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Abstract. In this paper, we present a dynamic patient-specific model
of the respiratory system for a whole respiratory cycle, based on 4D CT
scans, personalized physiological compliance (pressure-volume curves),
as well as an automatic tuning algorithm to determine lung pressure and
diaphragm force parameters. The amplitude of the lung pressure and
diaphragm forces are specific, and differs from one patient to another and
depends on geometrical and physiological characteristics of the patient.
To determine these parameters at different respiratory states and for each
patient, an inverse finite element (FE) analysis has been implemented to
match the experimental data issued directly from 4D CT images, to the
FE simulation results, by minimizing the lungs volume variations. We
have evaluated the model accuracy on five selected patients, from DIR-
Lab Dataset, with small and large breathing amplitudes, by comparing
the FE simulation results on 75 landmarks, at end inspiration (EI), end
expiration (EE) states, and at each intermediate respiratory state. We
have also evaluated the tumor motion identified in 4D CT scan images
and compared it with the trajectory obtained by FE simulation, during
one complete breathing cycle. The results demonstrate the good quanti-
tative results of our physic-based model and we believe that our model,
despite of others takes into account the challenging problem of the res-
piratory variabilities.

1 Introduction

Dynamic patient-specific computational modeling and simulation of the respira-
tory system, is one of the important areas of research in radiation therapy and
medical imaging [1]. Tumor motion during irradiation reduces the target cover-
age and increases dose deposition within healthy tissues. The respiratory motion
modifies both the shape and the position of internal organs. Lung tumors can
even present hysteresis in their trajectories [2], and generally, it is very difficult
or impossible to accurately identify the tumor location during the treatment.
This uncertainty on the position makes necessary the development of a strategy
for the prediction of tumor motion. One way is to directly image the motion of
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the tumor and other internal organs during treatment, as done with Cyberknife
system. Some lung tumors may be visible using x-ray imaging, but generally
it is very difficult to accurately identify the tumor. The other solution is to use
implanted markers. However, all these approaches are invasive and would greatly
increase the radiation dose to the patient due to imaging. An alternative way
is to use a correspondence model to find the relationship between the internal
organs motion and the external respiratory surrogate signals, such as spirome-
try or the displacement of the skin surface, which can be easily measured during
treatment [1]. Methods to estimate respiratory organ motions (internal organs)
can be divided into two main classes; image registration and biophysical mod-
eling. In image registration, motion fields are directly calculated and extracted
from 4D image sequences (CT or IRM) [1], without taking into account knowl-
edge about anatomy and physiology of the respiratory system. In contrast, bio-
physical (biomechanical) approaches aim at identification and take into account
the different anatomical and physiological aspects of breathing dynamics and
attempt to describe respiratory-induced organ motion through a partial differ-
ential equations (PDEs), based on continuum media mechanics solved frequently
by Finite Element Methods (FEM) [3,5,6,9]. Unfortunately, most of the time,
the authors have used a single organ (lung) with nonrealistic boundary con-
ditions. Moreover, these simulations are static and do not take into account
the dynamic variabilities of the respiratory system and none of these methods
consider the real physiological respiratory motion. However, some authors have
proposed biomechanical models including the behavior of other organs of the
respiratory system (diaphragm, thorax, skin...) coupled with optimization algo-
rithms. In [7] the authors present an ad-hoc evolutionary algorithm designed to
explore a search space with 15 dimensions for the respiratory system to esti-
mate the parameters of lung model behavior. Recently, the authors in [4,8] have
proposed patient specific biomechanical model of the lung motion from 4D CT
images for half respiratory cycle, where the motion is not constrained by any
fixed boundary condition. The authors have respectively used 4 and 16 pressure
zones on the sub-diaphragm and thoracic cavity. Unfortunately, none of these
methods take into account the real physiological respiratory motion. Its control
or monitoring by the external parameters could be impossible.

In this paper, we propose an approach to internal movement monitoring
with two external parameters, the volume of air exchanged and the thoracic
movement (rib kinematics). This model is a 4D dynamic and realistic biome-
chanical patient-specific model of the respiratory system, constrained by real
boundary conditions from the anatomy, based on automatic tuning algorithm to
compute lung pressures and diaphragm forces during a whole respiratory cycle.
The amplitude of the lung pressure and diaphragm force are patient specific
and determined at different respiratory states. In Sect. 2, we present the 3D
segmentation and reconstruction, as well as the lung-pressure/diaphragm-force
optimization algorithms based on biomechanical model. In Sect. 3, a qualitative
and quantitative analysis and experimental validation are presented. Finally, we
give some concluding remarks and directions for future work.



218 M. Giroux et al.

Fig. 1. 3D segmentation, CAD reconstruction and 3D mesh generation for finite ele-
ment simulations.

