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Abstract. Segmentation of anatomy on abdominal CT enables patient-
specific image guidance in clinical endoscopic procedures and in
endoscopy training. Because robust interpatient registration of abdom-
inal images is necessary for existing multi-atlas- and statistical-shape-
model-based segmentations, but remains challenging, there is a need
for automated multi-organ segmentation that does not rely on regis-
tration. We present a deep-learning-based algorithm for segmenting the
liver, pancreas, stomach, and esophagus using dilated convolution units
with dense skip connections and a new spatial prior. The algorithm was
evaluated with an 8-fold cross-validation and compared to a joint-label-
fusion-based segmentation based on Dice scores and boundary distances.
The proposed algorithm yielded more accurate segmentations than the
joint-label-fusion-based algorithm for the pancreas (median Dice scores
66 vs 37), stomach (83 vs 72) and esophagus (73 vs 54) and marginally
less accurate segmentation for the liver (92 vs 93). We conclude that
dilated convolutional networks with dense skip connections can segment
the liver, pancreas, stomach and esophagus from abdominal CT with-
out image registration and have the potential to support image-guided
navigation in gastrointestinal endoscopy procedures.
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1 Introduction

In interventional endoscopy for pancreatic and biliary diseases, navigating the
endoscope to specific gastrointestinal (GI) positions and orientations is critical
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for both diagnosis and treatment [4]. The endoscope’s small field of view and lack
of visual orientation cues make this navigation task challenging, particularly for
novice endoscopists [4]. Image-guidance can support intraprocedural navigation
tasks and endoscopy training by revealing the wider anatomical context.

As the shapes and positions of abdominal organs can vary widely between
patients, patient-specific anatomical models of the GI tract and surrounding
organs should enable more accurate alignment with intra-procedural imaging
and may improve performance. These models can be generated from segmented
abdominal CT; however, integration into clinical workflows is only practical if
the segmentation can be highly automated.

Multi-organ segmentation has been the subject of extensive study. The most
common approaches, statistical shape models [2,9] and multi-atlas label fusion [9,
12–14,16], rely on registration to establish anatomical correspondence. However,
interpatient image registration is less accurate for abdominal imaging than for
other anatomical sites (e.g. brain), due to highly variable anatomy [14]. Thus,
there is a need for automated multi-organ segmentation that does not rely on
registration or shape-model fitting.

Deep-learning-based fully convolutional networks offer an approach to seg-
ment anatomy from voxel-based features directly. These networks have been
successfully applied to segment individual organs from medical images, such as
prostate [8] and pancreas [11]. They have also shown promise in abdominal CT
for multi-organ segmentation [5] of the liver, spleen and kidney.

In this study, we present a fully convolutional network to segment the liver,
pancreas, stomach and esophagus from abdominal CT. Such segmentations
enable patient-specific 3D modelling of the GI tract and surrounding anatomy,
providing a navigational reference for endoscopists. The network is trained and
evaluated on 72 abdominal CT images from two centres, and directly compared
to an existing approach based on multi-atlas image registration and label fusion.

2 Methods

Imaging. Abdominal CT images from two datasets were used in this study:
42 images from the Cancer Imaging Archive Pancreas-CT data set [3,10,11]
and 30 images from the ‘Beyond the Cranial Vault’ segmentation challenge
(doi:10.7303/syn3193805). For the latter, manual reference segmentations of
liver, pancreas, stomach and esophagus were available. For the former, man-
ual reference segmentations of the pancreas were available and the liver, stomach
and esophagus were interactively segmented using Matlab 2015b and ITK-SNAP
3.2 (http://itksnap.com), under the supervision of a board-certified radiologist
with 8 years of experience in gastrointestinal CT and MRI image interpreta-
tion. Images were cropped to the ribcage transversely and to the extent of the
segmented organs in the inferior-superior direction.

http://itksnap.com
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Dense Dilated Convolutional Network Segmentation. The proposed seg-
mentation used a fully-convolutional neural network with dilated convolution
units with dense skip connections, described below and illustrated in Fig. 1a.

