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Abstract. MGMT promoter methylation and IDH1 mutation in high-grade
gliomas (HGG) have proven to be the two important molecular indicators
associated with better prognosis. Traditionally, the statuses of MGMT and IDH1
are obtained via surgical biopsy, which is laborious, invasive and time-
consuming. Accurate presurgical prediction of their statuses based on preoper-
ative imaging data is of great clinical value towards better treatment plan. In this
paper, we propose a novel Multi-label Inductive Matrix Completion (MIMC)
model, highlighted by the online inductive learning strategy, to jointly predict
both MGMT and IDH1 statuses. Our MIMC model not only uses the training
subjects with possibly missing MGMT/IDH1 labels, but also leverages the
unlabeled testing subjects as a supplement to the limited training dataset. More
importantly, we learn inductive labels, instead of directly using transductive
labels, as the prediction results for the testing subjects, to alleviate the overfitting
issue in small-sample-size studies. Furthermore, we design an optimization
algorithm with guaranteed convergence based on the block coordinate descent
method to solve the multivariate non-smooth MIMC model. Finally, by using a
precious single-center multi-modality presurgical brain imaging and genetic
dataset of primary HGG, we demonstrate that our method can produce accurate
prediction results, outperforming the previous widely-used single- or multi-task
machine learning methods. This study shows the promise of utilizing
imaging-derived brain connectome phenotypes for prognosis of HGG in a
non-invasive manner.
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1 Introduction

Gliomas account for approximately 45% of primary brain tumors. Most deadly gliomas
are classified by World Health Organization (WHO) as grades III and IV, referred to as
high-grade gliomas (HGG). Related studies have shown that O6-methylguanine-DNA
methyltransferase promoter methylation (MGMT-m) and isocitrate dehydrogenases
mutation (IDH1-m) are the two strong molecular indicators that may associate with
better prognosis (i.e., better sensitivity to the treatment and longer survival time),
compared to their counterparts, i.e., MGMT promoter unmethylation (MGMT-u) and
IDH1 wild (IDH1-w) [1, 2]. To date, the identification of the MGMT and IDH1
statuses is becoming clinical routine, but conducted via invasive biopsy, which has
limited their wider clinical implementation. For better treatment planning, non-invasive
and preoperative prediction of MGMT and IDH1 statuses is highly desired.

A few studies have been carried out to predict MGMT/IDH1 status based on the
preoperative neuroimages. For example, Korfiatis et al. extracted tumor texture features
from a single T2-weighted MRI modality, and trained a support vector machine
(SVM) to predict MGMT status [1]. Yamashita et al. extracted both the functional
information (i.e., tumor blood flow) from perfusion MRI and the structural features
from T1-weighted MRI, and employed a nonparametric approach to predict IDH1
status [2]. Zhang et al. extracted more voxel- and histogram-based features from T1-,
T2-, and diffusion-weighted images (DWI), and employed a random forest (RF) clas-
sifier to predict IDH1 status [3].

However, all these studies are limited to predict eitherMGMT or IDH1 status alone
by using a single-task machine learning technique, which simply ignores the potential
relationship of these two molecular expressers that may help each other to achieve
more accurate prediction results [4]. It is desirable to use multi-task learning approach
to jointly predict the MGMT and IDH1 statuses. Meanwhile, in the clinical practice, a
complete molecular pathological testing may not always be conducted; therefore, in
several cases there is only one biopsy-proven MGMT or IDH1 status, which leads to
incomplete training labels or a missing data problem. Traditional methods usually
simply discard the subjects with incomplete labels, which, however, further reduces the
number of training samples. The recently proposed Multi-label Transductive Matrix
Completion (MTMC) model is an important multi-task classification method, which
can make full use of the samples with missing labels [5] and has produced good
performance in many previous studies [5, 6]. However, it is difficult to be generalized
to a study with a limited sample size due to its inherent overfitting; thus, many
phenotype-genotype studies inevitably suffer from such a problem.

