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Abstract. Head motion is one of the most important nuisance vari-
ables in neuroimaging, particularly in studies of clinical or special popu-
lations, such as children. However, the possibility of estimating motion in
structural MRI is limited to a few specialized sites using advanced MRI
acquisition techniques. Here we propose a supervised learning method to
retrospectively estimate motion from plain MRI. Using sparsely labeled
training data, we trained a 3D convolutional neural network to assess if
voxels are corrupted by motion or not. The output of the network is a
motion probability map, which we integrate across a region of interest
(ROI) to obtain a scalar motion score. Using cross-validation on a dataset
of n = 48 healthy children scanned at our center, and the cerebral cortex
as ROI, we show that the proposed measure of motion explains away
37% of the variation in cortical thickness. We also show that the motion
score is highly correlated with the results from human quality control of
the scans. The proposed technique can not only be applied to current
studies, but also opens up the possibility of reanalyzing large amounts of
legacy datasets with motion into consideration: we applied the classifier
trained on data from our center to the ABIDE dataset (autism), and
managed to recover group differences that were confounded by motion.

1 Introduction

The negative impact of head motion on measurements derived from brain MRI
has recently been a subject of study in the neuroimaging literature. In the con-
text of functional connectivity studies, it has been shown that head motion has
substantial, systematic effects on the timecourses of fMRI data, leading to vari-
ations in correlation estimates and functional coupling [1,2]. In diffusion MRI,
motion typically produces increased radial diffusivity estimates, while decreasing
axial diffusivity and fractional anisotropy measures [3]. In morphometric studies
with structural MRI, it has recently been shown that head motion decreases
the estimates of cortical thickness and gray matter volumes [4]. Therefore, head
motion is an important confounding factor that can undermine the conclusions
of MRI-based neuroimaging studies. While motion certainly affects studies with
a single healthy group, it is a particularly important factor in group studies
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involving clinical or special populations, such that one group is more prone to
moving in the scanner than the other (e.g., Parkinson’s).

To mitigate these problems, one would ideally use motion correction meth-
ods at acquisition. These techniques can be prospective or retrospective. The
former attempt to dynamically keep the measurement coordinate system fixed
with respect to the subject during acquisition. Head motion can be tracked with
an external system (e.g., camera and markers [5]) or with image-based naviga-
tors [6,7]. Retrospective methods attempt to correct for motion after the acquisi-
tion. Some retrospective algorithms exploit information from external trackers as
well [8], while others use the raw k-space data [9]. Unfortunately, neither prospec-
tive motion correction nor external trackers are widely available yet. Moreover,
there are immense amounts of legacy MRI data for which the raw k-space data
are not available (since only reconstructed images are normally stored in the
PACS), which limits the applicability of retrospective k-space techniques.

A simpler, more extended alternative to reconstructing motion-free images
is to estimate a measure of motion, manually or automatically. The former is
typically in the form of a quality control (QC) step, in which a human rater
disregards scans that display motion artifacts. Despite its simplicity, manual
QC is neither continuous nor reproducible, and can introduce bias in subsequent
analyses. This problem can be ameliorated with automated techniques, which
generate continuous, reproducible motion scores that can be used in two different
ways: as automated QC and as nuisance factors. In automated QC, subjects with
scores over a threshold are left out in a systematic and reproducible manner.
When used as nuisance factors, scores are regressed out from the target variable
to reduce the impact of motion on the analysis [3], so no subjects are discarded.

In functional and diffusion MRI, head motion can be estimated from the
parameters of the transforms that co-register the different frames. In structural
MRI, however, the absence of temporal information makes extracting measures
of motion more difficult. Here we present a machine learning approach to ret-
rospectively quantify motion from structural brain MRI. To the best of our
knowledge, this is the first motion estimation method that relies solely on image
intensities. Motion detection is cast as a supervised classification problem, which
is solved with a convolutional neural network (CNN). We use a 3D network archi-
tecture (similar to 3D U-net [10]) with a nonlinear data augmentation scheme
that enables learning with sparsely annotated MRI scans. This is a key feature in
our application, since image regions corrupted by motion artifacts (e.g., ghost-
ing, blurring) have ill-defined boundaries, and are difficult to manually delineate
with precision – especially in 3D. We also model uncertainty in the CNN with
dropout at testing [11], and a scalar motion score is produced by averaging the
probability map estimated by the CNN across an application-dependent ROI.

