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Abstract. Bronchoscopic navigation is challenging, especially at the
level of peripheral airways due to the complicated bronchial structures
and the large respiratory motion. The aim of this paper is to pro-
pose a localisation approach tailored for navigation in the distal airway
branches. Salient regions are detected on the depth maps of video images
and CT virtual projections to extract anatomically meaningful areas that
represent airway bifurcations. An airway descriptor based on shape con-
text is introduced which encodes both the structural characteristics of
the bifurcations and their spatial distribution. The bronchoscopic cam-
era is localised in the airways by minimising the cost of matching the
region features in video images to the pre-computed CT depth maps
considering both the shape and temporal information. The method has
been validated on phantom and in vivo data and the results verify its
robustness to tissue deformation and good performance in distal airways.

1 Introduction

Lung cancer remains a challenging disease with high mortality despite of the
increasing knowledge of its aetiology. Data from the US National Lung Screen-
ing Trial suggests that early identification of lung cancer can lead to 20% reduc-
tion in mortality [1]. Trans-thoracic procedures such as CT guided biopsy have
reasonable accuracy for targeting nodules greater than 20 mm but with high com-
plication rates and surgical risks [2]. As an alternative, bronchoscopy provides a
less invasive way for sampling pulmonary nodules but navigation in distal air-
ways is particularly challenging due to the size and complexity of the bronchial
tree anatomy.

To assist navigation during bronchoscopic procedures, Electromagnetic (EM)
tracking and image registration approaches have been extensively investigated
to localise the bronchoscopic camera in the airways [3]. The accuracy of EM
tracking is limited by field distortions, inaccurate sensor calibration and most
importantly airway deformation due to respiration and patient’s motion. Image
registration approaches essentially create a virtual camera using the patient spe-
cific pre-operative CT airway model and estimate its pose by minimising the dif-
ference between the video image and the virtual camera view [3]. The accuracy
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of the image-based tracking approaches relies on the selection of the similarity
measure between the video and virtual images [4,5]. Geometry-based similarity
measures such as pq-space based registration [6] or depth-based registration [7]
have also been proposed and shown to be more robust than intensity-based meth-
ods. Moreover, salient feature tracking has been used to estimate the motion of
the bronchoscope. Luo et al. [8] proposed a tracking system combining Kalman
filter, SIFT feature tracking and image registration. Wang et al. [9] proposed
an endoscopic tracking approach based on Adaptive Scale Kernel Consensus
(ASKC) estimator and feature tracking. The accuracy of these feature-based
methods depends on the amount of correctly detected feature points on the bron-
choscopic video. Due to the paucity of surface structure, illumination artefacts
and tissue deformation in distal airways, the conventional image registration and
feature-based approaches have limited clinical feasibility.

Thus far, the above navigation techniques have been mostly validated near
the proximal airways. In this paper, we focus on the tracking towards segmen-
tal airways with increasing number of bifurcations, smaller bronchial size and
larger respiratory displacement. A new approach is proposed for bronchoscope
localisation during navigation in distal airways based on the matching of bron-
choscopic data with virtual camera views from CT data. The Maximally Stable
Extremal Region (MSER) detector [10] is applied in a novel fashion on depth
maps instead of images of the airways to extract salient regions which are fur-
ther filtered to identify bifurcations. A robust airway descriptor is proposed to
encode both the structural characteristics of the airway bifurcations and their
global spatial relationships. The proposed descriptor is based on shape context
[11] and is tolerant to certain degree of airway deformation. Camera location is
estimated by computing the optimal match between the airway features detected
in the video images and those detected in the CT virtual views. Particle swarm
optimisation was applied to minimise the matching cost for continuous track-
ing. The proposed localisation framework has been validated on phantom and in
vivo data and the results verify the advantage of the method in recovering the
location of the bronchoscope in distal airways.

2 Method

The proposed BRANCH approach consists of three parts: the detection of
anatomically meaningful regions that represent airway bifurcations; the descrip-
tion of the shape characteristics and spatial relationship of airway regions and the
localisation of the bronchoscopic camera using airway feature matching between
CT and video data.

