical purpose of improving treat-
ment management. However, a poorly understood aspect of heterogeneity
is the impact of active proliferation and tumor burden, leading to subtle
deformations in the surrounding normal parenchyma distal to the tumor.
We introduce radiographic-Deformation and Textural Heterogeneity
(r-DepTH), a new descriptor that attempts to capture both intra-, as well
as extra-tumoral heterogeneity. r-DepTH combines radiomic measure-
ments of (a) subtle tissue deformation measures throughout the extra-
neous surrounding normal parenchyma, and (b) the gradient-based tex-
tural patterns in tumor and adjacent peri-tumoral regions. We demon-
strate that r-DepTH enables improved prediction of disease outcome
compared to descriptors extracted from within the visible tumor alone.
The efficacy of r-DepTH is demonstrated in the context of distinguishing
long-term (LTS) versus short-term (STS) survivors of Glioblastoma, a
highly malignant brain tumor. Using a training set (N = 68) of treatment-
naive Gadolinium T1w MRI scans, r-DepTH achieved an AUC of 0.83 in
distinguishing STS versus LTS. Kaplan Meier survival analysis on an
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independent cohort (N = 11) using the r-DepTH descriptor resulted
in p = 0.038 (log-rank test), a significant improvement over employing
deformation descriptors from normal parenchyma (p = 0.17), or textural
descriptors from visible tumor (p = 0.81) alone.

1 Introduction

Cancer is not a bounded, self-organized system. Most malignant tumors have
heterogeneous growth, leading to disorderly proliferation well beyond the surgical
margins. In fact, in solid tumors, depending on the malignant phenotype, the
impact of the tumor is observed not just within the visible tumor, but also in the
immediate peritumoral, as well as in seemingly normal-appearing adjacent field.
The phenomenon of tumor involvement outside of the visible surgical margins
is known as “tumor field effect” [1]. One largely unexplored aspect of tumor
field effect in solid tumors, is the impact on overall survival due to the pressure
exerted on the surrounding normal parenchyma caused by active proliferation
and tumor burden thereof. For instance, in Glioblastoma (GBM), the herniation
or gross distortion of the brainstem (remote to the tumor location) was identified
as the proximal cause of death in 60% of the studies [2].

In thiswork,wepresent anewprognostic image-baseddescriptor: radiographic-
Deformation and Textural Heterogeneity (r-DepTH). r-DepTH attempts to
comprehensively capture the systemic nature of the tumor by computing radiomic
measures of intra-, and extra-lesional texture and structural heterogeneity. Specif-
ically, r-DepTH computes measurements from the entire tumor field as observed
on MRI scans by, (1) capturing uneven yet subtle tissue deformations in the
normal-appearing parenchyma, and (2) combining these tissue deformations with
3D gradient-based texture features [3] computed within the tumor confines. We
demonstrate that this combination of deformation and textural heterogeneity via
r-DepTH enables improved prediction of disease outcome compared to radiomic
descriptors extracted from within the visible tumor alone.

2 Previous Work and Novel Contributions

Multiple studies [4–6] have explored radiomic (co-occurrence, gray-level depen-
dence, directional gradients, and shape-based) descriptors obtained from the
tumor confines on radiographic imaging (i.e. MRI, CT), to capture intra-tumoral
heterogeneity. Interestingly, a recent study in GBM demonstrated that radiomic
features from peri-tumoral regions were significantly more prognostic of overall
patient survival than the features from within the tumor confines [7]. Similarly,
the tumor field effect in GBM has been shown to be manifested several mil-
limeters distal to the visible tumor margins [8]. These findings then beg the
question if there is prognostic information that could be mined from the subtle
deformations due to tumor proliferation and burden, in the seemingly normal
parenchyma distal to tumor boundaries. Similarly, one could further argue that
these extra-tumoral deformations (Fig. 1(c), (g)), when combined with textural
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Fig. 1. Textural differences within the tumor for two different patients with (a) STS,
and (e) LTS are shown in (b) and (f). Corresponding deformation magnitudes in the
surrounding normal parenchyma are shown in (c), (g), and are highlighted for a small
region outside the tumor across STS (d) and LTS (h).

Fig. 2. Overview of r-DepTH and overall workflow.

patterns (Fig. 1(b), (f)) from the tumor confines, could potentially allow for a
more comprehensive characterization of tumor heterogeneity, as compared to fea-
tures from tumor alone. This integrated descriptor could then serve as a powerful
prognostic marker to reliably predict patient survival in solid tumors (Fig. 2).