Dilated convolutions [17] use sparse convolution kernels allowing a large
kernel spatial extent without increasing the number of learned parameters.
Compared to using a cascade of downsampling layers [8], dilated convolutions
maintain a high-resolution representation of non-local non-linear image features
deeper in the network. This is particularly important in organ segmentation
where thin structures (e.g. thin liver-adjacent stomach walls) must be inferred
based on high-level information (e.g. adjacent stomach and liver tissue). Dilated
convolutions can be implemented efficiently by reordering input data in memory
(Fig. 1b) and convolving with a corresponding non-sparse convolution, leveraging
efficient algorithms and hardware-support. Each convolutional layer is followed
by a batch normalization and a rectifier linear unit defining a structure referred
to hereafter as a convolutional unit.

The network uses an initial convolutional feature layer, 8 convolutional units,
a segmentation layer and a spatial prior. The feature layer outputs 25 outputs
with 53 convolutional kernels and stride 2, and a downsampled image. The con-
volutional units used 33 kernels with dilation scales of 1, 1, 2, 2, 4, 4, 2, and 1,
each outputting 20 feature maps. The segmentation layer outputs one logit map
for each label (liver, pancreas, stomach, esophagus, and other).

The convolutional units have dense skip connections [6]; i.e., the input to
each unit is the concatenated output of all previous units. This enables efficient
use of intermediate features as intermediate layers do not need to re-encode
information from previous layers. Additionally, like shortcut layers in residual
networks, the dense skip connections allow effective propagation of gradients
through the network and combine multiple networks depths in the same network.

Finally, we introduce a new spatial prior map, added to the segmentation unit
output. Spatial priors are more suited to medical images than natural images
because medical images are commonly acquired in standard anatomically aligned
views. The map comprised a 123 block of trainable parameters which was upsam-
pled and added to the logit maps. This is analogous to the logit maps represent-
ing the log-probability of the input given the class label, the spatial prior map
representing the log-probability of the class label at given image coordinates,
and the resulting output representing the posterior probability of the class label;
however, the spatial map parameters were learned (per fold) during trainging
using gradient descent and may not represent true prior probabilities.

Training used the Adam optimiser minimizing a loss weighting L2 regular-
ization and per-organ Dice scores. After training, the label with the maximum
voxel-wise softmax probability was chosen. Segmentations were post-processed
by eliminating, for each organ, each connected component comprising <10% of
the total label volume, and upsampled to the original resolution.

Multi-atlas-based Segmentation (for Comparison). Our proposed
algorithm is directly compared to an existing algorithm using multi-atlas
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Fig. 1. (a) Network architecture; (b) Dilated convolutions (top) generate the same
output as more efficient regular convolutions on reordered input data (bottom).

registration and label fusion. First, multiple atlas images were registered to the
input image using NiftyReg (http://niftk.org/niftyreg) to maximize normalized
mutual information under affine then B-spline transformations. Then, trans-
formed reference labels were combined using two fusion algorithms – majority
voting, and joint label fusion [15] – yielding two sets of segmentations. Majority
voting is a fast fusion algorithm where the segmentation labels are the voxel-wise
modes of the transformed segmentation labels, and was implemented in Matlab.
Joint label fusion is a statistical fusion algorithm where the segmentation label is
the weighted average of the transformed labels, with weights computed based on
the local image similarity between the transformed atlas and input images, while
modelling correlations between atlas images. Joint label fusion, implemented
in the publicly available PICSL Multi-Atlas Segmentation Tool (https://www.
nitrc.org/projects/picsl malf), and its variants have yielded the highest perfor-
mance in MICCAI multi-atlas labeling grand challenges in 2012 [7] and 2015.
Default parameters were used except for a B-spline control point spacing of
10 mm (instead of 5 voxels) to allow for anisotropic voxels. Segmentations were
post-processed as in the previous section.