Our technique requires no specialized equipment, and can be used to analyze
both prospective and legacy MRI data. We evaluated the method with two
datasets involving motion-prone populations (children and autism). Using a ROI
including the cortical ribbon and an underlying layer of white matter, we show
that our motion score is closely connected with cortical thickness (which is known
to be sensitive to motion [4]), accurately predicts the results of human QC, and
recovers group differences confounded by motion in a group study.
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2 Methods

2.1 Voxel Classifier

The core of our method is a classifier that produces, for each voxel, an estimate of
the probability that its intensity is corrupted by motion artifacts. As classifier,
we use a 3D CNN based on the 3D U-net architecture [10], which is robust
against sparsely labeled training data. Our architecture is shown in Fig. 1. The
network is leaner than in [10], since we do not need a large receptive field to
detect motion artifacts, and also for faster training and inference.

The network has an analysis and synthesis stage with three levels of res-
olution. The input is an image patch of size 643 voxels (1 mm isotropic). At
the analysis stage, the convolution layers have kernels of size 3×3×3 (stride 1),
and are followed by rectified linear units (ReLU), batch normalization [12] and
max pooling (2×2×2, stride 2). At the synthesis stage, deconvolutions (2×2×2,
stride 2) are followed by a 3×3×3 convolutional layer and a ReLU. In testing,
we also implement random dropout at the ReLUs, in order to obtain different
samples of the posterior distribution of the output [11]. Shortcut connections
link layers of matching resolution at the analysis and synthesis stages, providing
the latter with information at increasingly higher resolution at each level. In the
last layer, a 1×1×1 convolution reduces the number of outputs to two: motion
and no motion. We used weighted cross-entropy as loss function, and trained
on sparsely labeled data by setting the weight of unlabeled voxels to zero. The
output is a 423 voxel tile, with a receptive field of size 223 voxels. To classify a
whole volume, we simply partition it into overlapping tiles of size 643 voxels.

Fig. 1. CNN architecture. Conv. stands for convolution, BN for batch normalization,
and ReLU for rectified linear unit. The number of feature maps is displayed above each
layer.

2.2 Computation of the Measure of Head Motion

Following [13], we use an average probability within a ROI as global score:

M =
1

|ΩROI |
∑

x∈ΩROI

pm(x) =
1

|ΩROI |
∑

x∈ΩROI

exp[m(x)]
exp[n(x)] + exp[m(x)]

, (1)
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where M is our global motion score, ΩROI is the ROI domain, x is a voxel
location, and pm(x) is the probability that the voxel at location x is motion
corrupted. Such probability is computed as the softmax of n(x) and m(x), which
are the strengths of the activations of the no-motion and motion units at the
final layer of the CNN, respectively. As much as a single pm(x) is a weak measure
of head motion, its average across the ROI provides a robust estimate [13].

3 Experiments and Results

3.1 MRI Data and Manual Annotations

We used two different datasets in this study. The first dataset (henceforth the “in-
house” dataset) consists of brain MRI scans from n = 48 healthy children aged
7.1–11.5 years, acquired with a 3T Siemens scanner using an MP-RAGE sequence
at 1 mm isotropic resolution. Two separate sets of ground truth annotations were
created for this dataset: at the scan level (for testing automatic QC) and at the
voxel level (for training the CNN). At the scan level, we made two sets of QC
annotations: one by a trained RA (SM), which we used as ground truth (npass =
34, nfail = 14), and a second by JEI, with inter-rater variability purposes.