2.1 Detection of Airway Bifurcations on Depth Maps

Since geometric characteristics have been proven to be more robust to illumi-
nation artefacts and surface texture for bronchoscopic navigation than image
appearance features [6,7], in our work depth maps are generated and used to
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extract features that represent airway structure. To generate depth maps from
pre-operative data, a patient specific airway model is segmented from 3D chest
CT scans. Fast marching is used to compute the centreline of the bronchial
model. A virtual camera with the same intrinsic parameters as the bronchoscope
is simulated and moved along the centreline from the trachea to each bronchiole.
A CT reference depth map zCT is generated at each point on the centreline with
the camera direction being tangential to the centreline. The depth maps from the
bronchoscopic video data zV are recovered using a Shape From Shading (SFS)
method tailored for the endoscopic environment [12].

The aim of our approach is to detect bifurcations and represent each part of
the airway along the centreline based on the number of bifurcations, their shape,
size and spatial association. For this purpose, the MSER detector is applied to
extract a set of salient regions Ri from each depth map. A SVM classifier is used
to distinguish between detected regions that correspond to airway bifurcations
and noise detections such as wall regions which should be eliminated. Shape
features including solidity, extent, eccentricity, as well as the minimal, median
and maximal depth values of each region were used to train the classifier. The
regions that have been classified as airway bifurcations are then organised in a
tree structure. Region Ri is a child of Region Rj if Ri ∩ Rj = Ri.

To further remove multiple detections of the same airway bifurcation regions
which give redundant information, of all the child regions, only the largest region
representing a unique airway bifurcation remains and will be considered in the
airway description. Region Ri is a duplicated detection of region Rj if Ri ∩ Rj =
Ri and (Rj − Ri) ∩ Rk = {} where k �= i, j. The regions that have survived the
above filtering stages correspond to airway branches and their contour represents
the border of each bifurcation. The detection and filtering process of MSER
regions on the depth maps of a video frame and its corresponding CT virtual
image are illustrated in Fig. 1.

Fig. 1. The detection and filtering of MSER regions on the depth maps of (a)–(c) a
video frame and (d)–(f) its corresponding CT virtual image.

2.2 Airway Bifurcation Representation

A novel airway descriptor based on shape context [11] is proposed in this work to
characterise both the shape of each airway region and the geometrical association
between them. The use of geometrical association provides more robust airway
representation to shape variations between the regions detected on the CT and
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bronchoscopic video data due to lumen deformation under respiratory effect. In
order to do that, boundary points ∂R are extracted from the airway regions R.
For a point pi on the boundary shape, its shape context is defined as a coarse
histogram hi of the relative coordinates of the remaining n−1 boundary points.

hi (k) = # {q �= pi : (q − pi) ∈ bin (k)} , pi, q ∈ ∂R (1)

To incorporate scale information in our representation, the shape context his-
tograms of all the boundary points are estimated with the same radius rref

which is equal to the mean distance dmean between all the boundary points of
the detected bifurcations on the depth map of the CT virtual image. Regarding
the orientation of the shape context histograms, for the video data, the refer-
ence orientation axis for the angular bins is the horizontal axis of the image.
For the CT data descriptor, different orientations are considered in order to find
the orientation θ that gives the best matching to the video data during cam-
era localisation. The cost of matching point ci on the CT boundary shape to
point vj on the video boundary shape based on their shape context is estimated
using the χ2 test statistic. The Hungarian method [13] is applied to minimise the
total pairwise cost of matching those two sets of points to achieve the optimal
permutation π.

H (π) =
∑

i

C
(
ci, vπ(i)

)
(2)

For camera localisation as it will be explained in the next section, our aim is
to estimate the pairwise cost of matching the airway regions detected in the
video and those in CT data. The cost of matching an airway region RCT in the
CT virtual view to a region RV in the video depth map is computed from the
optimal permutation as:

CSC(RCT , RV ) = 1 − 1
2

(
m

nCT
+

m

nV

)
(3)

where nCT is the number of boundary points of region RCT , nV is the number
of boundary points of region RV , and m is the number of matched pairs of
boundary points between RCT and RV .