2 Materials and Methods

2.1 3D Segmentation and Reconstruction

Various approaches for multi-organ and lung segmentation have been developed
based on CT images, which include gray-level threshold, region growing or edge
tracking. In this paper, the thorax, the lungs and the external skin are segmented
automatically using gray-level threshold algorithms available within ITK-SNAP
library1. The human diaphragm was segmented manually. To extract the medi-
astinum structure, we have used the different segmentation masks of the lungs,
the thorax, the inner thoracic region and the diaphragm. A Boolean operation
between the trunk volume and these masks, permits to reconstruct easily the
mediastinum volume. The automatic segmentation of lung tumors remains quite
challenging as they are directly in contact with healthy tissues and the different
existing methods (automatic or manual) suffer from a lack of reproducibility.
Thus, the correct segmentation can only be achieved by medical experts.

After segmentation, a 3D surface mesh is created for each volume, using the
marching cubes algorithm. Due to the excessive number of nodes and large num-
ber of bad quality elements, which are common features in mesh-based models,
a CAD-based approach has been developed. The meshes are rebuilt as a solid
using a procedure of semi-automatic surface creation with NURBS. Using the
resulting smooth surface, a quality mesh with four-nodes tetrahedral elements
is generated using ABAQUS packages (Fig. 1).

2.2 Dynamic Biomechanical Patient-Specific Model
of the Respiratory System

The organs are considered as isotropic, elastic, and hyperelastic materials. For
an isotropic elastic or hyperelastic material, the elastic energy, noted W , may
be written as:
1 ITK-SNAP is a software application used to segment structures in 3D medical

images.
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W (E) =
λ

2
(trE)2 + μ (trE2) (1)

where E is the Green-Lagrange strain tensor, λ and μ are the Lame coefficients.
The second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor
given by: S = λ (trE) I+2μE. For dynamic simulation using FEM, the equation
of motion of a vertex l of the organ mesh can be written:

M l{ül} + γl{u̇l} +
∑

τ∈l

({
Fint

l

})
=

{
Fl

ext

}
(2)

where M l, γl are respectively the mass computed from Hounsfield densities [11]
and damping coefficients of each vertex. The Vl is the neighborhood of vertex l
(i.e. the tetrahedra containing node l). The Fint

l are the internal forces calculated
by FE method and the Fl

ext are the imposed forces calculated by our developed
automatic tuning algorithm based on inverse FE. To solve the dynamic system,
the implicit finite scheme has been chosen for more stability.

Fig. 2. The boundary conditions (BC) of our patient specific biomechanical model
including rib kinematics (a), and the personalized compliance (b).

2.3 The Boundary Conditions (BC)

The boundary conditions (BC) are inferred from the anatomy and identified by
medical experts (Fig. 2(a)). For the diaphragm, we have applied the radial direc-
tion of muscle forces, which corresponds anatomically to the direction of muscle
fibers. The force is applied to the muscular part of the diaphragm and simple
homogeneous Dirichlet boundary condition is applied to the lower part of the
diaphragm and the Lagrange multiplier’s method is used for the contact model.
To simulate the sliding of the lungs, a surface-to-surface contact model is applied
to the lung-chest cavity. The frictionless contact surfaces are used to simulate
the pleural fluid behavior. To simulate the rib cage kinematics, an automatic
rigid registration algorithm has been developed from the patients’ 4D CT: for
each rib, an Euclidean transformation has been computed between EI and EE
states. Then we calculated the transformation parameters for each intermediate
respiratory state. These parameters have been applied as displacement bound-
ary conditions during the whole respiratory cycle. The originality of our work
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compared to the existing works is: (1) The amplitude of the lung pressure and
diaphragm force are patient-specific, determined at different respiratory states
by an optimization framework based on inverse FE analysis methodology, using
lung volume variation. We have segmented the respiratory system at end inspi-
ration (EI, the reference state). Also, we have segmented lungs at 10 states for
a full cycle. Then, the model is controlled by a personalized pressure-volume
curve (semi-static compliance), calculated by Css = 3(1−2ν)

E Vt−1
(Fig. 2(b)). The

semi-static compliance (Css) or a specific compliance, based on the tissue prop-
erties (Young Modulus E and ν Poisson coefficient) and the lung volume Vt

at each step t (respiratory phases) is calculated from 4DCT scan images. For
each respiratory volume Vt (from CT scan data), the internal lung pressure is
computed. Then by minimizing the lung volume errors, between the Vt and the
simulated volume (Vs), the appropriate diaphragm forces are computed. (2)The
organs’ masses have been computed from the voxelized CT attenuation values.
Based on the principal of mass conservation, the masses are distributed on the
mesh vertices according to [11]. (3) the developed biomechanical respiratory
model is monitored directly by simulated actions of the breathing muscles: the
diaphragm and the intercostal muscles (the rib cage). The mechanical properties
of the different organs used in our simulations are settled in the (Fig. 3).

Fig. 3. Left: qualitative analysis of patient specific biomechanical simulation; lungs
and diaphragm deformations, right (Table) Mechanical properties of breathing system:
LE Linear Elastic, HVSK Hyperelastic Saint Venant Kirchhoff, E Young’s modulus,
ν Poisson coefficient, ρ volumetric density.

