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Abstract. We propose a new low-rank based image recovery method and
embed it into an existing Groupwise Image Registration (GIR) framework to
achieve accurate GIR of Magnetic Resonance (MR) brain images containing
tumors. In our method, brain tumor regions in the input images are recovered
with population-consistent normal brain appearance to produce low-rank ima-
ges. The GIR framework is then applied to the tumor-free low-rank images.
With no influence from the brain tumor, accurate GIR can be achieved. Unlike
conventional low-rank based image recovery methods, a spatial constraint is
added to the low-rank framework in our method, by which the quality of the
resulting low-rank images can be improved. Particularly, the low-rank images
produced by our method contain both effectively recovered brain tumor regions
and well-preserved normal brain regions of input images, which are two key
factors for accurate GIR. By contrast, in conventional low-rank based image
recovery methods, these two factors are mutually exclusive and a good balance
is difficult to achieve. Synthetic and real MR brain images are used to evaluate
our method. The results show that based on our method, image recovery quality
and GIR accuracy are improved in comparison to the state-of-the-art method.

1 Introduction

Groupwise Image Registration (GIR) plays an important role in the study of the brain,
such as for brain atlas construction [1] and brain parcellation [2]. The objective of GIR
is to establish spatial correspondences between input images, which assumes that for
any part of an image, corresponding parts in other images can be found. However, this
assumption only holds for normal brain images, and for images that contain brain
tumors, there is no spatial correspondence for the brain tumor. Therefore, for most
existing GIR methods [3, 4], they suffer from the problem that if the input brain images
contain tumors, the GIR accuracy is usually unsatisfactory.

To solve this problem, many solutions have been proposed. One well-known
approach is Cost Function Masking (CFM) [5]. The basic idea of CFM is to identify
pathological brain regions (e.g., brain tumors) and mask them in the cost function of
image registration, so that registration is driven by normal brain regions. Different from
the CFM method, the pathology simulation method [6] synthesizes pathological
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regions in a normal brain image to create an image that is similar to the patient’s image
and therefore a typical image registration algorithm can be adopted for registering these
images. Recently, an interesting method has been proposed in [7]. It adopts an image
recovery method based on Low Rank plus Sparse matrix Decomposition (LRSD) [8] to
decompose input images into low-rank images and residual error. Since brain tumors
do not manifest in consistent location and appearance in populations, brain tumor
regions are recovered with population-consistent normal brain appearance to produce
low-rank images. The difference between the input images and the low-rank images is
the residual error. An existing GIR framework is then applied to the tumor-free
low-rank images. With no influence from the brain tumor, accurate GIR can be
achieved.

In conventional low-rank based image recovery methods including LRSD, the
low-rank images are produced under two constraints: the low-rank constraint and the
residual error constraint. To achieve effective brain tumor region recovery where brain
tumors are unperceivable in the low-rank images, the residual error constraint is
weakened to allow large residual error. However, by doing this, normal brain regions of
input images could be seriously distorted in the low-rank images. Figure 1 shows two
original Magnetic Resonance (MR) brain images containing tumors and the corre-
sponding low-rank images obtained by LRSD under a gradually weakened residual
error constraint (from left to right). As the residual error constraint becomes weaker, the
brain tumors are faded but the normal brain regions are blurred and closely resemble
each other in the corresponding low-rank images, despite initially being different. It is
known that the low-rank images should have both effectively recovered brain tumor
regions and well-preserved normal brain regions of input images, which are two key
factors for accurate GIR. However, these two factors are mutually exclusive, and it is
difficult to achieve a good balance using conventional low-rank based image recovery
methods.

Inspired by recent work in computer vision [9], in this paper, we propose a new
low-rank based image recovery method and embed it into an existing GIR framework to
achieve accurate GIR of MR brain images containing tumors. In our method, a spatial
constraint is added to the low-rank framework to produce high quality low-rank images

Fig. 1. Two original MR brain images containing tumors (leftmost) and their corresponding
low-rank images obtained by using different levels of residual error constraint. From left to right,
the residual error constraint is gradually weakened.
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which contain both effectively recovered brain tumor regions and well-preserved normal
brain regions of input images. Moreover, the existing GIR framework via our method is
capable of handling MR brain images containing tumors, and more accurate GIR can be
achieved in comparison to the state-of-the-art GIR method.