In order to address the above limitations, we propose a novel Multi-label Inductive
Matrix Completion (MIMC) model by introducing an online inductive learning strategy
into the MTMC model. However, the solution of MIMC is not trivial, since it contains
both the non-smooth nuclear-norm and L21-norm constraints. Therefore, based on the
block coordinate descent method, we design an optimization algorithm to optimize the
MIMC model. Note that, in this paper, we do not adopt the commonly used radiomics
information derived from T1- or T2-weighted structural MRI, but instead use the
connectomics information derived from both resting-state functional MRI (RS-fMRI)
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and diffusion tensor imaging (DTI). The motivation behind this is that the structural
MRI-based radiomics features are highly affected by tumor characteristics (e.g., loca-
tions and sizes) and thus significantly variable across subjects, which is undesirable for
group study and also individual-based classification. On the other hand, brain con-
nectome features extracted from RS-fMRI and DTI reflect the inherent brain connec-
tivity architecture and its alterations due to the highly diffusive HGG, and thus could be
more consistent and reliable as imaging biomarkers.

2 Materials, Preprocessing, and Feature Extraction

Our dataset includes 63 HGG patient subjects, which were recruited during 2010–2015.
Each subject has at least one biopsy-proven MGMT or IDH1 status. We exclude the
subjects without entire RS-fMRI or DTI, or with significant imaging artifacts as well as
excessive head motion. Finally, 47 HGG subjects are used in this paper. We summarize
subjects’ demographic and clinical information in Table 1. For simplicity, MGMT-m
and IDH1-m are labeled as “positive”, respectively, and MGMT-u and IDH1-w as
“negative”. This study has been approved by the local ethical committee at local
hospital.

In this study, all the RS-fMRI and DTI data are collected preoperatively with the
following parameters. RS-fMRI: TR (repetition time) = 2 s, number of acquisi-
tions = 240 (8 min), and voxel size = 3.4 � 3.4 � 4 mm3. DTI: 20 directions, voxel
size = 2 � 2 � 2 mm3, and multiple acquisitions = 2. SPM8 and DPARSF [7] are
used to preprocess RS-fMRI data and construct brain functional networks. FSL and
PANDA [8] are used to process DTI and construct brain structural networks.
Multi-modality images are first co-registered within the same subject, and then regis-
tered to the atlas space. All the processing procedures are following the commonly
accepted pipeline [9]. Specifically, we parcellate each brain into 90 regions of interest
(ROIs) using Automated Anatomical Labeling (AAL) atlas. The parcellated ROIs in
each subject are regarded as nodes in a graph, while the Pearson’s correlation coeffi-
cient between the blood oxygenation level dependent (BOLD) time series from each
pair of the ROIs are calculated as the functional connectivity strength for the corre-
sponding edge in the graph. Similarly, the structural network is constructed based on

Table 1. Demographic and clinical information of the subjects involved in this study.

MGMT IDH1

Pos. labeled 26 13
Neg. labeled 20 33
Unlabeled 1 1
Age (mean/range) 48.13/23–68
Gender (M/F) 26/21
WHO III/IV 23/24
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the whole-brain DTI tractography by calculating the normalized number of the tracked
main streams as the structural connectivity strength for each pair of the AAL ROIs.

After network constructions, we use GRETNA [10] to extract various network
properties based on graph theoretic analysis, including degree, shortest path length,
clustering coefficient, global efficiency, local efficiency, and nodal centrality. These
complex network properties are extracted as the connectomics features for each node in
each network. We also use 12 clinical features for each subject, such as patient’s age,
gender, tumor size, tumor WHO grade, tumor location, etc. Therefore, each subject has
1092 (6 metrics � 2 networks � 90 regions + 12 clinical features) features.

