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Abstract. Loss of cone photoreceptor neurons is a leading cause of
many blinding retinal diseases. Direct visualization of these cells in the
living human eye is now feasible using adaptive optics scanning light oph-
thalmoscopy (AOSLO). However, it remains challenging to monitor the
state of specific cells across multiple visits, due to inherent eye-motion-
based distortions that arise during data acquisition, artifacts when over-
lapping images are montaged, as well as substantial variability in the data
itself. This paper presents an accurate graph matching framework that
integrates (1) robust local intensity order patterns (LIOP) to describe
neuron regions with illumination variation from different visits; (2) a
sparse-coding based voting process to measure visual similarities of neu-
ron pairs using LIOP descriptors; and (3) a graph matching model that
combines both visual similarity and geometrical cone packing informa-
tion to determine the correspondence of repeated imaging of cone pho-
toreceptor neurons across longitudinal AOSLO datasets. The matching
framework was evaluated on imaging data from ten subjects using a vali-
dation dataset created by removing 15% of the neurons from 713 neuron
correspondences across image pairs. An overall matching accuracy of 98%
was achieved. The framework was robust to differences in the amount of
overlap between image pairs. Evaluation on a test dataset showed that
the matching accuracy remained at 98% on approximately 3400 neuron
correspondences, despite image quality degradation, illumination varia-
tion, large image deformation, and edge artifacts. These experimental
results show that our graph matching approach can accurately iden-
tify cone photoreceptor neuron correspondences on longitudinal AOSLO
images.
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1 Introduction

Adaptive optics scanning light ophthalmoscopy (AOSLO) [2,7] provides micro-
scopic access to individual neurons of the retina directly in the living human eye.
Critical to the phenomenon of human vision are specialized neurons called cone
photoreceptors. These neurons can be noninvasively imaged using AOSLO (pro-
trusions in Fig. 1). The loss of cone photoreceptors is a critical feature of many
blinding retinal diseases. Therefore, longitudinal monitoring of these neurons can
provide important information related to the onset, status, and progression of
blindness.

Currently, longitudinal monitoring of individual neurons within AOSLO
images across different visits has only been attempted manually, which is not
only labor-intensive, but also prone to error, and applicable over only small reti-
nal regions [4,8]. Existing algorithms for cell tracking from microscopy videos
require uniform illumination and small time intervals. For example, Dzyubachyk
[3] utilized a coupled level-set method to iteratively track cells where overlapping
regions in previous video frames were used for initialization. Padfield [6] mod-
eled cell behaviors within a bipartite graph, and developed a coupled minimum-
cost flow algorithm to determine the final tracking results. Longitudinal AOSLO
imaging datasets contain inherent challenges due to non-uniform illumination,
image distortion due to eye motion or montaging of overlapping images, and a
time interval between subsequent imaging sessions that can be on the order of
several months.

To address these unique challenges, we developed a robust graph matching
approach to identify neuron correspondences across two discrete time points. The
main contributions are three-fold. First, a local intensity order pattern (LIOP)
feature descriptor is exploited to represent neuron regions, robust against non-
uniform changes in illumination. Second, a robust voting process based on sparse
coding was developed to measure visual similarities between pairs of neurons
from different visits. Third, a global graph matching method was designed to
identify neuron correspondences based on both visual similarity and geometric
constraints. Validation on longitudinal datasets from ten subjects demonstrated
a matching accuracy over 98%, which is promising for potential clinical imple-
mentation.

2 Methodology

2.1 Longitudinal Matching of Cone Photoreceptor Neurons

Step 1: Detection of cone photoreceptor neurons. The first step is to
identify neurons on images from multiple visits. A simplified version of a cell seg-
mentation algorithm [5] was implemented, using the multi-scale Hessian matrix
to detect neurons, and the convex hull algorithm to determine neuron regions
(Fig. 1A).
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Fig. 1. Framework for neuron correspondence matching on longitudinal AOSLO images
of the human eye, taken two months apart. In each panel, a portion of the image
from the first visit is overlaid in the bottom left corner (solid rectangle) of the second
visit image. Its corresponding location in the second visit is indicated by the dashed
rectangles. (A) Identification of neurons (+’s) and convex hull regions (orange curves).
(B) For each neuron from the first visit (e.g. blue dot), the LIOP feature descriptor and
spare coding is used to determine candidate image points on the second visit (black
+’s). (C) Based on the voting response at each candidate image point (i.e. visual
similarity), candidate neurons for pairing are assigned, each with a visual similarity
score (cyan and yellow dots). (D) Graph matching is used to determine correspondences
based on both visual similarity (dashed green lines) and the arrangement of neighboring
neurons (white lines). Scale bar = 10µm.