2.3 Camera Localisation

Camera localisation is achieved by finding the virtual camera view with the
highest similarity to the examined video frame. For computational efficiency, the
CT airway feature descriptors are pre-computed on the depth maps of the virtual
camera views densely sampled along the airway skeleton from the trachea to the
peripheral airways. Moreover, the camera is localised only at the video frames
where the scene context on the video data changes significantly. To detect any
context change of the video data, the detected airway regions are tracked along
consecutive video frames using the Kalman filter based on a constant velocity
model. The state of the Kalman filter is defined as [x, y, u, v] where x and y
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are the 2D location coordinates of the centroid of each region and u and v are
the velocity of the centroid along the x and y axis, respectively. The Hungarian
algorithm is applied to find the optimal match between the regions detected on
consecutive video frames taking into account the distance between their centroid
location and their size of area. The average matching cost is thresholded to
identify the frames where a significant scene context change occurs in order to
update the camera location with respect to the CT airway model.

To localise the bronchoscopic camera, both the shape context and temporal
correspondence information are considered. The cost of region matching based
on the shape context information is estimated as in Eq. 3. The temporal corre-
spondence information is established by tracking the bifurcation regions on the
CT and video data separately, using the Kalman filter described above. This is
to deal with fast camera motion and partial occlusion of any airway regions in
the video due to image artefacts. If region RCT on the CT and region RV on the
video data have been previously matched and also successfully tracked on each
data modality, a matching cost of 0 is assigned. Otherwise, the cost of matching
two new regions is set to 1.

CT (RCTi, RV j) =

{
0 if πR(i) = j

1 otherwise
(4)

The total pairwise cost of matching individual regions between a CT frame and
a video image is defined as C(RCTi, RV j) = CSC(RCTi, RV j)+CT (RCTi, RV j).
Both cost matrices have been normalised within the range of [0, 1].

In our work, the camera state is defined as s = [d, θ, l] where d is the distance
of the camera location from the trachea point along the centreline, θ is the
rotation around the centreline with respect to the initial orientation of the virtual
camera along the centreline, and l is the centreline branch where the camera is
located. For a given state s, there will be a unique feature descriptor which
represents the pre-operative CT model of the airway. The estimation of the
camera state is solved by minimising the total cost of matching the regions in
the pre-computed CT depth maps to the video frames in Eq. 5.

ϕ (zCT , zV ) = min
d,θ,l

{
∑

i

C
(
RCTi

(d, θ, l) , RVπR(i)

)}
(5)

πR(i) is the index of the matched region on the video image that corresponds
to region i on the CT data. Particle swarm optimisation was applied to find
the optimal camera state because the cost function of feature matching is not
differentiable. The camera state of the previous frame is used to initialise the
camera state for the next frame. The variation range of l is defined based on the
current d and its variation range.

3 Results

The proposed tracking approach based on airway bifurcation recognition was
validated on data from a silicon human airway phantom and a bronchoscopic
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examination. The bronchoscopic video data were performed with an Olympus
BF-260 bronchoscope with an outer diameter of 5.5 mm and a field of view of
120◦. Airway models were segmented from HRCT scans with a slice thickness
of 1 mm acquired with a Siemens Somatom Definition Edge CT scanner. The
BRANCH framework was implemented in MATLAB and runs at 3.7 s per video
frame on a PC with i7-4770 CPU at 3.40 GHz without code optimisation.

The CT airway descriptors are computed on the depth maps sampled with a
distance interval of 0.01 mm along the centreline of each CT airway model. The
generated depth maps were normalised before computing the airway regions. 147
and 187 video frames with labelled bifurcation and noise regions were used to
train the SVM classifier for phantom data and in vivo data, respectively. The
number of radial and angular bins for the shape context estimation is set to 12
and 5, respectively. A log scale was used for binning the angular distances in the
range of [1/8, 2] × dmean.