3 MIMC-Based MGMT and IDH1 Status Prediction

We first introduce the notations used in this paper. X ið Þ denotes the i-th column of
matrix X. xij denotes the element in the i-th row and j-th column of matrix X. 1 denotes
all-one column vector. XT denotes the transpose of matrix X. Xtrain ¼ x1; � � � ; xm½ �T2
R

m�d and Xtest ¼ xmþ 1; � � � ; xmþ n½ �T2 R
n�d denote the feature matrices associated

with m training subjects and n testing subjects, respectively. Assume there are t binary

classification tasks, and Ytrain ¼ y1; � � � ; ym½ �T2 �1; 1; ?f gm�t and Ytest ¼
ymþ 1; � � � ; ymþ n

� �T2 ?f gn�t denote the label matrices associated with m training
subjects and n testing subjects, where ‘?’ denotes the unknown label. Furthermore, for
the convenience of description, let Xobs ¼ Xtrain;Xtest½ �, Yobs ¼ Ytrain;Ytest½ � and
Zobs ¼ Xobs; 1;Yobs

� �
denote the observed feature matrix, label matrix, and stacked

matrix, respectively. Let X0 2 R
mþ nð Þ�d denote the underlying noise-free feature

matrix corresponding to Xobs. Let Y0 2 R
mþ nð Þ�t denote the underlying soft label

matrix, and sign Y0
� �

for the underlying label matrix corresponding to Yobs, where
sign �ð Þ is the element-wise sign function.

3.1 Multi-label Transductive Matrix Completion (MTMC)

MTMC is a well-known multi-label matrix completion model, which is developed with
two assumptions. First, linear relationship is assumed between X0 and Y0, i.e.,
Y0 ¼ X0; 1

� �
W, where W 2 R

dþ 1ð Þ�t is the implicit weight matrix. Second, X0 is also
assumed to be low-rank. Let Z0 ¼ X0; 1;Y0

� �
denote the underlying stacked matrix

corresponding to Zobs, and then from rank Z0
� �� rank X0

� �þ 1, we can infer that Z0 is
also low-rank. The goal of MTMC is to estimate Z0 given Zobs. In the real application,
where Zobs is contaminated by noise, MTMC is formulated as:

minZ dþ 1ð Þ¼1 l Zk k� þ
1
2

ZDX � Xobs
�� ��2

F þ c
X

i;jð Þ2XY
Cy zi dþ 1þ jð Þ; yobsij

� �
; ð1Þ
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where Z ¼ ZDX;Z dþ 1ð Þ;ZDY
� �

denotes the matrix to be optimized, ZDX denotes the
noise-free feature submatrix, ZDY denotes the soft label submatrix, XY denotes the
subscripts set of the observed entries in Yobs, �k k� denotes the nuclear norm, �k kF
denotes the Frobenius norm, and Cy �; �ð Þ denotes the logistic loss function. Once the
optimal Zopt is found, the labels Ytest of the testing subjects can then be estimated by

sign Zopt
DYtest

� �
, where Zopt

DYtest
denotes the optimal soft labels of the testing subjects.

Based on the formulation of MTMC, we know that Zopt
DYtest

is implicitly obtained from

Zopt
DYtest

¼ Xopt
test; 1

� �
Wopt, where Xopt

test is the optimal noise-free counterpart of Xtest, and
Wopt is the optimal estimation of W. Although Wopt is not explicitly computed, it is
implicitly determined by the training subjects and their known labels (i.e., in the third
term of Eq. (1)). Therefore, for multi-label classification tasks with insufficient training
subjects as in our case, MTMC will still have the inherent overfitting.