At the voxel level, creating dense segmentations is time consuming and hard
to reproduce due to the difficulty of placing accurate boundaries around regions
with motion artifacts, particularly in 3D. Instead, we made sparse annotations
as follows. First, the RA went over the QC-passed scans, and identified slices in
different orientations (axial / sagittal / coronal, approximately 30 per scan) that
displayed no motion artifacts. The voxels inside the brain in these slices were all
labeled as “no motion”, whereas all other voxels in the scan were not used in
training. Then, the RA went over the QC-failed scans, and drew brushstrokes on
regions inside the brain that clearly showed motion artifacts, making sure that
the annotations were highly specific. These voxels were labeled as “motion”,
whereas the remaining voxels were not used to train the classifier. The process
took approximately 10–15 min per scan.

In order to test our classifier in a practical scenario and assess its generaliza-
tion ability, we used a second dataset: the Autism Brain Imaging Data Exchange
(ABIDE [14]). Even though effect sizes are notoriously small in autism spectrum
disorder (ASD), ABIDE is a representative example of the type of application
for which our method can be useful, since children with ASD might be more
prone to moving in the scanner. We used a subset of ABIDE consisting of the
n = 111 subjects (68 controls, 47 ASD) younger than 12 years (range: 10− 12).
This choice was motivated by: 1. staying in the age range in which children with
ASD still have increased cortical thickness [15,16]; and 2. matching the popula-
tion with that of the in-house dataset. This subset of ABIDE was acquired on
nine different scanners across different sites, mostly with MP-RAGE sequences
at 1 mm resolution (see [14]).

In both datasets, image intensities were coarsely normalized by dividing them
by their robust maximum, computed as the 98th percentile of their intensity
distribution. Cortical thickness measures were obtained with FreeSurfer [17].
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3.2 Experimental Setup

The motion metric from Eq. 1 was computed for the scans from both datasets as
follows. For the in-house dataset, we used cross-validation with just two pseudo-
random folds (since training the CNN is computationally expensive), ensuring
that the number of QC-fails was the same in both. For ABIDE, rather than
retraining the CCN on the whole in-house dataset, we processed the scans with
the two CNNs that were already trained and averaged their outputs.

The 3D CNNs were trained end-to-end from scratch using a modified version
of their publicly available implementation, which is based on the Caffe frame-
work [18]. Data augmentation included: translations; linear mapping of image
intensities (slope between 0.8 and 1.2); rotations (up to 15◦ around each axis);
and elastic deformations based on random shifts of controls point and B-spline
interpolation (control points 16 voxels apart, random shifts with standard devia-
tion of 2 voxels). Stochastic gradient descent was used to minimize the weighted
cross-entropy. We used different (constant) weights for the positive and negative
samples to balance their total contributions to the loss function. We trained until
the cross-entropy flattened for the training data (i.e., no validation set), which
happened at 60,000 iterations (approximately 10 h on a Nvidia Titan X GPU).
In testing, we used a 50% overlap of the output tiles to mitigate boundary arti-
facts. Further smoothness was achieved by the dropout at testing scheme [11]
(probability: 0.5), which also increased the richness in the distribution of output
probabilities. The final probability of motion for each voxel was computed as the
average of the available estimates at each spatial location.

We evaluated our proposed approach both directly and indirectly. For direct
validation, we assessed the ability of the motion score to predict the output of
human QC of the in-house dataset. For the indirect validation, we examined
the relationship between our motion score and average cortical thickness, as
well as the ability of the score to enhance group differences when regressed out.
To compute the motion score, we used a ROI (ΩROI) comprising the cortical
ribbon (as estimated by FreeSurfer) and an underlying 3 mm layer of cerebral
white matter, computed by inwards dilation with a spherical kernel.

3.3 Results

Qualitative Results: Figure 2 shows sagittal slices of four sample MRI scans
with increasingly severe artifacts, along with the corresponding outputs from
the CNN: (a) is crisp and motion-free, and few voxels produce high probability
of motion; (b) shows minimal ringing, mostly on the superior region; (c) shows
moderate motion; and (d) displays severe blurring and ringing due to motion,
such that the CNN produces high probabilities around most of the ROI.