Step 2: Neuron-to-region matching. The next step is to find all relevant
neuron pairs between visits in order to set up graph matching, which relies on
robust feature descriptors for neuron regions and an image matching process.

Since longitudinal AOSLO images often have significant illumination varia-
tion, we adapted the LIOP feature descriptor [10]. The LIOP descriptor starts by
sorting all pixels in a neuron region based on their intensity values, I, in increas-
ing order, and then equally dividing the region into M ordinal bins in terms of
the intensity order. For each image point p from bin B, an N -dimensional vector
v = 〈I(q)〉, q ∈ N(p) is established by collecting all intensity values I(q) from
their N -neighborhood points, and then the indices of v are re-ordered based on
intensity values to derive vector v̂. Let W be an N ! × N matrix containing all
possible permutations of {1, 2, . . . , N}, and I be an N !×N ! identity matrix. The
LIOP descriptor for point p is

d(p) = Ii, if v̂ = Wi (1)

The LIOP for each ordinal bin is defined as

d(B) =
∑

d(p), p ∈ B (2)

The LIOP descriptor of the entire neuron region is built by concatenating all
sub-descriptors at each bin, which has the dimension of N !×M . Note that LIOP
groups image points with similar intensity in each bin, instead of their spatial
neighborhood. Therefore, the LIOP descriptor is insensitive to the global illumi-
nation changes, such as when entire neuron regions become darker or brighter,
which often happens in longitudinal AOSLO images.
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We also developed a robust neuron-to-region matching strategy based on
sparse coding to identify relevant neuron pairs. Suppose the LIOP descriptor
for the neuron detection p (blue dot in Fig. 1B) in the first visit is an N ! × M
dimensional vector d1. Transform p into the second visit image, and define a
large image matching range Ω with size M1 × M1 > N ! × M , centered at the
transformed point. The LIOP descriptor is again established for each image
point q ∈ Ω, and combining all descriptors over Ω leads to basis matrix D of
size (N ! × M) × (M1 × M1), which then fulfills the requirement of sparse coding
that the basis matrix should be over-complete. Therefore, the image matching
problem is converted into the vector d1 represented by the basis matrix D, and
mathematically defined as

x̄ = arg min‖x‖1 subject to d1 = Dx̄ (3)

where ‖x‖1 =
∑M1×M1

i=1 |xi| denotes the L1 norm of the vector x. Subspace pur-
suit [1] was used to minimize Eq. 3, and non-zero elements of sparse vector x̄
are illustrated as black crosses in Fig. 1B. A voting process can thus be devel-
oped to find relevant neuron candidates (cyan and yellow points in Fig. 1C) in
the second visit if their convex hulls have image points with non-zero sparse
vector elements. Most of the black crosses are within the convex hull of actual
corresponding neuron, and only a small set of relevant neuron pairs get reported
from the neuron-to-region matching strategy, which significantly simplifies graph
matching.
Step 3: Similarity assignment of neuron pairs. Using the sparse vector x̄,
the similarity of a selected neuron pair can be computed as

θv = 1.0 −
∑

j

|x̄j |/‖x̄‖1, x̄j �= 0 (4)

Here, x̄j denotes a non-zero sparse element associated with an image point which
is within the convex hull of the neuron in the second visit. Utilizing Eq. 4, we
can obtain discriminative assignments for all selected neuron pairs (e.g. blue to
cyan and blue to yellow pairings in Fig. 1C).
Step 4: Graph matching. We now describe the graph matching model for
finding neuron correspondences on longitudinal AOSLO images. Let P1 and P2

be the sets of neuron detections in two visits (blue and red crosses in Fig. 1D),
and A ⊆ P1 × P2 be the set of neuron pairs found from step 2. A matching
configuration between P1 and P2 can be represented as a binary valued vector
m = {0, 1}A. If a neuron pair α ∈ A is a true neuron correspondence, mα = 1;
otherwise, mα = 0. Therefore, finding neuron correspondences is mathematically
equivalent to calculating m for all possible neuron pairs.