Uniquely, r-DepTH descriptor captures heterogeneity in solid tumors, both
from intra, as well as extra-tumoral field. Firstly r-DepTH captures the tex-
tural heterogeneity from the tumor (FT

tex) and peritumoral regions (FP
tex) using

the method presented in [3]. Secondly, it captures the deformation heterogene-
ity (Fdef ) within the normal parenchyma as a function of the distance from
the tumor margins. The r-DepTH descriptor is then obtained as Fdepth =
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[FT
tex,FP

tex,Fdef ]. r-DepTH is modeled around the rationale that highly aggres-
sive solid tumors (with worse outcome) likely proliferate in a more disorderly
fashion, and hence lead to more heterogeneous deformations in the surround-
ing normal parenchyma [9] (Fig. 1(c)) and higher textural heterogeneity within
the tumor confines (Fig. 1(b)), as compared to relatively less aggressive tumors
with overall improved outcomes. In this work, we will evaluate the utility of
the r-DepTH descriptor in the context of distinguishing long-term (LTS) versus
short-term (STS) GBM survivors using a total of 79 T1-w MRI patient scans.

3 Methodology

3.1 Notation

We define an image scene I as I = (C, f), where I is a spatial grid C of
voxels c ∈ C, in a 3-dimensional space, R

3. Each voxel, c ∈ C is associated
with an intensity value f(c). IT , IP and IN correspond to the intra-tumoral,
peri-tumoral, and surrounding normal parenchyma sub-volumes within every I
respectively, such that [IT , IP , IN ] ⊂ I. We further divide the sub-volume IN

into uniformly sized annular sub-volumes Ij
N , where j is the number of uniformly-

sized annular bands, such that j ∈ {1, . . . , k}, and k is an user-defined proximity
parameter dependent on the distance g from the tumor margin.

3.2 Radiographic-Deformation and Textural Heterogeneity
(r-DepTH) Descriptor

1. Extraction of deformation heterogeneity descriptors from within
the normal parenchyma: Healthy T1w MNI atlas (IAtlas) is used to mea-
sure the tissue deformation in the normal appearing brain regions of every
patient volume I. IAtlas is first non-rigidly aligned to I using mutual infor-
mation based similarity measure provided in ANTs (Advanced Normalization
Tools) SyN (Symmetric Normalization) toolbox [10]. The tumor mask Îmask

is removed from I during registration such that only the spatial intensity
differences due to structural deformation caused by mass effect are recov-
ered, when compared to IAtlas. Given the reference (I) and floating (IAtlas),
the non-rigid alignment can be formulated as: (I, Îmask) = T (IAtlas) where,
T (.) is the forward transformation of the composite (including affine com-
ponents) voxel-wise deformation field that maps the displacements of the
voxels between the reference and floating volumes. This transformation also
propagates the atlas brain mask (ÎAtlas) to the subject space, thereby skull-
stripping the subjects. As ANTs SyN satisfies the conditions of a diffeomor-
phic registration, an inverse T−1(.) exists, that successfully maps I to the
IAtlas space. This inverse mapping yields the tissue deformation of I with
respect to IAtlas, representing the deformations exerted on every c ∈ CN ,
due to the tumor mass effect. Considering (c′

x, c′
y, c′

z) as new voxel positions
of I when mapped to IAtlas, the displacement vector is given as [δx, δy, δz]
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where vector (c′
x, c′

y, c′
z) = (cx, cy, cz) + (δx, δy, δz), and the magnitude of

deformation is given by: D(c) =
√

(δx)2 + (δy)2 + (δz)2, for every c ∈ Cj
N ,

and j ∈ {1, . . . , k}. First order statistics (i.e. mean, median, standard devi-
ation, skewness, and kurtosis) are then computed by aggregating D(c) for
every c within every sub-volume Ij

N yielding a feature descriptor F
j
def for

every annular sub-region Cj
N , where Cj

N ⊂ CN , j ∈ {1, . . . , k}.
2. Extraction of 3D gradient-based descriptors from tumor, and peri-

tumoral regions: We used a 3D gradient-based texture descriptor presented
in [3]. This texture descriptor captures tumor heterogeneity by computing
higher order statistics from the gradient orientation changes computed across
X, Y , and Z directions. These features has been shown to be successful in
tumor characterization for a variety of applications in brain, lung and breast
cancers. Briefly, for every c ∈ [CP , CT ], gradients along the X, Y and Z

directions are computed as, ∇f(c) = ∂f(c)
∂X î + ∂f(c)