Ground truth data was manually generated for the in vivo experiments. The
examined in vivo video sequences correspond to the longest sequences where
continuous ground truth data could be manually generated. EM data was used
as ground truth for the static phantom data. The performance of BRANCH
has been compared to the state-of-the-art depth-based registration approach
(Depth-Reg) proposed in [7]. The camera location estimated by Depth-Reg was
projected to the closest centreline point for comparison with the ground truth
data labelled on the centreline. Two sets of phantom data and two sets of in vivo
data including 1330 phantom video frames and 374 in vivo video frames in total
covering airway generation from 0(trachea) to 4 were used in the validation. The
distance errors of the estimated trajectories on a set of phantom data and a set
of in vivo data near distal airways are shown in Fig. 2. Quantitative analysis
of the tracking accuracy of the two methods at different airway generations is
provided in Fig. 3.

As shown in Fig. 3, the proposed BRANCH approach outperformed Depth-
Reg approach with significantly higher accuracy in distal airway locations for
both phantom and in vivo validation. Depth-Reg performed well for proximal
airway locations only for the static phantom validation. The presence of tracheal
cartilages on the phantom enhanced the accuracy of Depth-Reg approach near
the trachea. However, BRANCH method outperformed Depth-Reg at higher
airway generations for phantom data where more bifurcations could be observed.

The in vivo data used in our experiment are particularly challenging as they
were collected from a subject with Excessive Dynamic Airway Collapse (EDAC)
which causes airway obstructions during exhalation. In addition, the large defor-
mation of the distal airways due to respiratory motion causes the shape and size
of airway bifurcations appearing in the bronchoscopic video data varies signifi-
cantly from the reconstructed CT model. Also, sudden camera movement from
one airway branch to another are highly likely at the distal airways due to higher
branch distribution. Despite of these challenges, BRANCH provides superior
accuracy for all airway generations for the in vivo data (Fig. 3). The defined
airway description based on shape context allows certain degree of variation
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Fig. 2. Bronchoscope localisation accuracy for Depth-Reg [7] and BRANCH. (a) Phan-
tom data using EM data as ground truth, (b) In vivo data using manually generated
data as ground truth. Left: 3D trajectories of the camera movement shown in the CT
airway mesh. Right: distance errors of the estimated camera locations.

Fig. 3. Bar plot of camera localisation accuracy at different airway generations.

in the shape of bifurcations which can be modelled by affine transformation.
Moreover, the spatial association of the bifurcations incorporated in the airway
representation is not significantly affected by the tissue deformation.

Tracking can be temporarily affected if the airway features detected on the
video images include noise or no bifurcations have been detected. Due to the
poor lighting, lower lobe bifurcations are not clearly visible on the video images
when the scope is inside the left or right main bronchi (long straight airway seg-
ments) such as at Frame 130 and 322 in Fig. 2(a)). However, when bifurcations
appear again as the scope moves to the distal airways, correct tracking resumes
(Frame 378, 500 and 645 in Fig. 2(a)). Water bubbles can cause false positive
detections of bifurcations (Frame 109 in Fig. 2(b)). Video airway features are
matched to the wrong CT airway features with false temporal location infor-
mation. Correct tracking resumes when the scope moved back to the previously
successfully tracked airway location (Frame 124 in Fig. 2(b)).
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4 Conclusion

In this paper, the BRANCH framework has been proposed for robust bron-
choscope localisation in distal airways. Airway bifurcations have been detected
and a novel descriptor has been introduced based on the shape characteristics
of bifurcations and their spatial relationship. The performance of the proposed
method has been validated on phantom and in vivo data with significant tis-
sue deformation, fast camera motion and image artefacts. The results verify the
improved robustness of the BRANCH method in dealing with tissue deformation
and distal airway tracking compared to the Depth-Reg method. The presented
performance evaluation analysis shows the potential clinical value of the tech-
nique.
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