Deep Correlational Learning for Survival
Prediction from Multi-modality Data

Jiawen Yao, Xinliang Zhu, Feiyun Zhu, and Junzhou Huang™)

Department of Computer Science and Engineering, University of Texas at Arlington,
Arlington, TX 76019, USA
jzhuang@uta.edu

Abstract. Technological advances have created a great opportunity to
provide multi-view data for patients. However, due to the large discrep-
ancy between different heterogeneous views, traditional survival models
are unable to efficiently handle multiple modalities data as well as learn
very complex interactions that can affect survival outcomes in various
ways. In this paper, we develop a Deep Correlational Survival Model
(DeepCorrSurv) for the integration of multi-view data. The proposed
network consists of two sub-networks, view-specific and common sub-
network. To remove the view discrepancy, the proposed DeepCorrSurv
first explicitly maximizes the correlation among the views. Then it trans-
fers feature hierarchies from view commonality and specifically fine-tunes
on the survival regression task. Extensive experiments on real lung and
brain tumor data sets demonstrated the effectiveness of the proposed
DeepCorrSurv model using multiple modalities data across different
tumor types.

1 Introduction

Survival analysis aims at modeling the time that elapses from the beginning of
follow-up until a certain event of interest (e.g. biological death) occurs. The most
popular survival model is Cox proportional hazards model [6]. However, the Cox
model and recent approaches [2—4,17] are still built based on the assumption that
a patient’s risk is a linear combination of covariates. Another limitation is that
they mainly focus on one view and cannot efficiently handle multi-modalities
data. Recently, Katzman et al. proposed a deep fully connected network (Deep-
Surv) to learn highly complex survival functions [11]. They demonstrated that
DeepSurv outperformed the standard linear Cox proportional hazard model.
However, DeepSurv cannot process pathological images and also is unable to
handle multi-view data.

To integrate multiple modalities and eliminate view variations, a good solu-
tion is to learn a joint embedding space which different modalities can be com-
pared directly. Such embedding space will benefit the survival analysis since
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recent study has suggested that common representation from different modali-
ties provide important information for prognosis [18,21,22]. To learn the embed-
ding space, one very popular method is canonical correlation analysis (CCA) [§]
which aims to learn features in two views that are maximally correlated. Deep
canonical correlation analysis [1] has been shown to be advantageous and such
correlational representation learning (CRL) methods provide a very good chance
for integrating different modalities of survival data. However, since these CRL
methods are unsupervised learning models, they still have the risk of discarding
important markers that are highly associated with patients’ survival outcomes.

In this paper, we develop a Deep Correlational Survival Model (Deep-
CorrSurv) to integrate views of pathological images and molecular data for sur-
vival analysis. The proposed method first eliminates the view variations and
finds the maximum correlated representation. Then it transfers feature hierar-
chies from such common space and specifically fine-tunes on the survival regres-
sion task. It has the ability to discover important markers that are not found by
previous deep correlational learning which will benefit the survival prediction.
The contribution of this paper can be summarized as: (1) DeepCorrSurv can
model very complex view distributions and learn good estimators for predict-
ing patients’ survival outcomes with insufficient training samples. (2) It used
CNNs to represent much more abstract features from pathological images for
survival prediction. Traditional survival models usually adopted hand-crafted
imaging features. (3) Extensive experiments on TCGA-LUSC and GBM demon-
strate that DeepCorrSurv model outperforms those state-of-the-art methods and
achieves more accurate predictions across different tumor types.

2 Methodology

Given two sets X,Y with m samples, the i-th sample is denoted as x; and y;.
Survival analysis is about predicting the time duration until an event occurs,
and in our case the event is the death of a cancer patient. In survival data set,
patient ¢ has observation time and the censored status, denoted as (t;,d;). d;
is the indicator: 1 is for a uncensored instance (the death event occurs during
the study), and 0 is for a censored instance (the event is not observed). The
observation time ¢; is either a survival time (S;) or a censored time (C;) which
is determined by the status indicator ¢;. If and only if ¢; = min(S;, C;) can be
observed during the study, the dataset is said to be right-censored which is the
most common case in real world.

