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Abstract. 3D ultrasound is rapidly emerging as a viable imaging modal-
ity for routine prenatal examinations. However, lacking of efficient tools
to decompose the volumetric data greatly limits its widespread. In this
paper, we are looking at the problem of volumetric segmentation in ultra-
sound to promote the volume-based, precise maternal and fetal health
monitoring. Our contribution is threefold. First, we propose the first and
fully automatic framework for the simultaneous segmentation of multi-
ple objects, including fetus, gestational sac and placenta, in ultrasound
volumes, which remains as a rarely-studied but great challenge. Second,
based on our customized 3D Fully Convolutional Network, we propose to
inject a Recurrent Neural Network (RNN) to flexibly explore 3D seman-
tic knowledge from a novel, sequential perspective, and therefore signif-
icantly refine the local segmentation result which is initially corrupted
by the ubiquitous boundary uncertainty in ultrasound volumes. Third,
considering sequence hierarchy, we introduce a hierarchical deep super-
vision mechanism to effectively boost the information flow within RNN
and further improve the semantic segmentation results. Extensively val-
idated on our in-house large datasets, our approach achieves superior
performance and presents to be promising in boosting the interpretation
of prenatal ultrasound volumes. Our framework is general and can be
easily extended to other volumetric ultrasound segmentation tasks.

1 Introduction

Ultrasound imaging is a dominant modality for maternal and fetal health moni-
toring during pregnancy. However, traditional 2D planar ultrasound scanning is
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implicit to inspect anatomies and thus brings about inevitable user-dependency
and diagnosis error. With broad volumetric field of views, 3D prenatal ultra-
sound is rapidly emerging as a viable alternative. Volumetric biometrics have
been proposed and attached great desire for more accurate fetal growth evalu-
ation [11]. Versatile as it is, the widespread of 3D prenatal ultrasound is still
limited due to the great lack of efficient ways to be decomposed. Semi-automatic
segmentation systems, like VOCAL [14], have been applied in clinic. However,
these systems often involve cumbersome interactions and result in diagnosis dis-
crepancy. Under this situation, automated volumetric segmentation techniques
are highly demanded to accurately interpret prenatal ultrasound volumes.

Fig. 1. From left to right: sagittal, traverse, coronal plane and a cutaway view of
volumetric segmentation of a prenatal ultrasound volume. Fetus, gestational sac and
placenta in planes and segmentation are denoted with green, ocean blue and red color.

As depicted in Fig. 1, simultaneously segmenting multiple objects, includ-
ing fetus, gestational sac and placenta, in prenatal ultrasound volumes remains
as a very arduous task. Firstly, speckle noise, acoustic shadow and low con-
trast between tissues conspire towards the ubiquitous boundary ambiguity and
deficiency. Secondly, the spatial consistency of objects in ultrasound volume is
degraded along the directions which are perpendicular to the acoustic beam.
Thirdly, fetus, gestational sac and placenta present large appearance variances,
highly irregular shapes and floating spatial relationships.

Utilizing tissue intensity distribution, Anquez et al. [1] made early attempt to
segment utero-fetal volume unit. Stevenson et al. [15] proposed a semi-automatic
method to extract placenta volume. Intensity priors exploited in these methods
degrade their robustness against appearance diversity across subjects. Lee et al.
[7] built boundary traces to extract limb volume for fetal weight estimation.
Recently, Andrea et al. [3] explored statistical shape model to analyze fetal facial
morphology. However, confined by limited training data, shape models can not
tackle highly varying objects, like fetus and placenta in Fig. 1. The huge surge of
deep learning [9] are taking the dominant role over traditional methods [12] for
ultrasound image segmentation. However, the limited receptive field degrades the
capability of deep networks, like Convolutional Neural Networks, in conquering
arbitrary sized boundary incompleteness [2].