The first constraint is that the matching graph should contain the similarity
assignments of the selected neuron pairs from the previous step depicted as
dashed green curve in Fig. 1D, given by

Ev(m) =
∑

α∈A

θv · mα (5)
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The second important constraint in the matching graph is the similarity of
the adjacent neuron packing of neuron pairs (S), which is modeled as

Eg(m) =
∑

α,β∈A

θg · mα · mβ (6)

S contains all adjacent neuron pairs defined over neighboring neurons

S = {〈(p1, p2), (q1, q2)〉 ∈ A×A|p1 ∈ NK(q1) ∧ q1 ∈ NK(p1)

∧ p2 ∈ NK(q2) ∧ q2 ∈ NK(p2)}
(7)

NK indicates the set of K-nearest neighborhood in the graph structure. In this
paper, we set K = 6 as illustrated with white lines in Fig. 1D, motivated by the
hexagonal packing arrangement observed for human cone photoreceptors. The
similarity of adjacent neuron packing is calculated by combining both distance
and direction constraints:

θg =
(
exp

(
δ2α,β/σ2

) − 1
)

+
(
exp

(
γ2

α,β/σ2
) − 1

)

δα,β =
|‖p1 − q1‖ − ‖p2 − q2‖|
‖p1 − q1‖ + ‖p2 − q2‖

γα,β = arccos(
p1 − q1

‖p1 − q1‖ ,
p2 − q2

‖p2 − q2‖ )

(8)

We set σ = 2 in our experiments.
The third term in our graph matching model is to ensure unique one-to-one

neuron correspondence, which can be used to identify neuron appearance and
disappearance.

Ep(m) = 1 −
∑

α∈A

mα/min {|P1|, |P2|} (9)

|P1| and |P2| denote the number of neuron detections in the two visits, respec-
tively.

Combining Eqs. 5, 6, and 9 leads to our graph matching model:

E(m) = λvEv(m) + λgE
g(m) + λpE

p(m) (10)

Here, λv, λg, and λp are weights set to 2, 1, and 10, respectively, in our experi-
ments. Equation 10 was minimized by a dual decomposition approach [9], which
leads to the final neuron correspondences for longitudinal AOSLO images.

2.2 Data Collection and Validation Method

To the best of our knowledge, there are no algorithms or publicly-available
datasets utilizing this recently-developed AOSLO instrumentation [7] that could
be used for comparison to our proposed method. Therefore, we acquired imaging
data from ten subjects (5 male, 5 female; age: 26.3 ± 5.4 years, mean ± SD) by
repeatedly imaging the same retinal regions over several months. To construct
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larger regions of interest, overlapping images were acquired and then montaged
together. Imaging data was used to construct two types of datasets from ten sub-
jects to evaluate the robustness and accuracy of the matching framework. For
the first dataset (“validation dataset”), from each subject we collected multiple
images of a retinal region within a time period of several hours and generated two
different sets of images of the same retinal region, each with unique distortions
due to eye motion (300 × 300 pixels; approximately 100 × 100 microns). Then,
two different modifications were performed on the artificial image pairs: neuron
removal on one image to simulate cell loss/gain, and artificial image transla-
tion to simulate mismatches in alignment between visits. The second dataset
(“test dataset”) consisted of two sets of images collected several months apart
from the same retinal region of each subject (500 × 500 pixels; approximately
170 × 170 microns). The matching accuracy was estimated as:

F = 1.0 − number of errors

maximumnumber of possiblematches
(11)

Here, the errors include two different types: type 1, incorrect pairings between
two neurons visible across both visits (this type of error usually leads to at
least one additional error due to the one-to-one mapping) and type 2, incorrect
pairings where one neuron was only visible on one of the visits (typically due to
alignment errors at the boundaries).

