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Abstract. Periodicity is an important characteristic in many types of
video sequences, particularly in medical applications where the cardiac
and respiratory cycles are of special significance. Simple spectral analysis
or band-pass filtering is often insufficient to extract the periodic signal.
Here, we propose modeling the periodic and background components
using nested dynamic linear models. These models can approximate the
periodic and background time series in a wide range of video sequences.
A likelihood ratio test can be used to find regions of the video exhibit-
ing periodicity. Our experiments suggested this technique is suitable for
a variety of applications using different imaging modalities, including
ultrasound, MRI and natural video.
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1 Introduction

Analyzing quasiperiodic variations in a video sequence is frequently performed
in medical imaging with the goal of extracting information related to the cardiac
or respiratory cycles. Natural video of a person’s face or hand can be used for
non-contact monitoring of vital signs including heart rate, respiratory rate, and
pulse transit time [10,11] or to generate maps showing the spatial distribution
of tissue perfusion [7,12]. Fourier-decomposition MRI is an emerging technique
for imaging lung perfusion and ventilation that relies on Fourier analysis of a
sequence of non-contrast enhanced MR images [3]. Another area where periodic-
ity is useful in medical imaging is in the detection of critical pulsating structures
in medical interventions [1,2,8,9]. Most of these techniques require extensive
filtering and preprocessing that have been fine-tuned for their respective prob-
lems. This is necessary to produce a sufficiently clean periodic signal that can
be extracted through Fourier analysis or band-pass filtering.

In this paper we propose the use of dynamic linear modeling for analyzing
periodicity in video sequences. We show how a cyclic + random walk model can
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be used to estimate the frequency and amplitude of quasi-periodic components.
We also propose a log-likelihood ratio statistic for determining the presence
of periodicity. In addition, we derive the power spectral density function for
this model and show that it closely resembles that of the observed spectrum
commonly found in video sequences. This approach is applied to natural video,
ultrasound and MRI.

2 Methods

2.1 Dynamic Linear Models

Dynamic Linear Models (DLM) are linear state-space time series models [6] of
the form,

yt = Zat + εt, εt ∼ N(0, Σε), at = Tat−1 + ηt, ηt ∼ N(0, Ση), (1)

where yt and at are the observation and state vectors at time t. The observation
and state transition matrices are Z and T with independent normally distributed
noise covariances Σε and Ση. Often these are block diagonal matrices formed
from several simpler models whose parameters have an intuitive or physical
meaning. Maximum likelihood estimates (MLE) for unknown parameters in Z,
T , Σε and Ση can be obtained by numerically optimizing the log-likelihood
function,

log L(θ|Yt) =
∑

log p(yt|Yt, θ), (2)

where Yt denotes the vector of observations up to time t, θ are the unknown
model parameters and p(·) is the probability density function. Kalman filtering
is used to evaluate log L(θ|Yt).

We propose a nested DLM to model quasi-periodicity in video sequences.
This model consists of a stationary cyclic component, random walk component
and additive measurement noise as specified in Eq. 3,

Z =
[
1 0 1

]
, T =

⎡

⎣
ρ cos ω0 ρ sin ω0 0

−ρ sin ω0 ρ cos ω0 0
0 0 1

⎤

⎦ , Σε = σ2
n, Ση =

⎡

⎣
σ2

c 0 0
0 σ2

c 0
0 0 σ2

l

⎤

⎦ .

(3)
The parameters ω0 and ρ represent the frequency and bandwidth of the cyclic
component. The variances σ2

c , σ2
l and σ2

n specify the strength of cyclic, ran-
dom walk and additive noise components respectively. In the state vector,
at = [at,1, at,2, at,3]T , the first two states, at,1, and at,2 are analogous to the
real and imaginary components of a complex oscillator, while the third state,
at,3 follows a random walk to account for signal drift and other low frequency
variations. The model observation matrix, Z, adds at,1 and at,3 to obtain a cyclic
model with a local level that follows a random walk.

The power spectral density of the model can be derived by breaking apart
the cyclic and random walk components. Transfer functions from the cyclic com-
ponent state noise ηt,1 and ηt,2 to the output yt can be obtained directly from
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the state-space model:

G1(z) =
z − ρ cos(ω0)

z2 − 2ρ cos(ω)z + ρ2
, G2(z) =

−ρ sin(ω0)
z2 − 2ρ cos(ω)z + ρ2

, (4)

where G1(z), G2(z) are the respective transfer functions and z is the forward
shift operator. The power spectral density can be obtained by evaluating the
transfer functions at z = ejω yielding,

Scyclic
yy (ω) =

σ2
c (1 + ρ2 − 2ρ cos ω0 cos ω)

[1 + ρ2 − 2ρ cos(ω − ω0)][1 + ρ2 − 2ρ cos(ω + ω0)]
. (5)