In this paper, we are looking at the problem of volumetric segmentation in
prenatal ultrasound. Our contribution is threefold. First, we propose a general
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framework for simultaneous segmentation of multiple complex objects in ultra-
sound volumes, including fetus, gestational sac and placenta, which remains a
rarely-studied but great challenge currently. To the best of our knowledge, this is
the first fully automatic solution in the field. Second, based on our customized 3D
Fully Convolutional Network, we propose to inject a Recurrent Neural Network
(RNN) to flexibly explore 3D semantic knowledge from a novel, sequential per-
spective and therefore significantly refine the local segmentation result. Coupled
with an effective serialization strategy, our RNN proves to successfully tackle
the ubiquitous boundary uncertainty in ultrasound volume. Third, to attack the
gradient vanishing problem and consider the latent hierarchy in sequence, we
introduce a hierarchical deep supervision mechanism (HiDS) to effectively boost
the information flow within RNN and further improve the semantic segmenta-
tion. Validated on a large dataset, our approach achieves superior performance
and presents to be promising in decomposing prenatal ultrasound volumes.

2 Methodology

Figure 2 is the schematic view of our proposed framework. System input is an
ultrasound volume. Our customized 3D FCN firstly conducts dense voxel-wise
semantic labeling and generates intermediate probability volumes for different
classes. The RNN trained with hierarchical deep supervision then explores con-
textual information within multiple volume channels to refine the semantic label-
ing. System output are extracted volumes of fetus, gestational sac and placenta.

Fig. 2. Schematic view of our proposed framework. For probability volumes, from top
to bottom: background, fetus, gestational sac and placenta.
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2.1 Initial Dense Semantic Labeling with 3D FCN

Fully Convolutional Network (FCN) [10] is popular in semantic segmentation for
its capability in end-to-end mapping. U-net [13] promotes FCN by adding skip
connections to merge feature maps from different semantic levels. Skip connec-
tions are critical for network to recognize possible boundary details in ultrasound
image. Since volumetric data inherently provide more complete stereo informa-
tion than 2D planar images, it’s also desired if the network can digest 3D data
directly [4]. Therefore, as shown in Fig. 2, by equipping all layers with 3D oper-
ators, we customize a 3D FCN with long skip connections to efficiently conduct
dense semantic labeling on prenatal ultrasound volumes. Specifically, we take
element-wise sum operator to merge feature volumes from different resolutions
and thus smooth the gradient flow. To suppress computation cost, we adopt
small convolution kernels with size of 3× 3 × 3 in convolutional layers (Conv).
Each Conv layer is followed by a batch normalization (BN) layer and a rectified
linear unit (ReLU). 3D FCN outputs probability volumes for different classes.

2.2 Semantic Labeling Refinement with RNN

As we observe, local boundary deficiency in ultrasound volumes tend to corrupt
3D FCN’s semantic predictions. Leveraging contextual information is effective
in addressing boundary incompleteness. Motivated by [2,17], and being different
from using traditional, fixed structures to collect context cues [16], we propose to
explore Recurrent Neural Networks (RNNs) to flexibly encode contextual knowl-
edge and refine the semantic labeling from a novel, sequential perspective. With
internal memory cells, RNNs infer current timestep output by considering cur-
rent input and historical information accumulated in hidden state. In our case,
RNN will sequentially run over the local space, the dynamic hidden states can
thus be interpreted as local contextual knowledge and be utilized to recover cor-
rupted boundary. Our RNN is trained after the training of 3D-FCN. Shown as
Fig. 2, by taking the concatenation of probability volumes and raw ultrasound
volume, RNN can distill rich context information for prediction enhancement.
Specifically, we propose to exploit Bidirectional Long-Short Term Memory (BiL-
STM) [5] network, a popular RNN variation, in our framework to capture long
range spatial dependencies and arouse interactions between sequential informa-
tion flows from different directions, shown as Fig. 2. Mathematically, given an
input sequence x = (x1, ..., xT ) and a target sequence y = (y1, ..., yK), BiLSTM
models the probability of current timestep output by the following equations:

−→
h t =

−→H(W
x
−→
h

xt + W−→
h

−→
h

−→
h t−1 + b−→

h
) (1)

←−
h t =

←−H(W
x
←−
h

xt + W←−
h

←−
h

←−
h t−1 + b←−

h
) (2)
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where W terms denote weight matrices, h terms denote internal hidden states
which are controlled by tunable gates, b terms denote bias vectors.