Quantitative Results on In-house Dataset: Figure 3(a) shows the distri-
butions of the motion scores for the two QC groups, which are far apart: a
non-parametric test (Wilcoxon signed-rank) yields p = 5 × 10−8. Therefore, a
classifier based on thresholding the score can closely mimic human QC, reach-
ing 0.916 accuracy and 0.941 area under the receiver operating characteristic
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Fig. 2. Sagittal slices of four cases and corresponding probability maps (masked by the
ROI, outlined in blue). (a) M = 0.12 (lowest in dataset). (b) M = 0.19. (c) M = 0.25.
(d) M = 0.32 (failed QC). The arrows point at motion artifacts.

(ROC) curve; see Fig. 3(b). This performance is close to the inter-rater variabil-
ity, which was 0.958. We also found a strong negative correlation between our
score and mean cortical thickness: ρ = 0.66 (95% C.I. [-0.79,-0.46], p = 3×10−7).
When correcting for motion, the variance of the cortical thickness decreased from
0.0191 mm2 to 0.0108 mm2, i.e., by 37% (R2

adj = 0.42); see Fig. 3(c).

Results on ABIDE Dataset: Using a Wilcoxon signed-rank test, we found
differences in motion scores between the two groups (p = 0.03), a circumstance
that can undermine the conclusion of cortical thickness comparisons. We built a
general linear model for the left-right averaged mean thickness of each FreeSurfer
cortical region, with the following covariates: age, gender, group, site of acquisi-
tion and, optionally, our motion score. Introducing motion as a covariate in the
model changed the results considerably, as shown by the significance maps in
Fig. 4, which are overlaid on an inflated, reference surface space (“fsaverage”).

Fig. 3. (a) Distribution of motion scores for the two QC groups. (b) ROC for automatic
QC based on score thresholding; the dot marks the operating point: 91.6% accuracy.
(c) Distribution of cortical thickness with and without correction.
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Figure 4(a,d) shows an inferior-posterior view exposing the occipital lobe and
lingual gyrus, areas in which increased cortical thickness has been reported in
children with ASD [16]. The motion-corrected model increases the effect size in
the occipital lobe (particularly the inferior region) and detects differences in the
lingual gyrus that were missed by the model without motion – possibly because
the effect of motion was very strong in this region (p = 5 × 10−7 for its slope).

Figure 4(b,e) shows a lateral view, in which correction by motion reveals
effects in the temporal lobe and the insula, which would have been otherwise
missed. The thicknesses of both of these regions showed a strong association
with our motion score: p = 5× 10−9 and p = 2× 10−8, respectively. Finally, the
model with motion also detected missed differences in the mid-anterior cingulate
cortex, as shown in the medial view in Fig. 4(c,f) (effect of motion: p = 3×10−8).

Fig. 4. Region-wise significance map for differences in cortical thickness between
ASD and control group (left-right averaged). The color map represents − log10 p.
(a) Inferior-posterior view, model without motion. (b) Lateral view, model without
motion. (c) Medial view, model without motion. (d-f) Model with motion.

4 Discussion

This work constitutes a relevant first step to retrospectively estimate in-scanner
motion from structural MRI scans, without requiring external trackers or raw
k-space data. The technique not only enables sites without means for special-
ized MRI acquisition to consider motion, but also makes it possible to reana-
lyze legacy datasets correcting for motion, which can considerably change the
results – as we have shown on ABIDE, without even fine-tuning our CNN to
this dataset.

Our method is specific to population and MRI contrast. However, once a CNN
has been trained, accurate motion estimates can be automatically obtained with
the method for all subsequent scans within a center, with some generalization
ability to other datasets. Training datasets for other MRI contrasts can be cre-
ated with limited effort (ca. 10 h), since training relies on sparely labeled data.
Moreover, manual labeling effort could in principle be saved by fine-tuning our
CNN to a new dataset, using only a handful of (sparsely) annotated scans.

Future work will follow three directions: 1. Fine-tuning the CNN to other
datasets; 2. Testing the method on other morphometric measures and ROIs (e.g.,
hippocampal volume); and 3. Extension to motion correction, by training on a
(possibly synthetic) set of matched motion-free and motion-corrupted scans.
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