3 Results and Experimental Validation

We have evaluated the motion estimation accuracy on five selected patients,
from DIR-Lab Dataset [10], with small and large breathing amplitudes (Patient
1 = 10.9 mm, Patient 4 = 18.1 mm, Patient 6 = 27.2 mm, Patient 9 = 15.5 mm and
Patient 10 = 26.06 mm). The Fig. 2(b) illustrates the different specific compli-
ances for each patient, calculated and identified at each respiratory state directly
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from 4D CT scan images. Then, these compliances are used as input in our bio-
mechanical model to simulate a full respiratory cycle. In our FE simulation,
we set the simulation time for the inspiration phase 2 s and for the expiration
phase 3 s. The Fig. 3 shows the total deformation and the maximum displace-
ment components of the lungs and diaphragm during breathing. We can observe
the maximum displacement of the diaphragm on the right-posterior (RP) and
left-posterior (LP) sides. We also notice a slightly larger (RP) side motion than
(LP) side motion, in concordance with the physiological anatomy. For the lungs
deformation, the results cope with the 4DCT, with the maximum displacement
occurring in the posterior region along the superior-inferior (SI) direction. The
performance of the proposed biomechanical model has been evaluated by com-
paring the simulation results with ground truth (CT images) on 75 landmarks
available only between EI and EE and intermediate states. However, the tumor
trajectory has been evaluated on a full breathing cycle (10 states). The Table 1,
shows the comparative study between our FE simulation results and the ground-
truth displacement vectors for five patients. In our simulation, we have obtained
an average mean error for all ground-truth landmarks: 1.8±1.3, 2.0±1.2, 2.0±1.3,
1.9 ± 1.2 and 1.8 ± 1.3 (mm) respectively for P1, P4, P6, P9 and P10 respec-
tively. These results show that the developed biomechanical model coupled with
the personalized lung-pressure/diaphragm-force optimization algorithm of the
respiratory system is in a good agreement with the experimental data, and pro-
duces more accurate predictions with lower errors than other works [8,9] applied
to the same data sets and despite using less parameters.

Table 1. Average landmark lung error (mm) during respirat ion at different respiratory
states: the first T00, the end inspiration (T50), the end expiration (T10)

The accuracy of our proposed model is illustrated in Table 2, with a mean
average error less than (1.9± 1.3 mm). Moreover, in order to evaluate the impact
of the rib kinematics on lung tumor motion, we have compared the lung tumor
trajectories identified in 4D CT scan images with the trajectories estimated by
finite element simulation, during the whole breathing cycle (10 phases between
the EI and EE). Firstly, to overcome the segmentation difficulties of lung tumor
and geometric uncertainties, the affine registration (rigid translation and rota-
tion) method is applied to the lung tumor mesh (with good quality surface
reconstruction) at different respiratory states. Then, the accuracy is evaluated
on two patients (patient 6 with the tumor location in the left lung, and patient
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Table 2. Comparison between our biomechanical patient specific model results and
the result s from Vidal et al. [7] and Fuerst et al. [8], on patient 6, patient 9 and patient
10 issued from DIR-Lab Dataset [9].

[7] 2012

[8] 2015

Fig. 4. Mean errors ± standard deviation of lung tumor position during the whole
cycle of breathing (10 phases between the EI and EE) between the trajectory issued
from 4D CT images compared to the trajectory calculated by biomechanical finite
element simulation coupled with the lung-pressure/diaphragm-force optimization for
two patients P6 and P10.

10 with tumor in the right lung in contact with the diaphragm), by comparing
and calculating the average Hausdorff distance between the 3D mesh surface of
the segmented tumor and predicted FE lung tumor, including or not the rib
kinematics. Again, the Fig. 4 demonstrates that our patient specific biomechan-
ical model for lung tumor position estimation is very accurate (less than 3 mm).
It is important to note that the results are slightly better with the rib kinematics
but the difference is not significant during the whole cycle for patient 6 and 10.
This is because the respiration for these patients is mainly diaphragmatic.

4 Conclusion

We have developed an accurate dynamic patient specific biomechanical model of
the respiratory system for a whole respiratory cycle, based on specific pressure-
volume curves, chest movement, as well as an automatic tuning algorithm to
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determine specific lung pressure and diaphragm force parameters. The prelim-
inary results are quite realistic compared to the 4DCT scan images. We can
observe that the proposed physically based FE model is able to predict cor-
rectly the respiratory motion. Currently, we are working on optimization of our
patient-specific model to find interactively the correlation between the internal
organs motion and the external respiratory surrogate signals, such as spirom-
etry or the displacement of the skin surface during treatment. We believe this
could be a potential tool to obtain a valuable tumor motion tracking system,
during treatment and to provide medical physicians with necessary information
to reduce the margins between clinical target volume (CTV) and planning target
volume (PTV).
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