−→H and
←−H are
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hidden layer functions. By serializing volumes into sequences and trained with
cross-entropy loss function, our BiLSTM conducts direct sequence-to-sequence
mapping and output the refined voxel labeling results with a softmax layer.

Different serialization manners differ in mining the sequentiality of volumet-
ric data. We find that, by choosing proper size for sequence primitives, serializing
a volume into a sequence of overlapping cubes can provide better capability than
the slice based serialization manner in [2]. With this manner, a 50× 50 × 50 vol-
ume can be evenly divided into more than 1000 overlapped 7× 7 × 7 cubes, these
cubes are then sequentially concatenated to form a sequence. Deserialization is
the inverse. BiLSTM captures context cues over the long sequence and signifi-
cantly refines the labeling result, and, as detailed in Sect. 2.3, we can get further
improvement by coupling our RNN with a profound training mechanism.

2.3 Network-Specific Deep Supervision Mechanism

Subject to gradient vanishing issue, the parameter tuning processes of our 3D-
FCN and RNN are at high risks of low efficiency and overfitting. In this paper,
we propose a network-specific deep supervision strategy to facilitate the system
training. For the 3D FCN part, we adopt the deep supervision strategy intro-
duced in [4,6], which promotes training by exposing shallow convolutional layers
to the direct supervision of M auxiliary classifiers. The final loss function for
our deeply supervised 3D FCN is formulated as Eq. 4, where X , Y are training
pairs, W is the weight of main network. w = (w1, w2, .., wm) are the weights of
auxiliary classifiers, αm is the corresponding ratio in final loss. m = 2 in this
paper. Cross entropy is used as a metric for main loss L and auxiliary Lm.

L(X ,Y;W, w) = L(X ,Y;W) +
∑

m∈M
αmLm(X ,Y;W, wm) + λ(||W||2) (4)

Hierarchical Deep Supervision for RNN. Although BiLSTM has gating
functions to guide gradient flow, it’s nontrivial for BiLSTM to effectively tune
gates and parameters for early timesteps. BiLSTM may be over-tuned to fit lat-
ter part of sequences for convergence, especially when tackling sequences with
extreme length (≥1000), which is exactly our case. Traditional training strategy
for RNN is to attach a loss function at the end of the chain, and rare studies
have been reported for deep supervision mechanisms in RNN. The target label
replication strategy proposed in [8] is intractable for our sequence-to-sequence
mapping task. A proper deep supervision strategy for RNN should consider the
following two facts: (i) auxiliary supervision should be injected in early timesteps
to shorten the gradient backpropagation path; (ii) the locations to trigger aux-
iliary supervision should consider latent, hierarchical context dependencies in
the sequence. Rooting in these thoughts, we propose a novel, hierarchical deep
supervision mechanism to boost the training efficiency and generalization of
RNN, denoted as HiDS, shown in Fig. 3(a). Sharing same anchor point, with a
main loss function for whole sequence, HiDS attaches auxiliary loss functions
along the sequence with gradually increasing scopes. Equation 5 illustrates the
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(a) (b)

Fig. 3. Illustration of the hierarchical deep supervision mechanism for RNNs.

final loss function with HiDS, where X, Y are input and output sequences with
length T and T = Np. W is weight matrix of RNN shared by all timesteps. LN

is the main loss function charging the complete sequence, Ln are auxiliary loss
functions, βn are the associated ratio in final loss L . βn = 1 in this paper.

L (X,Y;W ) = LN (X,Y;W ) +
N−1∑

n=1

βnLn(X1≤t<np,Y1≤t<np;W ) (5)

Figure 3(b) provides a proof about cross entropy based HiDS in boosting
the training of BiLSTM over sequences with 1000 timesteps. BiLSTM equipped
with 3, 7 auxiliary loss functions get faster convergence speeds and lower train-
ing errors than that in BiLSTM only with main loss function. Improvement in
generalization ability brought by HiDS will be elaborated in Sect. 3.

