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Abstract. The human cerebral cortex develops dynamically during the early
postnatal stage, reflecting the underlying rapid changes of cortical microstruc-
tures and their connections, which jointly determine the functional principles of
cortical regions. Hence, the dynamic cortical developmental patterns are ideal
for defining the distinct cortical regions in microstructure and function for
neurodevelopmental studies. Moreover, given the remarkable inter-subject
variability in terms of cortical structure/function and their developmental pat-
terns, the individualized cortical parcellation based on each infant’s own
developmental patterns is critical for precisely localizing personalized distinct
cortical regions and also understanding inter-subject variability. To this end, we
propose a novel method for individualized parcellation of the infant cortical
surface into distinct and meaningful regions based on each individual’s cortical
developmental patterns. Specifically, to alleviate the effects of cortical mea-
surement errors and also make the individualized cortical parcellation compa-
rable across subjects, we first create a population-based cortical parcellation to
capture the general developmental landscape of the cortex in an infant popu-
lation. Then, this population-based parcellation is leveraged to guide the indi-
vidualized parcellation based on each infant’s own cortical developmental
patterns in an iterative manner. At each iteration, the individualized parcellation
is gradually updated based on (1) the prior information of the population-based
parcellation, (2) the individualized parcellation at the previous iteration, and also
(3) the developmental patterns of all vertices. Experiments on fifteen healthy
infants, each with longitudinal MRI scans acquired at six time points (i.e., 1, 3,
6, 9, 12 and 18 months of age), show that our method generates a reliable and
meaningful individualized cortical parcellation based on each infant’s own
developmental patterns.

1 Introduction

The human cerebral cortex develops extremely dynamically during the first two
postnatal years, with 42% increase in cortical thickness and 115% expansion in cortical
surface area [1, 2]. These dynamic development of cortical attributes indeed indicates
the rapid changes of the underlying cortical microstructures and their connections (e.g.,
increases in dendritic arborization, axonal elongation and thickening, synaptogenesis
and glial proliferation), which jointly determine the molecular organization and func-
tional principles of cortical regions [1]. Hence, the developmental patterns of cortical
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attributes can help better define the microstructurally, functionally and developmentally
distinct regions of the cortex than the conventional macro-anatomical sulcal-gyral
landmarks, which are extremely variable across individuals and poorly aligned with the
microstructural and functional borders [3]. Therefore, parcellation of infant cortical
surface into distinct and meaningful regions based on the dynamic cortical develop-
mental patterns is of great importance in neuroimaging mapping of early brain
development, e.g., both region-based and network-based analyses.

Given the remarkable inter-subject variability in terms of cortical structure and
function [4], as well as their developmental trajectories, each individual is expected to
have a unique architecture in parcellation, reflecting its own unique developmental
patterns. The individualized cortical parcellation based on each infant’s own cortical
developmental patterns is important due to the following reasons. (1) It is a crucial step
for understanding inter-subject variability and their relationship with behavior and
cognitive functions. (2) It is highly important to precisely localize distinct regions in the
individual level for discovering meaningful biomarkers of neurodevelopmental disor-
ders rooted during early brain development, and also for personalized targeted clinical
applications. (3) It can help improve the accuracy of inter-subject cortical surface
registration (for establishing inter-subject cortical correspondences) by leveraging the
developmental patterns, e.g., developmentally-distinct regions, thus improving the
group-level analysis. This is because conventionally the inter-subject cortical regis-
tration is performed based on the cortical folding patterns, which are extremely variable
across individuals and typically misaligned with the microstructurally and develop-
mentally defined borders [3]. Hence, methods for precise individualized parcellation on
the individual infant’s cortical developmental patterns is desired.

To achieve this, one straightforward solution is to simply group the growth trajec-
tories of all vertices (of an individual’s cortical surface) into distinct clusters based on
their similarities. However, this will lead to less comparable results across individuals
and also very noisy parcellation due to measurement noises in the infant MR images,
which typically exhibit extremely low tissue contrast and dynamic appearances [1, 2].

Motivated by these and inspired by the recent advances in the functional connec-
tivity based brain parcellation in individuals [5, 6], in this paper, we propose a novel
method for individualized parcellation of the cortical surface of each infant based on its
own developmental patterns of cortical attributes. As an example, we employ cortical
thickness as a sensitive indicator of cortical microstructural changes [1]. Other cortical
attributes, e.g., surface area, cortical folding, and diffusivity, can also be adopted. In our
method, a population-based cortical parcellation is first created to capture the general
developmental landscape of the cortex in a population of infants. Then, this population-
based parcellation is further used to initialize and guide the cortical parcellation of an
individual infant based on its own developmental patterns in an iterative manner, thus
leading to precise and reliable individualized parcellation that is also comparable across
subjects. Specifically, at each iteration, the current individualized parcellation is updated
based on (1) the prior information of the population-based parcellation, (2) the indi-
vidualized parcellation at the previous iteration, and also (3) the developmental tra-
jectories of all vertices of this infant, via minimization of an energy function using a
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graph cuts method [7]. Experiments on fifteen healthy infants, each with longitudinal
multimodal brain MRI scans acquired at six time points, show that our method generates
meaningful cortical parcellation for each infant based on its own developmental
patterns.