The random walk is non-stationary with a well known frequency drop-off approx-
imately proportional to ω−2. An exact expression for its power spectral density,
Srw

yy (ω), with a finite length time series can be obtained through Fourier analysis
where the Fourier transform of the random walk state, at,3 is expressed in terms
of the incremental state noise, ηt,3:

F (at,3) =
N∑

i=0

F (ηi,3H(t − i)), (6)

where F is the discrete Fourier transform operator and H(t) is the Heaviside
function. Since ηt,3 are independent random variables, the power spectral density
can be obtained from the expected value of Eq. 6 as,

Srw
yy (ω) = E|F (at,3)|2 =

N∑

i=1

E|F (ηt,3H(t − i))|2 =
σ2

l

1 − cos ω
. (7)

The total power spectral density for Eq. 3 is obtained from Eqs. 5 and 7 plus the
white additive measurement noise,

Syy(ω) =
σ2

c (1 + ρ2 − 2ρ cos ω0 cos ω)
[1 + ρ2 − 2ρ cos(ω − ω0)][1 + ρ2 − 2ρ cos(ω + ω0)]

+
σ2

l

1 − cos ω
+ σ2

n.

(8)
As can be seen in Fig. 1, the power spectral density of the model slopes

downward at −20 dB/decade with a small peak near ω0 corresponding to the
cyclic component. This closely resembles the empirical spectrum observed in
Figs. 2 and 4. When σ2

c → 0, the cyclic component vanishes and we are left with
just the random walk and additive noise also known in structural time series
as the local level model. Thus, to test for the presence of a cyclic component,
we can test H0 : σ2

c = 0 against simple negation. Let θ̂0 denote the MLE in
the restricted model, σ2

c = 0. Then, if H0 is correct, the likelihood-ratio test
statistic,

D = −2[log L(θ̂|Yt) − log L(θ̂0|Yt)], (9)

measures the relative plausibility of H0. We use D to test for periodically varying
regions in the video.
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Fig. 1. The analytic spectrum of the DLM given in Eq. (8) and convergence of the
MLE of model parameters are verified through numerical simulations. These graphs
are shown for ω0 = 0.3, ρ = 0.95, σc/

√
(1 − ρ2) = 5σl = 5σn

2.2 Experiments

To demonstrate the effectiveness of this model, we considered three very differ-
ent datasets consisting of MRI, ultrasound and natural video. The first dataset
consisted of natural video of a human hand. We demonstrate how DLM can
be used to estimate the frequency (heart rate) and amplitude (perfusion map)
from the video. Next we apply DLM to an ultrasound video of the lumbar spine
where pixels in the dura exhibit subtle pulsation. Here we use the likelihood
ratio statistic, D, to test for the presence of periodicity. Finally, we consider
a free-breathing lung MRI sequence where local ventilation images can also be
generated from DLM.

3 Results

3.1 Natural Video

Photoplethysmogram (PPG) is an optical measurement of cardiac activity. Typ-
ically, infrared light is used in pulse-oximeters due to better tissue penetration
depth. However, the ubiquity of digital cameras has led to increasing interest in
monitoring vital signs using ambient visible light. These systems have the advan-
tage of monitoring vital signs remotely without requiring carefully controlled
lighting or any direct contact with the patient. Methods have been proposed
to extract heart rate, respiratory rate, and pulse transit time from videos of a
person’s face or hand [10,11]. Beyond simply measuring vital signs, it is also
possible to generate spatial maps showing variations in the magnitude of the
PPG signal [7,12]. PPG imaging has the potential to show tissue perfusion rel-
evant to many clinical problems such as evaluating skin-flaps and burn injuries.
These techniques typically require extensive preprocessing to detrend the PPG
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signal and remove the effects of motion or variations in ambient light. For this
experiment 8 videos were acquired showing the hands of seven subjects. Videos
1&2 were aquired of the same subject to demonstrate perfusion mapping. The
hand was gently scratched between these aquisitions to stimulate blood flow.
This test has been previously used for perfusion mapping techniques based on
PPG imaging [7] and laser Doppler imaging [4].

First, we demonstrate that heart rate can be estimated from all 8 videos.
A PPG signal was extracted by averaging the green channel intensity over a
400× 400 block as shown in Fig. 2. The proposed DLM was fit to the PPG
signal and the estimate of ω0 compared with the Fourier spectral peak and the
readings from the pulse oximeter (Table 1). The absolute error between DLM
frequency estimation and the nearest pulse oximeter reading was 2.3 ± 1.0 bpm
(mean ± standard error). This was significantly lower (p < 0.05) than that
estimates through simple Fourier analysis or quadratic peak interpolation (QPI)
of the spectral peak, which were 5.4 ± 1.3 and 3.8 ± 1.4 respectively.

Fig. 2. Video clips were recorded of the subjects’ hands and the PPG signal was
calculated from the average intensity over the 400× 400 box. The −20 dB/decade slope
observed in the spectrum is consistent with the proposed DLM.