Evaluation. The segmentation algorithms were evaluated with an 8-fold cross-
validation over all 72 subjects. In each fold, we compared the segmentation of
each organ in each test image from each algorithm to the reference segmentation
using 3 metrics: Dice coefficient – 2|A ∩ B|/(|A| + |B|); symmetric mean bound-
ary distance – (D(A,B)+D(B,A))/2; and symmetric 95% Hausdorff distance –
(percentile(D(A,B), 95)+percentile(D(B,A), 95))/2; where A is the algorithm
segmentation, B is the reference segmentation, ΩA is the set of boundary pixels
of A, and D(A,B) = { min

x∈ΩB

||x − y|| |y ∈ ΩA} is the set of boundary distances

http://niftk.org/niftyreg
https://www.nitrc.org/projects/picsl_malf
https://www.nitrc.org/projects/picsl_malf
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from ΩA to ΩB . The Dice coefficient reflects the voxel-wise overlap. The mean
boundary and 95% Hausdorff distances reflect the agreement between segmenta-
tion boundaries, with the latter being more sensitive to localized disagreements.

We compared the three algorithms for each organ and metric using Friedman
tests (non-parametric repeated-measures ANOVA) with Benjamini–Hochberg
false-discovery rate multiple comparison correction (α = 0.05) for pairwise tests.

3 Results

The median and quartiles of the segmentation evaluation metrics are reported
in Table 1, with representative segmentations shown in Fig. 2.

Majority voting consistently underperformed the other algorithms, and failed
to correctly identify any voxels as pancreas in the majority of subjects. The deep-
learning-based algorithm yielded more accurate segmentations than the joint-
label-fusion algorithm for the smaller organs – pancreas, stomach and esophagus
– showing significantly higher Dice scores for the pancreas (median 66 vs 37),
stomach (median 83 vs 72), and esophagus (median 73 vs 54) and significantly
lower boundary distances for the pancreas and esophagus, as determined by the
Friedman tests. Conversely, the joint-label-fusion algorithm yielded statistically
significantly more accurate segmentations for the liver by all three measures,
although the differences in median values were small. As seen in Fig. 2, both label
fusion methods frequently under-segmented the pancreas, suggesting challenges
in consistently registering this thin organ with variable abdominal position [14].

Fig. 2. Posterior view of four segmentations with Dice scores closest to the median (1 &
2), and to the 75th and 25th percentile (3 & 4). Liver (red), pancreas (green), stomach
(yellow) and esophagus (cyan) segmentations were generated, from top to bottom, by
manual segmentation, deep learning, joint label fusion and majority voting methods.
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Table 1. Segmentation metrics from the cross-validation (Median [first, third quartile])

Liver Pancreas Stomach Esophagus

Dice coefficient (%)

Majority voting 85 [78,91] 0 [0,0] 49 [23,65] 29 [4,44]

Joint label fusion 93 [90,95] 37 [10,69] 72 [52,83] 54 [39,64]

Dense dilated networks 92 [90,93] 66 [54,74] 83 [73,87] 73 [65,78]

Mean boundary distance (mm)

Majority voting 6.0 [3.4,8.4] –a [27.6,–a] 12.7 [6.7,22.3] 4.4 [2.7,7.4]

Joint label fusion 2.3 [1.5,3.2] 5.8 [1.6,13.8] 4.6 [2.8,9.5] 2.3 [1.6,4.2]

Dense dilated networks 2.6 [2.1,3.3] 2.8 [1.8,4.4] 3.4 [2.6,4.7] 1.4 [1.1,1.8]

95% Hausdorff distance (mm)

Majority voting 23.3 [13.3,31.6] –a [56.2,–a] 38.8 [21.2,54.6] 9.9 [7.3,15.6]

Joint label fusion 8.2 [5.2,14.0] 19.3 [5.4,34.0] 19.9 [10.5,32.0] 6.1 [4.6,12.6]

Dense dilated networks 10.8 [9.0,14.3] 10.8 [6.7,17.1] 13.7 [9.0,18.1] 4.7 [3.5,6.3]
aThe boundary distance is not defined for empty segmentations.

4 Discussion

This paper presents a deep-learning-based algorithm to segment liver, pancreas,
stomach and esophagus on abdominal CT, while avoiding challenging inter-
patient registration of abdominal organs.