Figure 1 illustrates the pipeline of the proposed DeepCorrSurv. It consists of
two sub-networks, view-specific sub-network f1, fo and the common sub-network
ge- We proposed Convolutional Neural Networks (CNNs) as one image-view
sub-network f; and Fully Connected Neural Networks (FCNs) as another view-
specific sub-network f> to learn deep representations from pathological images
and molecular profiling data, respectively. The sub-network f; consists of 3 con-
volutional layers, 1 max-pooling layer and 1 fully-connected layer. In each con-
volutional layer, we employ ReLU as the nonlinear activation function. The
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Fig. 1. The architecture of the DeepCorrSurv. ’st’ is short for ’stride’.

sub-network fo includes two fully connected layers with 128 and 32 neurons
equipped with ReLLU activation function.

Deep Correlational Model: For any sample x;,y; passing through the cor-
responding view sub-network, its representation is denoted as fi(x;; wx) and
fa(yi; wy) respectively where wy,w, represent all parameters of two sub-
networks. The outputs of two branches will be connected to a correlation layer
to form the common representation.

Deep correlational model seeks pairs of projections that maximize the corre-
lation of two outputs from each networks f1(x;; Wx), fao(y:; wy). If wyx, wy mean
all parameters of two networks, then the commonality is enforced by maximizing
the correlation between two views as follows

iy (f1(xi) = [1(X)) (falyi) = fo(Y))
VI (i) — KD S0, (faly) — (V)2
where we omit networks’ parameters wy, wy in the loss function (1). We can

maximize the correlation loss function to provide the shared representation indi-
cating the most correlated features from two modalities.

L=corr(X,Y) = Y

Fine-Tune with Survival Loss: Denote the shared representation from the
two views as Z. Denote O = [0y, ..., 0,,] T as the outputs of common sub-network
g, i.e., 0; = g.(2;). The survival loss function is set to be the negative log partial
likelihood:

Lio)= Y (-oit+log Y  exp(o))). (2)

©:R(t;)=1 Jiti>=t;

where o; is the output of i-th patient. R(t;) is the risk set at time t;, which is
the set of all individuals who are still under study before time ¢;. j is from the
set whose survival time is not smaller than ¢; (¢; > ¢;). Another understanding
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is that all patients who live longer than i-th patient will be chosen into this set.
Different from Cox-based models which only handle the linear condition in the
risk function, the proposed model can better fit realistic data and learn complex
interactions using deep representation.

Discussions: Although different views of health data are very heterogeneous,
they still do share common information for prognosis. Deep correlational learn-
ing is first trained to find such common representation using the correlation
function (1). However, this procedure has a risk of discarding the discriminant
markers for predicting patients’ survival outcomes due to it belongs to unsuper-
vised learning. To overcome this problem, the DeepCorrSurv transfers knowledge
from the deep correlational learning and fine-tunes the network using the sur-
vival loss function (2). This will make DeepCorrSurv able to discover important
markers that are ignored by correlational model and learn the best representation
for survival prediction. Compared with the recent deep survival models [11,20]
which can only handle one specific view of data, the DeepCorrSurv can achieve
more complex architecture for the integration of multi-modalities data which
can be used in the practical application on more challenging dataset.

3 Experiments

3.1 Dataset Description

We used a public cancer survival dataset TCGA (The Cancer Genome Atlas)
project [10] which provides high resolution whole slide pathological images
and molecular profiling data. We conducted experiments on two cancer types:
glioblastoma multiforme (GBM) and lung squamous cell carcinoma (LUSC). For
each cancer type, we adopted a core sample set from UT MD Anderson Cancer
Center [19] in which each sample has information for the overall survival time,
pathological images and molecular data related to gene expression.