Table 1. Heart rate estimated from the 8 video clips (bpm)

1 2 3 4 5 6 7 8 Abs Err

DLM 84.1 79.6 86.6 89.1 73.6 78.5 55.1 63.3 2.3 ± 1.0

Fourier 84.0 72.0 84.0 84.0 72.0 84.0 60.0 60.0 5.4 ± 1.3

QPI 82.7 76.4 83.7 86.9 70.7 82.8 55.7 63.1 3.8 ± 1.4

Pulse Ox. 84 82 94–98 90–91 79 80–81 56 63–65

Next, to generate perfusion maps, the DLM is fitted on a per pixel level
for videos 1&2. Here, the amplitude of the cyclic component corresponds to
perfusion. The original 1080× 1920 videos were reduced to 135 × 240 by applying
a Gaussian blur with σ = 8 and a down-sampling factor of 8. The DLM was
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fit with the frequency fixed to the MLE estimate given in Table 1. The quantity
σc/(

√
1 − ρ2), corresponding to the amplitude of the cyclic component, is shown

in Fig. 3. For comparison, the Fourier estimates of amplitude are also shown.

Fig. 3. PPG imaging using Fourier analysis and DLM. The yellow arrow indicates
where the hand was scratched.

Without any preprocessing or tuning for this specific problem, a relatively
simple DLM was able to identify very subtle changes in tissue perfusion that
occurred after gently scratching the hand. Furthermore, this was accomplished
with very short video clips only 5 s in length unlike previous methods that require
much longer video clips and extensive preprocessing and detrending.

3.2 Ultrasound

Dural pulsation is a valuable cue in ultrasound guided epidural injections. Pre-
viously McLeod et al. [8] proposed an extended Kalman filtering (EKF) method
that estimated frequency and amplitude of the pulsating dura on a per-pixel
basis in lumbar spine ultrasound. Here, our main objective is to identify which
pixels in the image exhibit periodicity. The likelihood-ratio statistic in Eq. 9
is ideal for this purpose. We fit the proposed DLM on a per-pixel basis to a
video of the lumbar ultrasound and compared it against those obtained from the
EKF method in McLeod et al. [8]. The results are nearly identical despite the
EKF having being developed for this application only, and requiring extensive
smoothing and tight thresholds on the frequency and amplitude (Fig. 4).

3.3 MRI

Fourier-decomposition of free-breathing proton MRI (FDMRI) has recently
emerged as a non-contrast enhanced MRI technique to generate regional pul-
monary ventilation maps on any clinically available MRI system [3,5]. This tech-
nique exploits fast pulmonary MRI acquisition and non-rigid image registration
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Fig. 4. The average power spectrum of the lumbar ultrasound ROI exhibits an approx-
imately −20 dB/decade slope with a small peak at the cardiac frequency, closely resem-
bling the theoretical DLM spectrum in Fig. 1. The likelihood ratio estimated from the
DLM immediately reveals the location of the dural pulsation. The results are very
similar to the hand-crafted EKF method [8].

to acquire a time series of registered proton MR images. Since the proton den-
sity within lung tissue varies with the respiratory cycle as the aveoli expand and
contract, periodicity in the signal intensity of the registered images provides a
measure of tissue ventilation. In FDMRI, the amplitude of the Fourier compo-
nent at the respiratory frequency is used as a measure of lung ventilation. We
acquired a dynamic free-breathing MRI of a non-small cell lung cancer patient
over 125 s at a rate of 4 frames per second where the left lung was obstructed
and poorly ventilated. A hyperpolarized 129Xe MR static ventilation image was
acquired as a benchmark and shows a lack of ventilation in the left lung. The
DLM was fit to the MRI sequence (Fig. 5). The DLM amplitude map was visu-
ally similar to FDMRI, but with slightly better rejection of background tissue
motion. The likelihood-ratio statistic provided a statistical test for the presence
of ventilation. It showed a lack of ventilation in the left lung, only exhibiting
motion artifacts around the lung boundary and was qualitatively closest to the
129Xe MRI.

Fig. 5. The benchmark 129Xe MR image is compared with FDMRI and the two DLM
images (amplitude, and likelihood-ratio). The cyan overlays display the ventilation
maps and the yellow arrows point to the lack of ventilation in the left lung. Of the
three images generated from the free-breathing sequence, the DLM likelihood-ratio
appears most similar to the 129Xe MR image.
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4 Discussion and Conclusion

We have shown how DLM provides a powerful framework for analyzing period-
icity in various video sequences. The same DLM was applied directly to natural
video, ultrasound and MRI without additional preprocessing or fine-tuning and
it provided frequency and amplitude estimates as well as log-likelihood statis-
tic testing for the presence of periodicity. The main strength of this model is
that it provides a general and robust method for analyzing periodicity in video
sequences that typically require individually handcrafted techniques. In addi-
tion, DLM can easily be extended to include multiple frequencies and harmonics
as well as more advanced background noise models.
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