Endoscope navigation through the gastrointestinal tract could benefit from
segmentations of multiple gastrointestinal and surrounding organs. Many previ-
ous studies have proposed methods for multi-organ segmentation of abdominal
CT, principally based on multi-atlas segmentation [9,12–14,16] or statistical
shape models [2,9]. Organs surrounding the GI tract, such as the liver and
pancreas, are included in many of these studies, but esophagus and stomach
segmentation has received little attention, likely due to the lack of available ref-
erence segmentations. Liver segmentation has consistently yielded higher Dice
scores (82–95) than other anatomy (pancreas [45–74], stomach [10–87], esopha-
gus [36–43]). Dice scores from some previous studies are given in Table 2.

As in previous work, observed Dice scores were substantially higher for the
liver than for the other smaller organs. While noting that quantitative metrics
for algorithms evaluated on different data sets are not directly comparable, the
proposed segmentation yielded stomach and esophagus segmentations with Dice
scores higher than previous studies, and liver and pancreas segmentations with
Dice scores in the range observed in previous studies. Notably, compared to the
two previous studies generating segmentations of all four organs segmented in
this work, Dice scores for deep-learning-based esophagus, stomach and pancreas
segmentations were higher, and for liver segmentations were within 2%.

The dilated convolutions with dense skip connections in our network address
two key challenges in information and gradient propagation in deep convolu-
tional networks for segmentation: (1) using both local and distant image informa-
tion and (2) using both low and high-resolution image information. While large
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Table 2. Dice scores for previous abdominal CT multi-organ segmentatation methods.
Different data sets and segmentation of unlisted organs preclude direct comparisons.

First Author Year Approach Dice scores %

Liver Pancreas Stomach Esophagus

Hu [5] 2017 Deep learning 96

Xu [16] 2015 Multi-atlas 91 45 55 43

Cerrolaza [2] 2015 Shape model 82 74 87

Okada [9] 2015 Shape models + Multi-atlas 94 73

Tong [14] 2015 Multi-atlas 95 71

Casiraghi [1] 2009 Intensity-based 95

Shimizu [12] 2007 Multi-atlas 94 52 55 36

convolutional kernels enable the propagation of high-resolution local and dis-
tant image information, the larger kernels result in higher parameter counts
(particularly in 3D convolution), challenging learning, and increasing the risk
of over-fitting. A second approach has been to use spatial pooling or down-
sampling layers such that small convolution kernels (with low parameter counts)
have a large effective spatial extent followed by upsampling or transpose convolu-
tions to regain the high resolution representation needed for segmentation. This
approach limits the representation of high-resolution information through the
network, motivating skip connections between early high-resolution representa-
tions and later upsampled representations. Our architecture avoids this by using
high-resolution representations throughout the network and dilated convolutions
to propagate high resolution information at large spatial scales.

Our conclusions should be qualified by some limitations. Algorithm para-
meters were not extensively optimized for this application; the reported perfor-
mance of both proposed and comparison algorithms may underestimate their
potential performance. The evaluation metrics measure segmentation fidelity
with the manual reference, and not the clinical utility of the resulting segmenta-
tions for aiding endoscopic navigation. Future work will evaluate whether the
proposed algorithm is already sufficiently accurate to provide a 3D patient-
specific anatomical reference to aid endoscopic navigation. Finally, to support
guidance for endoscopy in the gastrointestinal tract, segmentations of the duode-
num, gallbladder, left kidney and vasculature, where sufficiently large reference
segmentation data sets are not yet available, would be a valuable addition.

Dilated convolutional networks with dense skip connections can segment the
liver, pancreas, stomach and esophagus in abdominal CT without image regis-
tration. Our proposed method achieved lower boundary distance errors (for pan-
creas and esophagus) and higher overlap (for pancreas, esophagus and stomach)
with manual segmentations than a recent multi-atlas label fusion algorithm. Such
automatically generated segmentations of abdominal anatomy have the potential
to support image-guided navigation in pancreatobiliary endoscopy procedures.



Towards Image-Guided Pancreas and Biliary Endoscopy 735

Acknowledgements. This publication presents independent research supported by
Cancer Research UK (CRUK) (Multidisciplinary Award C28070/A19985).

References

1. Casiraghi, E., Campadelli, P., Pratissoli, S., Lombardi, G.: Automatic abdominal
organ segmentation from CT images. ELCVIA 8(1), 1–14 (2009)

2. Cerrolaza, J.J., Reyes, M., Summers, R.M., González-Ballester, M.Á.,
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