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Abstract. Anatomical and biophysical modeling of left atrium (LA)
and proximal pulmonary veins (PPVs) is important for clinical man-
agement of several cardiac diseases. Magnetic resonance imaging (MRI)
allows qualitative assessment of LA and PPVs through visualization.
However, there is a strong need for an advanced image segmentation
method to be applied to cardiac MRI for quantitative analysis of LA
and PPVs. In this study, we address this unmet clinical need by explor-
ing a new deep learning-based segmentation strategy for quantification
of LA and PPVs with high accuracy and heightened efficiency. Our app-
roach is based on a multi-view convolutional neural network (CNN) with
an adaptive fusion strategy and a new loss function that allows fast and
more accurate convergence of the backpropagation based optimization.
After training our network from scratch by using more than 60K 2D
MRI images (slices), we have evaluated our segmentation strategy to the
STACOM 2013 cardiac segmentation challenge benchmark. Qualitative
and quantitative evaluations, obtained from the segmentation challenge,
indicate that the proposed method achieved the state-of-the-art sensitiv-
ity (90%), specificity (99%), precision (94%), and efficiency levels (10s in
GPU, and 7.5 min in CPU).
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1 Introduction

Atrial fibrillation (AF) is a cardiac arrhythmia caused by abnormal electrical
discharges in the atrium, often beginning with hemodynamic and/or structural
changes in the left atrium (LA) [1]. AF is clinically associated with LA strain,
and MRI is shown to be a promising imaging method for assessing the disease
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state and predicting adverse clinical outcomes. The LA also has an important
role in patients with ventricular dysfunction as a booster pump to augment
ventricular volume [2]. Computed tomography (CT) imaging of the heart is
frequently performed when managing AF and prior to pulmonary vein ablation
(isolation) therapy due to its rapid processing time. In recent years, there is an
increasing interest in shifting towards cardiac MRI due to its excellent soft tissue
contrast properties and lack of radiation exposure. For pulmonary vein ablation
therapy planning in AF, precise segmentation of the LA and PPVs is essential.
However, this task is non-trivial because of multiple anatomical variations of LA
and PPV.

Historically, statistical shape and atlas-based methods have been the state-
of-the-art cardiac segmentation approaches due to their ability to handle large
shape/appearance variations. One significant challenge for such approaches is
their limited efficiency: an average of 50 min processing time per volume [3].
Statistical shape models are faster than atlas-based methods, and a high degree
uncertainties in the accuracy of such models is inevitable [4]. To alleviate this
problem and accomplish the segmentation of LA and PPVs from 3D cardiac MRI
with high accuracy and efficiency, we propose to a new deep CNN. Our proposed
method is fully automated, and largely different from previous methods of LA
and PPVs segmentation. The summary of these differences and key novelties of
the proposed method, named as CardiacNET, are listed as follows:

• Training CNN from scratch for 3D cardiac MRI is not feasible with insufficient
3D training data (with ground truth) and limited computer memory. Instead,
we parsed 3D data into 2D components (axial (A), sagittal (S), and coronal
(C)), and utilized a separate deep learning architecture for each component.
The proposed CardiacNET was trained using more than 60K 2D slices of
cardiac MR images without relying on a pre-training network of non-medical
data.

• We have combined three CNN networks through an adaptive fusion mecha-
nism where complementary information of each CNN was utilized to improve
segmentation results. The proposed adaptive fusion mechanism is based on
a new strategy; called robust region, which measures (roughly) the reliability
of segmentation results without the need for ground truth.

• We devised a new loss function in the proposed network, based on a modi-
fied z-loss, to provide fast convergence of network parameters. This not only
improved segmentation results due to fast and reliable allocation of network
parameters, but it also provided a significant acceleration of the segmentation
process. The overall segmentation process for a given 3D cardiac MRI takes
at most 10s in GPU, and 7.5 min in CPU on a normal workstation.

2 Proposed Multi-view Convolutional Neural Network
(CNN) Architecture

The proposed pipeline for deep learning based segmentation of the LA and PPVs
is summarized in Fig. 1. We used the same CNN architecture for each view of the
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Fig. 1. High-level overview of the proposed multi-view CNN architecture.