2 Method

By default, input images are 3D MR brain images and presented by a matrix D ¼
I1; . . .; In½ � 2 Rm�n where m is the total voxel number of each image and n is the
number of input images. All input images have been spatially normalized to a standard
space defined by MNI152 [10] using affine transformation, and image intensity has
been normalized using histogram matching.

In conventional low-rank based image recovery methods e.g., LRSD, the matrix D
of input images is decomposed into low-rank images B ¼ B1; . . .;Bn½ � 2 Rm�n and
residual error S ¼ D� B ¼ S1; . . .;Sn½ � 2 Rm�n using

min
B;S

Sk k1 þ k Bk k�
� �

; s:t:D ¼ Bþ S; ð1Þ

where Bk k� is the nuclear norm which is the sum of the singular values of B, and Sk k1
is the L1 norm of S. Since brain tumors usually have no inter-subject consistency in
location and image appearance, brain tumor regions are recovered by
population-consistent normal brain appearance to satisfy the low-rank constraint.
Furthermore, the inter-subject anatomical variability of the normal brain region is also
reduced under the low-rank constraint. Therefore, the residual error S comes from both
the brain tumor region and normal brain region. To achieve effective brain tumor region
recovery, the residual error constraint is weakened to allow large residual error in the
brain tumor region. However, by doing this, the residual error in the normal brain
region is also encouraged to be large, causing the normal brain regions of input images
be seriously distorted in the low-rank images, as shown in Fig. 1. To make the
low-rank images contain both effectively recovered brain tumor regions and
well-preserved normal brain regions of input images, different residual error constraints
for the brain tumor region and normal brain region should be applied. Therefore, we
propose to divide the residual error S into two parts: one is the residual error in the
brain tumor region and the other is in the normal brain region. The former residual error
is allowed and the latter one is restricted in the low-rank framework.

2.1 The Spatial Constraint

We first introduce an indicative matrix C 2 Rm�n containing the indication for each
residual error element in S. Cij ¼ 1 indicates that element Sij at i-th row and j-th
column of S belongs to the brain tumor region, while Cij ¼ 0 means Sij belongs to the
normal brain region. The spatial constraint is then defined as an energy function:
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Espatial ¼
X

1� i�m;1� j� n

Pij � Cij þ a
X

1� i;k�m;1� j� n

W ij;kj Cij � Ckj

�� ��; ð2Þ

where P 2 Rm�n contains the probabilities of residual error elements that belong to the
normal brain region. For each residual error element Sij, the corresponding

Pij ¼
1
n

P
1� l� n Tl Silj jð Þ; if Sij

�� ��[ l
1; otherwise

�
, where Tl Silj jð Þ ¼ 1; if Silj j[ l

0; otherwise

�
is a

thresholding function, and the threshold l in this paper is set to the average value of all
the absolute non-zero values in S. The definition of P is based on the assumption that
brain tumors have inconsistent locations across subjects and large corresponding
absolute residual error. Particularly, if Sij has a small absolute value i.e., Sij

�� ��� l, it is
considered to be in the normal brain region i.e., Pij ¼ 1. If Sij has a large absolute value
i.e., Sij

�� ��[ l, probability of Sij in the normal brain region is proportional to the fre-
quency that residual error elements at the same position of other columns of S i.e.,
Sil; 1� l� n have larger absolute values, as large residual error caused by inter-subject
variability in the normal brain region has large coincidence to present at the same
spatial location. W 2 R m�nð Þ� m�nð Þ is an adjacent matrix and its element W ij;kj ¼ 1 in
Eq. (2) means that element Sij is adjacent to element Skj, otherwise W ij;kj ¼ 0. In this
paper, adjacent elements are restricted within a 3� 3� 3 voxel range in the same
column of S. a in Eq. (2) is a weighting factor.

2.2 Spatially Constrained Low-Rank Based Image Recovery

The energy function of the spatial constraint is added to the low-rank framework [9] to
achieve Spatially COnstrained LOw-rank based image Recovery (SCOLOR):

min
B;C

1� Cð Þ � D� Bð Þk k2F þ b Bk k� þ cEspatial ð3Þ

where 1 2 Rm�n; 1ij ¼ 1; 1� Cð Þ � D� Bð Þk k2F is the Frobenius norm which con-
siders the residual error in the normal brain region only. b and c are weighting factors.
An effective algorithm is derived to solve Eq. (3), which carries out the following two
steps iteratively: (1) Solving B while fixing C, and Eq. (3) then becomes