¢ TCGA-LUSC: Non-Small-Cell Lung Carcinoma (NSCLC) is the majority
of lung cancer. Lung squamous cell carcinoma (LUSC) is one major type
in NSCLC. We collected 106 patients with pathological images and protein
expression (reverse-phase protein array, 174 proteins).

¢ TCGA-GBM: Glioma is a type of brain cancer and it is the most common
malignant brain tumor. 126 patients are selected from the core set with images
and CNV data (Copy number variation, 106 dimension).

With the help of pathologists, we have annotations that locate the tumor
regions in whole slide images (WSIs). We randomly extract patches of size 1024 x
1024 from the tumor regions. To analyze pathological images in comparison
survival models, we calculated hand-crafted features using CellProfiler [5] which
serves as a state-of-the-art medical image feature extracting and quantitative
analysis tool. Similar to the pipeline in [16], a total of 1,795 quantitative features
were calculated from each image tile. These types of image features include cell
shape, size, texture of the cells and nuclei, as well as the distribution of pixel
intensity in the cells and nuclei.
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3.2 Comparison Methods

We compare our DeepCorrSurv with five state-of-the-art survival models and
three baselines deep survival models. Five survival methods include LASSO-
Cox [15], Parametric censored regression models with components with Weibull,
Logistic distribution [9], Boosting concordance index (BoostCI) [13] and Multi-
Task Learning model for Survival Analysis (MTLSA) [12]. To demonstrate the
effectiveness of the integration in our model, We adopted structured sparse CCA-
based feature selection (SCCA) [7] to identify stronger correlation patterns from
imaging genetic associations. Then we applied MTLSA using such associations
for survival analysis.

Three baseline deep survival models are listed as follows: (1) CNN-Surv: CNN
sub-network f; followed by survival loss [20]. (2)FCN-Surv: FCN sub-network
fa followed by survival loss. It will use molecular profiling data for prediction.
It can be also regarded as the DeepSurv [11] version on the dataset in this
paper. (3)DeepCorr+DeepSurv: Since finding the common space by maximizing
the correlation between two views belongs to unsupervised method, it cannot
ensure that the embedding space is highly correlated with survival outcomes.
We extract the shared representation by Deep correlational learning and feed
them to another DeepSurv model.

Overall speaking, the DeepCorrSurv is optimized by the gradient descent
following the chain rule, i.e., firstly compute the loss of objective, and then
propagate the loss to each layer and finally employ gradient descent to update the
whole network. These procedures can be automatically processed by Theano [14].
To make fair comparisons, the architectures of different deep survival models are
kept the same with that corresponding parts in the proposed DeepCorrSurv. The
source codes of MTLSA and SCCA are downloaded from the authors’ websites.
All other methods in our comparisons were implemented in R. LASSO-Cox and
EN-Cox are built using the cocktail function from the fastcox package. The
implementation of BoostCI can be found in the supplementary materials of [13].
The parametric censored regression are from the survival package.

3.3 Results and Discussion

In order to evaluate the proposed approach with other state-of-the-arts methods,
we used a 5-fold cross-validation. For each of the 5 folds, models were established
using the other 4 folds as the training subset, and performance was evaluated
with the unused fold. To evaluate the performances in survival prediction, we
take the concordance index (CI) as our evaluation metric. The C-index quantifies
the ranking quality of rankings and is calculated as follows

c:% Z Z Ifo; > oj] (3)

i€{1...N|§;=1} t; >t;

where n is the number of comparable pairs and I].] is the indicator function. ¢. is
the actual observation and o. represents the risk obtained from survival models.
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Table 1. Performance comparison of the proposed methods and other existing related
methods using C-index values on TCGA-LUSC and GBM

Data Model LUSC GBM

Images LASSO-Cox [15] 0.5945 (0.1849) | 0.5476 (0.0949)
BoostCI [13] 0.5769 (0.2599) | 0.5235 (0.1263)
Weibull [9] 0.4988 (0.1924) | 0.4885 (0.0127)
Logistic [9] 0.4498 (0.1432) | 0.4865 (0.0061)
MTLSA [12] 0.6074 (0.1128) | 0.6223 (0.1897)
CNN-Surv [20] 0.5540 (0.2170) | 0.5053 (0.0264)