3D cardiac MRI after parsing them into axial, sagittal, and coronal views. The
rationale behind this decision is based on the limitation of computer memory
and insufficient 3D data for training on 3D cardiac MRI from scratch. Instead,
we reduced the computational burden of the CNN training by constraining the
problem into a 2D domain. The resulting pixel-wise segmentations from each
CNN are combined through an adaptive fusion strategy. The fusion operation
was designed to maximize the information content from different views. The
details of the pipeline are given in the following subsections.

Encoder-Decoder CNN: We constructed an encoder-decoder CNN architec-
ture, similar to that of Noh et al. [5]. The network includes 23 layers (11 in
encoder, 12 in decoder units). Two max-pooling layers in encoder units reduce
the image dimensions by half, and a total of 19 convolutional (9 in encoder, 10
in decoder), 18 batch normalization, and 18 ReLU (rectified linear unit) layers
are used. Specific to the decoder unit, two upsampling layers are used to con-
vert the images back into original sizes. Also, the kernel size of all filters are
considered as 3 × 3. The final layer of the network includes a softmax function
(logistic) for generating a probability score for each pixel. Details of these layers,
and associated filter size and numbers are given in Fig. 2.

Loss Function: We used a new loss function that can estimate the parameters
of the proposed network at a much faster rate. We trained end-to-end mapping
with a loss function L(o, c) = softplus(a(b − zc))/a, called z-loss [6], where o
denotes output of the network, c denotes the ground truth label, and zc indicate
z-normalized label, obtained as zc = (oc − μ)/σ where mean (μ) and standard
deviation σ are obtained from o. z-loss is simply obtained with the reparame-
trization of soft-plus (SP) function (i.e., SP (x) = ln(1+ex)) through two hyper-
parameters: a and b. Herein, we kept these hyperparameters fixed, and trained
the network with a reduced z-loss function. The rationale behind this choice is
the following: the z-loss function provides an efficient training performance as it
belongs to spherical loss family, and it is invariant to scale and shift changes in
the output, avoiding output parameters to deviate from extreme values.

Training CardiacNET from Scratch: 3D cardiac MRI images along with
its corresponding expert annotated ground truths were used to train the CNN
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Fig. 2. Details of the CNN architecture. Note that image size is not necessarily fixed
for each view’s CNN.

after the images are parsed into three views (A, S, C). Data augmentation has
been conducted on the training dataset with translation and rotation opera-
tion as indicated in Table 1. Obtained 3D images were parsed into A, S, and C
views, and more than 60K 2D images were obtained to feed training of the CNN
(approximately 30K for A and C views, around 11K for S view). The 9 of the
subjects and their corresponding augmented data are considered as a training
and 1 subject and its corresponding augmented data is considered as valida-
tion. As a preprocessing step, all images have undergone anisotropic smoothing
filtering and histogram matching.

Table 1. Data augmentation parameters and
number of training images

Data augmentation

Methods Parameters

Translations (x + trans, y = 0), trans ε[−20, 20]

(x = 0, y + trans), trans ε[−20, 20]

Rotation k × 45, k ε[−2, −1, 1, 2]

Training images

CNN # of images Image size

Sagittal 10,800 320× 0

Axial 28,800 110× 0

Coronal 28,800 110× 0

Multi-view Information Fusion.
Since cardiac MRI is often not
reconstructed with isotropic reso-
lution, we expected varying seg-
mentation accuracy in different
views. In order to alleviate poten-
tial adverse effects caused by non-
isotropic spatial resolutions of a
particular view, it is desirable to
reduce the contribution of that
view into final segmentation. We
have achieved this with the adap-
tive fusion strategy as described next. For a given MRI volume I, and its cor-
responding segmentation o, we proposed a new strategy, called robust region,
that roughly determined the reliability of the output segmentation o by assess-
ing its object distribution. To achieve this, we hypothesized that the output
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should include only one connected object when the segmentation is successful,
and if there was more than a single connected object available, these can be
considered as false positives. Accordingly, respective performance of segmen-
tation performance in A, S, and C views can be compared and weighted. To
this end, we utilized connected component analysis (CCA) to rank output seg-
mentations and reduced the contribution of CNN for a particular view when
false positive findings (non-trusted objects/components) were large and true
positive findings (trusted object/component) were small. Figure 3 describes the
adaptive fusion strategy as CCA(o) = {o1, . . . , on| ∪ oi = o, and ∩ oi = φ}.
Thus, the contribution of each view’s CNN was computed based on a weighting
w = maxi{|oi|}/