min
B

1� Cð Þ � D� Bð Þk k2F þ b Bk k� ð4Þ

which is a well-known matrix completion problem and can be solved by the soft impute
method [11]; (2) Solving C while B is fixed, then Eq. (3) becomes,

min
C

X
1� i�m;
1� j� n

ðcPij � Dij � Bij
� �2ÞCij þ ac

X
1� i; k�m;
1� j� n

W ij;kj Cij � Ckj

�� ��þ c; ð5Þ
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where c is a constant value. This problem can be solved using the graph cut method
[12]. The algorithm iteratively repeats the above two steps until convergence i.e., B and
C are unchanged. It is worth noting that for simplicity and fast convergent speed, P is
calculated in the first iteration and is fixed throughout the whole iterations. Since the
objective function decreases in each step, and the objective of Eq. (3) has a low bound,
the convergence of the above algorithm is always guaranteed.

We embed SCOLOR into an existing GIR framework to achieve accurate GIR of
MR brain images containing tumors. Most existing GIR frameworks can be used here.
In this paper, we choose the GIR framework used in [7]. This GIR framework is
proposed by Joshi et al. [1], and in [7] it is extended with a low-rank based image
recovery method LRSD to perform GIR of pathological MR brain images (denoted as
GIR-LRSD). GIR-LRSD works in an iterative manner. In each iteration, low-rank
images Biter ¼ Biter

1 ; . . .;Biter
n

� �
are produced from Diter ¼ Iiter1 ; . . .; Iitern

� �
using LRSD,

and the template image Iitert ¼ 1
n

Pn
i¼1 B

iter
i : To avoid accumulation error in the com-

posing of deformation fields through the iteration, each low-rank image in Biter is first
transformed back to the original image space and then registered to Iitert . The resulting
deformation fields in the current iteration Uiter

i ; i ¼ 1; ::; n are applied to original input
images D0 ¼ I01; . . .; I

0
n

� �
to produce the input images Diterþ 1 ¼ I01 	Uiter

1 ; . . .;
�

I0n 	
Uiter

n � for the next iteration. The iteration repeats until convergence. We replace LRSD
in GIR-LRSD with SCOLOR, and the new GIR method is denoted as GIR-SCOLOR.

3 Results

We compare SCOLOR and GIR-SCOLOR with LRSD and GIR-LRSD. Evaluation
focuses on image recovery quality and GIR accuracy. Two kinds of image datasets are
used in the experiment. Dataset I is based on 40 T1-weighted MR brain images from a
public database LPBA40 [13]. Each image in LPBA40 contains a normal brain and has
a corresponding label image of 54 manually segmented brain regions. To create dataset
I, real tumors segmented from other MR brain images are added into the images in
LPBA40. Figure 2(a) shows some examples of dataset I. Dataset II has 28 T1-weighted
MR brain images randomly selected from a public database BRATS2015 [14], and
each image contains a real tumor. Figure 2(b) shows some images in dataset II. In the
preprocessing step, both datasets are normalized to MNI152 [10] by affine transfor-
mation, and image intensity is normalized using histogram matching.

Fig. 2. Examples of dataset I (a) and dataset II (b).
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LRSD has a parameter k in Eq. (1) and SCOLOR has parameters a, b and c in
Eqs. (3–5). k in LRSD plays the same role as b in SCOLOR and their values are set
manually based on the input image dataset. a and c are set to 1.0 and 0.5 by default.

3.1 Evaluation of Dataset I

Figure 3(a) shows two original images in dataset I and the corresponding low-rank
images using LRSD (k ¼ 300) and SCOLOR (b ¼ 30, 5 iterations). It can be found
that brain tumor regions and normal brain regions are better recovered and preserved by
SCOLOR than LRSD as marked by red arrows. Image recovery quality is quantified by
calculating the recovery error ratio for the 40 low-rank images produced by LRSD and

SCOLOR, respectively. For the i-th image, the recovery error ratio is defined as ei ¼P
x2Xi

Itfi xð Þ�Bi xð Þj jP
x2Xi

Itfi xð Þ where Xi is the whole region of the i-th image, Itfi stands for the i-th

ground truth of tumor-free image and Bi is the corresponding low-rank image produced
by LRSD or SCOLOR. The average recovery error ratios of LRSD and SCOLOR are
0.087 (r ¼ 0:008Þ and 0.047 (r ¼ 0.004). The p value of the Wilcoxon signed rank
test on the 40 recovery error ratios of LRSD and SCOLOR is 3.569 �10�8 i.e.,
SCOLOR produces better low-rank images than LRSD with statistical significance.