∂Y ĵ + ∂f(c)
∂Z k̂, where ∂f(c)

∂q is
the gradient magnitude along the q axis, q ∈ {X,Y,Z}. A N ×N ×N window
centered around every c ∈ C is selected to compute the localized gradient field.
We then compute ∂fX(ct), ∂fY (ct) and ∂fZ(ct), for every c ∈ [CP , CT ], t ∈
{1, 2, . . . , N3}. The vector gradient matrix F associated with every c is given
by F = [∂fX(ct) ∂fY (ct) ∂fZ(ct)], where [∂fX(ct) ∂fY (ct) ∂fZ(ct)], t ∈
{1, 2, . . . , N3} is the matrix of gradient vectors in the X, Y and Z directions
for every ct given by a N3 × 3 matrix. Singular value decomposition of F
for a voxel ct yields three dominant principal components ψX(ct), ψY (ct) and
ψY (ct) in the X-, Y - and Z-directions respectively. Two principal orientations
θ(ct) and φ(ct) can then be obtained to capture variability in orientations
across (X,Y ), and (X,Y,Z) (in-plane and out-of-plane variability), given
by θ(ct) = tan−1 ψY (ct)

ψX(ct)
and φ(ct) = tan−1 ψZ(ct)√

ψ2
Y (ct)+ψ2

X(ct)
. Two separate

N × N co-occurrence matrices, Mθ, and Mφ are computed, corresponding
to θ(ct) and φ(ct), which capture the orientation pairs between voxels in a
local neighborhood. We then individually compute 13 Haralick statistics as
[Sθb

, Sφb
], b ∈ [1, 13] from Mθ and Mφ, for every voxel c ∈ {CP , CT } as

shown in [11]. For every b, first order statistics (i.e. mean, median, standard
deviation, skewness, and kurtosis) are then computed by aggregating [Sθb

,
Sφb

] for every c ∈ {CP , CT } yielding a feature descriptor F
T
tex for the tumor

volume, and F
P
tex for the peri-tumoral volume.

3. Computation of r-DepTH descriptor: The descriptor Fdepth is obtained
as a feature vector by concatenation of the deformation descriptor, Fdef , and
the texture descriptors, FT

tex, and F
P
tex.

4 Experimental Design

4.1 Data Description and Preprocessing

A total of 105 3-Tesla treatment-naive Gadolinium (Gd)-contrast T1w, T2w,
and FLAIR MRI GBM studies were retrospectively obtained from the Cancer
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Imaging Archive [12]. We restricted our inclusion criteria to include short-term
survivors with an overall survival (OS) of <240 days and long-term survivors
with OS> 540 days. This resulted in a total of 68 patients in the training cohort,
with an equal split of 34 STS and LTS cases respectively. An independent cohort
of a total of 11 studies (4 LTS and 7 STS cases), with the same MRI sequences
as the training set, was obtained from the collaborating institution. The T1w
images were first bias-corrected using N4 bias correction [13]. The lesion masks
were manually delineated by an expert radiologist as tumor, peri-tumoral, and
normal parenchymal regions on T1w MRI scans.

4.2 Implementation Details

The normal parenchymal region was divided into k = 12 annual bands, such that
neighboring bands were equidistant to each other at 5 mm. Hence, each brain
MRI volume I is associated with a 60×1 deformation feature vector Fdef , with a
total of 5 statistics (mean, median, standard deviation, skewness, and kurtosis)
obtained from each k, k ∈ [1, . . . , 12]. Similarly for F

T
tex and F

P
tex respectively,

the same 5 statistics are computed from [Sθb
, Sφb

], |Sθb
| = |Sφb

| = 13, resulting
in a 130×1 feature vector, each. Following feature extraction, sequential forward
feature selection [14] was employed to identify the most discriminating subset of
features between STS and LTS from the training cohort. A total of 50 iterations
of three-fold (one fold held-out for testing), patient-stratified, cross-validation
scheme was used for constructing a linear discriminant analysis (LDA) classifier
using the training set. The top 5 best performing features were obtained for each
of the four feature sets, Fdef , FP

tex, FT
tex, and Fdepth using the training cohort.