∑
i |oi|, indicating that higher weights were assigned when the

component with largest volume dominated the whole output volume. Note that
this block has been used only in the test phase. Complementary to this strategy,
we also used simple linear fusion of each views for comparison (See Experimental
Results section).

Fig. 3. Connected components obtained from each view were computed and the resid-
ual volume (T-NT) was used to determine the strength for fusion with the other views.

3 Experimental Results

Data sets: Thirty cardiac MRI data sets were provided by the STACOM 2013
challenge organizers [3]. Ten training data were provided with ground truth
labels, and the remaining twenty were provided as a test set. It is important to
note that not the complete PVs are considered in the segmentation challenge,
but only the proximal segments of the PVs up to the first branching vessel or
after 10 mm from the vein ostium were included in the segmentation. MR images
were obtained from a 1.5T Achieva (Philips Healtcare, The Neatherlands) scan-
ner with an ECG-gated 3D balanced steady-state free precession acquisition [3]
with TR/TE= 4.4/2.4 ms, and Flip-angle = 90◦. Typical acquisition time for
the cardiac volume imaging was 10 min. In-plane resolution was recorded as
1.25 × 25 mm2, slice thickness was measured as 2.7 mm. Further details on the
data acquisition, and image properties can be found in [3].

Evaluations. For evaluation and comparison with other state-of-the-art
method, we have used the same evaluation metrics, provided by the STACOM
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Fig. 4. First row shows sample MRI slices from S, C, and A views (red contour is
ground-truth and green one is output of proposed method). Second-to-fifth rows: 3D
surface visualization for the ground-truth and the output generated by the proposed
method w.r.t simple fusion (F), adaptive fusion (AF), and the new loss function (SP).

2013 challenge: Dice index and surface-to-surface (S2S) metrics. In addition, we
calculated Dice index and S2S for the LA and PPVs separately. To provide a
comprehensive evaluation and comparisons, sensitivity (true positive rate), speci-
ficity (true negative rate), precision (positive prediction value), and Dice index
values for the combined LA and PPVs were included too. Table 2 summarizes all
these evaluation metrics along with efficiency comparisons where we tested our
algorithm both in GPU and CPU. LTSI-VRG, UCL-1C, and UCL-4C are three
atlas-based method which their output were published publicly as a part of STA-
COM 2013 challenge. Also, OBS-2 is the result from human observer which its
output was available as a part of STACOM 2013 challenge. Using leave-one-out
cross-validation strategy on training dataset, we achieved high sensitivity (0.92)
and Dice value (0.93). Similarly, in almost all evaluation metrics in the test set,
the proposed method out-performed the state-of-the-art approaches by large
margins. Table 2 indicates the results of varying combinations using Cardiac-
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Table 2. The evaluation metrics for state-of-the-art and proposed methods. ∗∗: the
running time on CPU ∗: the running time on NVIDIA TitanX GPU