Protein/CNV | LASSO-Cox [15] 0.5005 (0.1565) | 0.5779 (0.0609)
BoostCI [13] 0.4309 (0.1160) | 0.4610 (0.1470)
Weibull [9] 0.4334 (0.1587) | 0.5131 (0.0895)
Logistic [9] 0.5821 (0.1653) | 0.5013 (0.1406)
MTLSA [12] 0.5911 (0.2532) | 0.6150 (0.1773)
FCN-Surv [11] 0.5989 (0.1131) | 0.5596 (0.0934)

Integration SCCA [7] + MTLSA | 0.5518 (0.0882) | 0.5915 (0.1195)
DeepCorr+DeepSurv | 0.5760 (0.1645) | 0.5842 (0.0450)
DeepCorrSurv 0.6287 (0.0596) | 0.6452 (0.0389)

Table 1 presents the C-index values by various survival regression methods
on two datasets. Results of using each individual view in the table present
that pathological images and molecule data can provide predictive powers while
the integration of both modalities in the proposed DeepCorrSurv achieves the
best performance for both lung and brain cancer. Because the proposed Deep-
CorrSurv can remove view discrepancy as well as learn the survival-related com-
mon representations from both views, it obtains the highest C-index with low
standard variation. When looking at deep survival models, CNN-Surv cannot
achieve good prediction using imaging data alone. But when integrating with
information from another view, DeepCorr+DeepSurv and the proposed Deep-
CorrSurv can achieve better performances than CNN-Surv using the same imag-
ing data. This demonstrates that the common representation by maximizing the
correlation between both views can benefit the survival analysis when the sam-
ples are not sufficient.

Another observation is DeepCorr+DeepSurv and SCCA+MTLSA cannot
obtain a very good estimation compared with some predictions from one view.
This demonstrates that the common representation by maximizing the correla-
tion in an unsupervised manner still has the risk of discarding markers that are
highly associated with survival outcomes. On the contrary, the DeepCorrSurv
can consider discriminant as well as view discrepancy which can ensure a repre-
sentation that is robust to view discrepancy and also discriminant for survival
prediction.



412 J. Yao et al.

Results on TCGA-GBM dataset suggest that most models using CNV data
can have better predictions than same models using imaging data. This observa-
tion is different from that in LUSC cohort. This reminds us, due to the heteroge-
neous of different tumor types, it is not easy to find a general model that can suc-
cessfully estimate patients’ survival outcomes across different tumor types using
only one specific view. In addition, the original data in each view might contain
variations or noises which are not survival-related and might affect the estima-
tion of survival models. The proposed DeepCorrSurv can effectively integrate
with two views and thus achieve good prediction performances across different
tumor types.

4 Conclusion

In this paper, we proposed Deep Correlational Survival model (DeepCorrSurv)
that is able to efficiently integrate multi-modalities censored data with small
samples. One challenge is the view-discrepancy between different views in recent
real cancer database. To eliminate the view discrepancy between imaging data
and molecular profiling data, deep correlational learning provides a good solution
to maximize the correlation of two views and find the common embedding space.
However, deep correlational learning is an unsupervised approach which cannot
ensure the common space is suitable for survival prediction. In order to find the
truly deep representations for prediction, the proposed DeepCorrSurv transfers
knowledge from the embedding space and fine-tunes the whole network using
survival loss. Experiments have shown that DeepCorrSurv can discover impor-
tant markers that are ignored by correlational learning and extract the best
representation for survival prediction. The results have shown that since Deep-
CorrSurv can model non-linear relationships between factors and prognosis, it
achieved quite promising performances with improvements. In the future, we will
extend the framework with other kinds of data sources.
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