GIR accuracy is quantified by the Dice index [15] which calculates the overlap of
each brain region between each pair of registered images. Specifically, the resulting
deformation fields of GIR-LRSD and GIR-SCOLOR are applied to the corresponding
label images. The Dice index of each brain region between each pair of the deformed

label images is calculated by Ql
ij ¼

2 Xl
i \Xl

jj j
Xl

ij jþ Xl
jj j ; l ¼ 1; ::; 54; i; j ¼ 1; . . .; 40; i\j where

Xl
i

�� �� and Xl
j

��� ��� are the volumes of the l-th brain region in the i-th and j-th deformed label

images respectively. Then we can obtain a summary measure between each pair of the

deformed label images Qij ¼
P54

l¼1
Xl

ij j
Xij j Q

l
ij; where Xij j ¼ P54

l¼1 Xl
i

�� ��. GIR-LRSD and

GIR-SCOLOR work in an iterative manner, so the accuracy of the GIR result after each
iteration is evaluated. Figure 3(b) shows the average Dice index of 780 pairs of
deformed label images warped by the deformation fields produced after each iteration
of GIR-LRSD and GIR-SCOLOR, respectively. For both GIR methods, 6 iterations are
performed. The p value of Wilcoxon signed rank test on the 780 Dice indexes after the
final iteration of GIR-LRSD and GIR-SCOLOR is 1:7� 10�129, which further indi-
cates that GIR-SCOLOR achieves better GIR performance with statistical significance.

3.2 Evaluation of Dataset II

Figure 4(a) shows two original images in dataset II and the corresponding low-rank
images using LRSD (k ¼ 300) and SCOLOR (b ¼ 30, 5 iterations). It can be found
that the low-rank images of SCOLOR contain higher quality of recovered brain tumor
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regions and better preserved normal brain regions than LRSD, especially on the regions
marked by red arrows. Dataset II does not have the ground truth of tumor-free images,
so the recovery error ratio cannot be calculated. GIR accuracy is quantified by cal-
culating the entropy at every voxel position (except image background) across the input
original images warped by the deformation fields obtained by GIR-LRSD and
GIR-SCOLOR. More accurate GIR results should have lower entropy. The evaluation
result of average entropies after each iteration of GIR-LRSD and GIR-SCOLOR is
shown in Fig. 4(b). For both GIR-LRSD and GIR-SCOLOR, 7 iterations are needed.

Fig. 3. (a) Examples of original images in dataset I and corresponding low-rank images using
LRSD and SCOLOR. Brain tumor regions and normal brain regions are better recovered and
preserved by SCOLOR than LRSD as marked by red arrows. (b) Average Dice indexes of GIR
results of dataset I after each iteration of GIR-LRSD and GIR-SCOLOR.

Fig. 4. (a) Examples of original images in dataset II and corresponding low-rank images using
LRSD and SCOLOR. SCOLOR produces higher quality of recovered brain tumor regions and
better preserved normal brain regions than LRSD as marked by red arrows. (b) Average entropies
of warped original images of dataset II using deformation fields resulting from GIR-LRSD and
GIR-SCOLOR after each iteration.
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4 Conclusion

We proposed a new low-rank based image recovery method named SCOLOR and
embedded it into an existing GIR framework to achieve accurate GIR of MR brain
images containing tumors. Different from conventional low-rank based image recovery
methods, a spatial constraint is added to the low-rank framework. Based on the spatial
constraint, the residual error in the brain tumor region and normal brain region can be
treated separately in the low-rank framework. Therefore, brain tumor regions are
effectively recovered and normal brain regions of input images are well preserved in the
resulting low-rank images. In the experiment, SCOLOR and GIR-SCOLOR were
compared with LRSD and GIR-LRSD using both synthetic and real MR brain images.
Evaluation results showed that SCOLOR can produce higher quality low-rank images
than LRSD, and more accurate GIR of MR brain images containing tumors can be
achieved using GIR-SCOLOR in comparison to GIR-LRSD. It is worth noting that
GIR-SCOLOR is applicable to other pathological brain images which share the same
properties of the brain tumor. For future work, more characteristics of the brain tumor
will be used to define the spatial constraint e.g., brain tumors usually locate asymmetric
in the brain. Furthermore, we hope to set the parameters in SCOLOR automatically.
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