Methods LTSI VRG UCL 1C UCL 4C OBS 2 A CNN C CNN S CNN F-CNN AF-CNN AF-CNN-SP

Dice(LA) 0.910 0.938 0.859 0.908 0.903 0.804 0.787 0.873 0.928 0.951

Dice(PPVs) 0.653 0.609 0.646 0.751 0.561 0.478 0.398 0.506 0.616 0.685

S2S(LA) in mm 1.640 1.086 2.136 1.538 1.592 2.679 2.853 1.771 1.359 1.045

S2S(PPVs) in mm 1.994 1.623 2.375 1.594 1.928 2.878 3.581 2.121 1.718 1.427

Sensitivity 0.926 0.828 0.832 0.894 0.806 0.658 0.663 0.743 0.883 0.895

Specificity 0.998 0.999 0.999 0.997 0.996 0.994 0.997 0.997 0.999 0.999

Precision 0.815 0.957 0.814 0.936 0.905 0.774 0.880 0.953 0.936 0.938

Dice (all) 0.862 0.886 0.819 0.911 0.845 0.695 0.734 0.820 0.887 0.905

Running 3100∗∗ 1200∗∗ 1200∗∗ - 170∗∗ 170∗∗ 155∗∗ 450∗∗ 450∗∗ 450∗∗

Time (sec) - - - - 3.5∗ 3.5∗ 3∗ 10∗ 10∗ 10∗

NET such as single CNN in particular view (i.e., S CNN), with simple linear
fusion F-CNN, adaptive fusion AF-CNN, and with the new loss function AF-
CNN-SP. In AF-CNN, the loss function was cross-entropy. The best method in
the challenge data set was reported to have a Dice index of 0.94 for LA and 0.65
for PPVs (combined LA and PPVs was less than 0.9). In our proposed method,
the Dice index for combined LA and PPVs was well above 0.90. For efficiency
comparison, our approach only takes at most 10s on a Nvidia TitanX GPU
and 7.5 min in a CPU with Octa-core processor (2.4 GHz) configuration. The
method in [7] required 30–45 min of processing times (with Quad-core processor
(2.13 GHz)). For qualitative evaluation, we have used surface rendering of output
segmentations compared to ground truth in Fig. 4. Sample axial, sagittal, and
coronal MRI slices are given in the same figure with ground truth annotations
overlaid with the segmented LA and PPVs.

4 Discussions and Concluding Remarks

The advantage of CardiacNET is accurate and efficient method for both LA and
PPVs segmentation in atrial fibrillation patients: combined segmentation of the
LA and PPVs. Precise segmentation of the LA and PPVs is needed for ablation
therapy planning and clinical guidance in AF patients. PPVs have a greater
number of anatomical variations than the LA-body, leading to challenges with
accurate segmentation. Joint segmentation the LA and PPVs is even more chal-
lenging compared to sole LA-body segmentation. Nevertheless, with all available
quantitative metrics, the proposed method has been shown to greatly improve
the segmentation accuracy on the existing benchmark for LA and PPVs segmen-
tation. The benchmark evaluation has also allowed the method and its variations
to be cross-compared on the same dataset with other existing methods in liter-
ature (Fig. 5).

Despite the efficacy of the proposed method, there are several possibilities
that our work can be extended in future studies. Firstly, the new method will
be tested, evaluated, and validated our in more diverse data sets from several
independent cohorts, and at the different imaging resolution and noise levels,
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Fig. 5. Box plots for sensitivity, precision, and Dice index for state-of-the-art
(LTSI VRG,UCL 1C, UCL 4C, OBS 2) and proposed methods (F CNN, AF CNN,
AF CNN SP) on the LA segmentation benchmark

and even across different scanner vendors. Secondly, extending our framework
into 4D (i.e. motion) analysis of cardiac images can be possible by extending our
parsing strategy. Thirdly, we aim to explore the feasibility of training completely
3D cardiac MRI based on the availability of multiple GPUs, or developing sparse
CNNs to alleviate the segmentation problem. Fourthly, with low-dose cardiac CT
technology on the rise; it is desirable to have similar network structure trained
on CT scans. This notable efficacy of the deep learning strategies presented in
this work promises a similar performance on CT scans.

In conclusion, the proposed method has utilized the strength of deeply trained
CNN to segment LA and PPVs from cardiac MRI. We have shown combining
information from different views of MRI by using an adaptive fusion strategy and
a new loss function improves segmentation accuracy and efficiency significantly.

Acknowledgment. Thanks to Nvidia for donating a GPU for deep learning experi-
ments. All CNN experiments have been conducted using Tensorflow.
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