3 Experimental Results

3.1 Validation Dataset

The number of neuron correspondences of each subject varied from 48 to 137
due to subject-to-subject anatomical differences (total: 713 neuron pairs). To
test whether the proposed methods could detect cases of newly-appearing or
disappearing neurons, 10 neurons were artificially removed from one image of
each pair of images, resulting in a net increase in number of neurons of 8.0% to
26.3% (18.0 ± 5.5%), or conversely, a net loss of 7.3% to 21.4% (15.1 ± 3.8%)
neurons (by reversing the order of visits; all numbers in this paper reported
as mean ±SD). In the case of adding neurons, 7 of 10 subjects maintained an
accuracy of 100%, while the remaining 3 subjects had one error due to a mis-
connection of one of the erased neurons. The overall matching accuracy in the
presence of appearing neurons was 99.5% over 713 neuron correspondences. In
the case of neuron removal, 6 of 10 subjects maintained an accuracy of 100%,
while the remaining 4 subjects had one error which occurred at a site of artificial
neuron removal. The overall accuracy in the presence of disappearing neurons
was 98.2% over 713 correspondences. In both cases, the matching accuracy for
the neuron pairs which were not removed was 100%, demonstrating that the
algorithm was robust to different sets of distortion due to eye motion. The aver-
age computation time for the 300×300 pixel images which all contained different
numbers of cells was 90 ± 28 s (Intel i7-3770 CPU, 16 GB RAM).
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The matching accuracy after artificial translation, which effectively reduces
the area of overlap between two visits, was no lower than 99.5% for a range of
translations tested (from 0 to up to 150 pixels, corresponding to overlaps ranging
from 100% down to 50%). These validation results establish that the proposed
methods performed well even in the presence of disappearing/appearing neurons,
artifacts due to eye motion distortion, and alignment mismatches resulting in a
significant reduction in the amount of overlap between image pairs.

3.2 Test Dataset

Across 20 image pairs in the test dataset, the total number of neurons from the
first and second visits were 3905, and 3900, respectively. Our matching frame-
work determined that there were 3399 correspondences between the two visits.
To evaluate accuracy, images were manually examined to detect all matching
errors, including type 1 (black circle, Fig. 2K), and type 2 (black circle, Fig. 2I)
errors. Across the entire test dataset, a total of 44 type 1 and 34 type 2 errors
were flagged. The overall accuracy achieved was 98%.

Fig. 2. Example matching results (each column is a subject), with neuron detections
(+’s) from the first visit shown in the top row, second visit in the middle, and matching
results overlaid on visit 2 in the bottom (dashed square indicates actual position of visit
1). In the bottom row, neuron correspondences are marked as green ellipses. Circles
show examples of type 1 (K) and type 2 (I) errors.
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Matching results for four subjects are shown in Fig. 2. In the first column,
the image pair (A and E) exhibits significant illumination variation across visits,
with most neurons in Fig. 2E being brighter than those in Fig. 2A. In addition,
the contrast between neurons and background tissue is also higher in Fig. 2E.
Overall, our matching framework was robust to the illumination changes. In
the second column, the image quality was significantly lower across both vis-
its, but our matching framework could still find neuron correspondences accu-
rately. Large image distortions due to eye motion are visible in the third subject
(Figs. 2C, G), but our matching framework was still able to identify most neuron
correspondences. Finally, due to montaging of overlapping images, edge artifacts
are sometimes present (Fig. 2H). Nevertheless, our matching framework was still
able to accurately identify neuron correspondences. The average computation
time for 500 × 500 pixel images was 430 ± 79 s.

4 Conclusion and Future Work

In this paper, we developed a robust matching framework to accurately
determine cone photoreceptor neuron correspondences on longitudinal AOSLO
images. The matching framework was developed based on three key contribu-
tions: application of the LIOP descriptor for neuron regions to tolerate illumi-
nation variation, a sparse-coding based voting process select relevant neuron
pairs with discriminative similarity values, and a robust graph matching model
utilizing both visual similarity and geometrical cone packing information. The
validation dataset showed that the matching accuracy could achieve 98.2% even
with about 15% neuron loss. The matching framework was able to tolerate an
alignment error of at least 50% while maintaining over 99% accuracy. The match-
ing accuracy on the test dataset was 98% over 3399 neuron correspondences, and
showed high robustness to illumination variation, low image quality, image dis-
tortion, and edge artifacts. Future work will include application of our framework
to additional patient datasets and optimization of computational speed.
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