3.2 Multi-label Inductive Matrix Completion (MIMC)

In order to alleviate the overfitting, we employ an online inductive learning strategy to
modify the MTMC model, and name the modified MTMC as Multi-label Inductive
Matrix Completion (MIMC) model. Specifically, we introduce an explicit predictor
matrix ~W 2 R

dþ 1ð Þ�t into MTMC by adding the following constraint into Eq. (1):

min ~W k ~W
�� ��

2;1 þ
b
2

ZDY � Xobs; 1
� �

~W
�� ��2

F ; ð2Þ

where �k k2;1 denotes the L21-norm, which imposes row sparsity on ~W to learn the
shared representations across all related classification tasks by selecting the common
discriminative features. In addition, note also that, in the second term of Eq. (2), we use
all the subjects (including the testing subjects) to learn the sparse predictor matrix ~W
based on the transductive soft labels ZDY. In other words, we leverage the testing
subjects as an efficient supplement to the limited training subjects, thus alleviating the
small-sample-size issue of the training data that often causes the overfitting problem for
training of the classifier. The final MIMC model is given as:

min Z; ~W
Z dþ 1ð Þ ¼ 1

l Zk k� þ 1
2 ZDX � Xobs
�� ��2

F þ c
P

i;jð Þ2XY
Cy zi dþ 1þ jð Þ; yobsij

� �
þ k ~W

�� ��
2;1 þ b

2 ZDY � Xobs; 1
� �

~W
�� ��2

F

8<
:

9=
;:

ð3Þ

In this way, we can obtain the optimal sparse predictor matrix ~W
opt

by using our
proposed optimization algorithm in Sect. 3.3 below, and estimate the labels Ytest of the
testing subjects Xtest by induction:
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Ytest ¼ sign Xtest; 1½ � ~Wopt
� �

: ð4Þ

Comparing with the overfitting-prone transductive labels sign Zopt
DYtest

� �
, the inductive

labels in Eq. (4), which learned from more subjects (by including the testing subjects)
and benefit from the advantage of joint feature selection (via L21-norm), would give us
more robust predictions, thus suffering less from the small-sample-size issue.

3.3 Optimization Algorithm for MIMC

The solution of MIMC is not trivial, as it contains the all-1-column constraint (i.e.,
Z dþ 1ð Þ ¼ 1) in Eq. (3), along with the fact that the L21-norm and nuclear norm are the
non-smooth penalties. Here, we employ the block coordinate descent method to design
an optimization algorithm for solving MIMC. The key steps of this algorithm are to
iteratively optimize the following two Subproblems:

Zk ¼ argminZ dþ 1ð Þ¼1

1
2 ZDX � Xobs
�� ��2

F þ c
P

i;jð Þ2XY
Cy zi dþ 1þ jð Þ; yobsij

� �
þ l Zk k� þ b

2 ZDY � Xobs; 1
� �

~Wk�1
�� ��2

F

8<
:

9=
;; ð5Þ

~Wk ¼ argmin ~W k ~W
�� ��

2;1 þ
b
2

ZDYð Þk� Xobs; 1
� �

~W
�� ��2

F : ð6Þ

We solve Subproblem 1 in Eq. (5) by employing the Fixed Point Continuation
(FPC) method plus the projection technique, with its convergence being proven by
Cabral et al. [6]. Specifically, it consists of two steps for each iteration t:

Zkð Þt¼ DlsZ Zkð Þt�1�sZrG Zkð Þt�1

� �� �
Zkð Þt

� � dþ 1ð Þ¼ 1

(
; ð7Þ

where sZ ¼ min 1; 4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32b2 þ 2c2

pn o
denotes the gradient step size, DlsZ �ð Þ denotes

the proximal operator of the nuclear norm [6], and rG Zð Þ is the gradient of G Zð Þ:

G Zð Þ ¼
1
2 ZDX � Xobs
�� ��2

F þ b
2 ZDY � Xobs; 1

� �
~Wk�1

�� ��2
F

þ c
P

i;jð Þ2XY
Cy zi dþ 1þ jð Þ; yobsij

� �
8<
:

9=
;: ð8Þ

The Subproblem 2 in Eq. (6) is a standard L21-norm regularization problem, which can
be solved via the accelarated Nesterov’s method with convergence proof in [11].
Specifically, it includes the following step for each iteration t:

~Wk
� �

t¼ J ks ~W
~Wk

� �
t�1�s ~WrF ~Wk

� �
t�1

� �� �
; ð9Þ
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where s ~W ¼ 1=rmax b Xobs; 1
� �T

Xobs; 1
� �� �

denotes the gradient step size, rmax �ð Þ
denotes the maximal singular value of matrix, J ks ~W

�ð Þ denotes the proximal operator of

L21-norm [11], and rF ~W
� �

is the gradient of F ~W
� �

:

F ~W
� � ¼ b

2
ZDYð Þk� Xobs; 1

� �
~W

�� ��2
F : ð10Þ

Theoretically, for the jointly convex problem with the separable non-smooth terms,
Tseng [12] has demonstrated that the block coordinate descent method is guaranteed to
converge to a global optimum, as long as all Subproblems are solvable. In our MIMC
model, obviously, the objective function in Eq. (3) is jointly convex for Z and ~W, and
its non-smooth parts, i.e., both l Zk k� and k ~W

�� ��
2;1, are separable. Based on this fact,

our proposed optimization algorithm also has the provable convergence.

4 Results and Discussions

We evaluate the proposed MIMC by jointly predicting MGMT and IDH1 statuses
using our HGG patients. Considering the limited number of 47 subjects, we use 10-fold
cross validation to ensure a relatively unbiased prediction performance for the new
testing subjects. We compare MIMC with the widely-used single-task machine learning
methods (including SVM with RBF kernel [13] and RF [14]) and state-of-the-art multi-
task machine learning methods (i.e., Lest_L21 [11] and MTMC [5]). All the involved
parameters in these methods are optimized by using the nested 10-fold cross validation
procedure.

We measure the prediction performance in terms of accuracy (ACC), sensitivity
(SEN), specificity (SPE), and area under the receiver operating characteristic curve
(AUC). In order to avoid any bias introduced by randomly partitioning the dataset, each
10-fold cross-validation is independently repeated for 20 times. The average experi-
mental results for MGMT and IDH1 status predictions are reported in Tables 2 and 3,
respectively. The best results and those ones not significantly worse than the best
results at 95% confidence level are highlighted in bold. Except that the Lest_L21
achieves slightly higher specificity (but not statistically significant) than MIMC (i.e.,
70.75% vs. 70.00%) in MGMT status prediction, MIMC consistently outperforms
SVM, RF and MTMC in all performance metrics, which indicate that our proposed

Table 2. Performance comparison of different methods for MGMT status prediction.

Method ACC (%) AUC (%) SEN (%) SPE (%)

Single-task SVM 68.04 72.43 71.35 63.75
RF 65.54 70.62 62.50 69.50

Multi-task Lest_L21 67.28 72.26 64.62 70.75
MTMC 68.26 72.58 70.77 65.00
MIMC 71.74 77.21 73.08 70.00
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online inductive learning strategy can help improve the prediction performance of
MIMC. In addition, we also find that all the multi-task machine learning methods
consistently outperform the single-task RF method, but not outperform the single-task
SVM method in terms of ACC. We speculate that this is mainly caused by the kernel
trick of SVM, which implicitly carries out the nonlinear feature mapping. In future
work, we will extend our proposed MIMC model to its nonlinear version by employing
the kernel trick to further improve the performance of MGMT and IDH1 status
predictions.

5 Conclusion

In this paper, we focus on addressing the tasks of predicting MGMT and IDH1 statuses
for HGG patients. Considering strong correlation between MGMT promoter methy-
lation and IDH1 mutation, we formulate their prediction tasks as a Multi-label
Inductive Matrix Completion (MIMC) model, and then design an optimization algo-
rithm with provable convergence to solve this model. The promising results by various
experiments verify the advantages of the proposed MIMC model over the widely-used
single- and multi-task classifiers. Also, for the first time, we show the feasibility of
molecular biomarker prediction based on the preoperative multi-modality neuroimag-
ing and connectomics analysis.
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