Additionally, a total of 6 shape features (Fshape) were also extracted for every I
for comparison with the other 4 feature sets. The top performing features from
each of the 5 feature sets were used to lock down five different LDA classifiers, and
independently evaluated on the N = 11 test cases. Kaplan-Meier (KM) survival
analysis, along with log-rank test, was independently employed for each of the
5 feature sets, to compare survival times between the two groups (STS versus
LTS). The horizontal axis on the KM curve shows the time in days from initial

Table 1. List of features computed from T1w scans to distinguish LTS from STS.

Feature # Description

Fdef 60 Mean, Median, Std, skewness, kurtosis within each 5 mm annular
region in N

F
P
tex, FT

tex 130 Five first order statistics of Entropy, Energy,
Inertia, IDM, Correlation, Info1, Info2, Sum Average, Sum Variance,
Sum Entropy, Difference average, Difference variance, Differential
entropy

Fshape 6 Volume, major and minor axis length, eccentricity, orientation,
compactness
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diagnosis, and the vertical axis shows the probability of survival. Any point on
the curve reflects the probability that a patient in each group would remain alive
at that instance. Labels assigned by the LDA classifier were used for KM-curve
generation (Fig. 4).

5 Results and Discussion

5.1 Distinguishing LTS vs STS Using r-DepTH

The analysis on the training dataset on Fdef demonstrated that the skewness of
deformation magnitude across LTS (Fig. 3(a)) and STS (Fig. 3(b)) was consis-
tently statistically significantly different (p ≤ 0.05) for annular regions g ≤ 30
millimeters proximal to the tumor (Fig. 3(c), (d)). However, the significance did
not hold for g > 30 mm across LTS and STS studies. Higher values of skewness
are shown in red while lower values are shown in dark blue in Fig. 3. Deforma-
tion magnitudes were found to be highly positively skewed (shown in red) in
STS as compared to LTS (3(e)) (shown in green). Our results corroborate with
recent findings in [15], suggesting that there may be prognostic impact due to
tumor burden in certain cognitive areas because of the structural deformation
heterogeneity, eventually affecting survival. Further, the top 5 features on the
training set (N = 68) across Fdef , Ftex and Fdepth, yielded an AUC of 0.71±0.08,
0.77 ± 0.08 and 0.83 ± 0.07 respectively via a 3-fold cross-validation.

Fig. 3. T1w scans of two different STS (a) and LTS patients (b). Figures 3(c), (d) show
the corresponding deformation skewness statistics within 5 mm-annular regions in the
normal parenchyma. Histograms of the deformation magnitudes in the first annular
band between LTS and STS are shown in (e). Deformation magnitudes were found
to be highly positively skewed in STS as compared to LTS. Box plots of deformation
skewness across 4 different annular bands, g ≤ 5, 5 < g ≤ 10, 30 < g ≤ 35, 35 < g ≤ 40
(in mm) are shown in (f).
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5.2 Evaluation on Independent Validation Set

Figure 4(a) shows the ideal “ground truth” KM curve for STS and LTS patients
obtained on an independent cohort of (N = 11) studies. Figures 4(b)–(d) show the
KM curves obtained using the assigned labels from the LDA classifier using Fdef ,
Ftex and Fdepth respectively. KM curves using Fdef (p=0.176), Ftex (p = 0.81),
Fshape (p = 0.1) alone to distinguish LTS and STS patients, were not found to be
significant. However, interestingly, Fdepth descriptor, yielded a statistically sig-
nificant survival curve for distinguishing STS versus LTS with p = 0.038. Addi-
tionally, the classifier trained on Fdepth could correctly predict the survival group
in 9 out of the 11 studies (accuracy = 81%), while F

T
tex achieved an accuracy of

64%, and F
P
tex of 54% in predicting the survival group.

Fig. 4. KM curves obtained from the validation set (N = 11) are shown for ground
truth (a), Fdef (b), Ftex (c), and (d) Fdepth respectively.

6 Concluding Remarks

In this study, we present a new radiomics approach, r-DepTH, which compre-
hensively captures the intra-, and extra-tumoral heterogeneity by measuring (a)
the anatomical deformations in surrounding normal parenchyma, and (b) the
gradient-based texture representations from within the tumor. The r-DepTH
features demonstrated significant improvement in predicting overall survival in
GBM patients using KM curve analysis (p = 0.038), over employing deformation
and texture features alone. Future work will focus on validating r-DepTH on a
larger cohort of studies to establish its efficacy as a new prognostic marker for
GBM as well as other solid tumors. We will further employ r-DepTH in conjunc-
tion with other known clinical variables, to reliably predict patient outcome and
improve treatment management in solid tumors.
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