3 Experimental Results

Materials and Implementation Details: We firstly built a dataset consist-
ing of 104 anonymized prenatal ultrasound volumes acquired from 104 preg-
nant women volunteers with gestational age 10–14 weeks. Our dataset is the
largest one reported in the field. The average size of volume is 221 × 198 × 283
with a voxel size of 0.5 × 0.5 × 0.5 mm. Approved by local IRB, all volumes were
obtained by Mindray DC-8 ultrasound systems with integrated 3D probes. 10
experienced radiologist provided annotations for all volumes under strict quality
control. The dataset is randomly split into 50, 10 and 44 volumes for training,
validation and testing. We further augmented the training dataset to 150 volumes
by flipping and rotation. 3D FCN is implemented in caffe, BiLSTM in Theano.
Restricted by GPU memory, 3D FCN takes 64 × 64 × 64 sub-volume as input.
800 internal memory cells are allocated for forward and backward branch each
in BiLSTM. The input of BiLSTM are 5 sub-volumes (50 × 50 × 50) cropped in
ultrasound and 4 probability volumes. These sub-volumes are firstly serialized
into sequences of overlapped cubes with size 7 × 7 × 7, and then flattened and
concatenated, and finally input into BiLSTM step by step. We adopt sliding
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Table 1. Quantitative evaluation of our proposed framework

Method Fetal Gestational sac Placenta

DSC Conf Adb Hdb DSC Conf Adb Hdb DSC Conf Adb Hdb

3D-F 0.876 0.714 0.88 8.77 0.870 0.699 1.12 10.01 0.590 −0.58 3.45 26.48

FB 0.876 0.713 0.76 8.06 0.887 0.741 0.93 9.85 0.624 −0.33 3.24 25.80

FB3Hi 0.880 0.724 0.79 8.36 0.889 0.746 0.96 10.15 0.643 −0.25 2.68 24.54

FB7Hi 0.882 0.730 0.74 7.90 0.890 0.749 0.92 9.74 0.622 −0.38 2.56 25.02

window and overlap-tiling stitching strategies to generate predictions for whole
ultrasound volumes.

Quantitative and Qualitative Analysis: To consider both region and bound-
ary similarities, we adopt 4 metrics to evaluate the proposed framework on seg-
mentation, including Dice coefficient (DSC = 2(A ∩ B)/(A + B)), Conformity
(Conf = (3DSC −2)/DSC), Hausdorff Distance of Boundaries (Hdb[mm]) and
Average Distance of Boundaries (Adb[mm]). Ablation study is conducted on our
framework. Deeply supervised 3D FCN is taken as a competitive baseline and
denoted as 3D-F. 3D-F with basic BiLSTM for refinement is denoted as FB.
FB equipped with 3, 7 HiDS auxiliary loss functions are denoted as FB3Hi and
FB7Hi. Table 1 illustrates the extensive comparison between these methods in
segmentation. Obvious improvement in both 3 classes occur when our modules
are applied successively. It is most challenging to segment placenta, but with

Fig. 4. From left to right: cutaway view of ultrasound volume, cutaway view of complete
segmentation to show spatial relationship, volume of fetus, gestational sac and placenta.
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the context information contributed by our BiLSTM, we obtained the improve-
ment of more than 4% in DSC and 1.9 mm in Hdb. Enhancing the generalization
abilities, our deep supervision mechanism HiDS boosts the segmentation perfor-
mance in all metrics. Explicit visualization of 3 semantic segmentation results
produced by FB7Hi for fetus, gestational sac and placenta are shown in Fig. 4.
Our method conquers the poor image quality, complicated spatial configura-
tion (even twins), boundary deficiency and spatial inconsistency in ultrasound
volumes and presents smooth, promising segmentation for both 3 classes.

4 Conclusions

We present the first fully automatic framework for semantic segmentation in
ultrasound volumes, which would potentially promote fetal health monitor-
ing and open opportunities for many crucial clinical studies which can not be
achieved via 2D planar ultrasound. We explore RNN to flexibly encode local con-
textual knowledge and therefore refine the corrupted predictions from a novel,
sequential perspective. By closely coupling the RNN with a hierarchical deep
supervision mechanism, the latent hierarchy in sequence is distilled to further
boost segmentation performance. Promising quantitative and qualitative results
are achieved on a large dataset. More clinical studies will be conducted in the
near future.
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