2 Method

As shown in Fig. 1, the proposed method for the individualized cortical parcellation
based on an individual infant’s developmental patterns is composed of two major steps:
(1) deriving the population-based parcellation and the inter-subject variability map of
cortical developmental patterns, and (2) iterative individualized parcellation guided by
the population-based parcellation. Each step will be detailed below.

2.1 Population-Based Parcellation and Inter-subject Variability

To derive the population-based parcellation based on the growth patterns of cortical
thickness, the spectral clustering method is adopted [8]. Given the developmental
trajectories of cortical thickness of all individuals that have been aligned onto the same
space, for each infant, its affinity matrix can be first computed by Pearson’s correlation
of the developmental trajectories of cortical thickness between any pair of vertices on
the cortical surface. Then, for each vertex, its inter-subject variability of cortical growth
patterns can be estimated as one minus the average of the correlation values between
any two subjects’ correlation maps at this vertex, as in [4]. Next, the mean affinity
matrix of the population is computed as the average of the corresponding elements of
affinity matrices of all individual infants. Finally, the spectral clustering is performed
on the mean affinity matrix of the population to obtain the population-based cortical

Fig. 1. The proposed method for individualized cortical parcellation based on an infant’s
cortical developmental patterns. (a) Population-based parcellation and (b) inter-subject variability
map, based on the developmental patterns of cortical thickness in a population of infants.
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parcellation [9]. As shown in Fig. 1(a), the population-based parcellation using the
developmental patterns of cortical thickness leads to a set of spatially-continuous and
meaningful regions. Of note, the number of regions is set as 12, to be consistent with
both the development-based cortical parcellation [9] and the genetic information-based
cortical parcellation [10]. As shown in Fig. 1(b), the inter-subject variability of the
growth patterns of cortical thickness is regionally heterogeneous, with low variability
in the unimodal cortex as well as insula and anterior medial frontal cortices, but high
variability in the high-order association areas (e.g., the lateral prefrontal, inferior
parietal, precuneus, and medial temporal cortices).

2.2 Population-Guided Iterative Individualized Parcellation

The population-based parcellation and inter-subject variability map are leveraged to
guide the individualized parcellation in an iterative manner, thus gradually leading to
precise and reliable individualized parcellations that are comparable across subjects.
Specifically, first, the individualized parcellation is initialized by the population-based
parcellation (iteration 0), and then is iteratively updated by the minimization of an
energy function Ei ¼ Ei

d þ aEi
s at the i-th iteration (Step 2 in Fig. 1). Herein, the

weighting parameter a (empirically setting as 10.0) determines the tradeoff between the
data fitting term Ei

d and the spatial smoothness term Ei
s, as detailed below.

Data Fitting Term. The data fitting term is defined based on: (1) the similarity
between the developmental trajectory of the vertex x and the representative develop-
mental trajectories of vertices in the region lx of the individual infant, and (2) the prior
spatial information derived from the individualized parcellation at the previous itera-
tion. Letting Pi

xðlxÞ be the probability of labeling a vertex x in the individual’s cortical
surfaces as a region label lx 2 f1; . . .; Lg, we have:

Ei
d ¼

X
x
�logðPi

xðlxÞÞ ð1Þ

Pi
x lxð Þ ¼ exp

corr sðxÞ; ri�1ðlxÞð Þ � 1
2

� �
� expðb � gi�1

lx ðxÞÞ
Zi�1ðxÞ ð2Þ

The first component in Pi
x lxð Þ is based on the similarity between a vertex’s

developmental trajectory and a region’s representative trajectory, and the second
component is based on the prior shape information of the regions. Herein, sðxÞ is the
individual’s developmental trajectory at the vertex x, and ri�1ðlxÞ is the representative
trajectory of the region lx of the individualized parcellation at the iteration i� 1; and
corr �; �ð Þ represents the Pearson’s correlation. Intuitively, a high correlation value
indicates a low cost of labeling a vertex x as the region lx. To incorporate the guidance
of the population-level parcellation and the subject-specific development, the repre-
sentative trajectory ri�1ðlxÞ is computed as a weighted average of two types of tra-
jectories, including: 1) rpop lxð Þ, which is the average trajectory of all vertices in the
region lx defined by the population-based parcellation, and 2) ri�1

ind lxð Þ, which is the
average trajectory of reliable vertices in the region lx defined by the current
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individualized parcellation, thus alleviating the effects of noises and unreliable trajec-
tories. Herein, a vertex is considered reliable if the correlation between this vertex’s
trajectory and the average trajectory of its assigned region is much larger than its
correlation with the average trajectory of any other region in the current individualized

parcellation. ri�1 lxð Þ is computed as: ri�1 lxð Þ ¼ ci�rpop lxð Þþ vi�1 lxð Þ�ri�1
ind lxð Þ

ci þ vi�1 lxð Þ , where ci ¼
1� i=T is a weighting parameter decreasing with the iteration, with T as the total
number of iterations, thus gradually reducing the influence of the population-based
parcellation during the iterations. And vi�1 lxð Þ is the average of inter-subject variability
map (Fig. 1(b)) in the region lx, defined by the individualized parcellation at the
iteration i� 1. Intuitively, regions with high inter-subject variability contribute more to
the estimation of the core trajectory for the individualized parcellation. In summary,
this component encourages labeling a vertex as the region lx, if they have a high
similarity in developmental trajectories.

In the second component of Pi
x, g

i�1
lx is the signed geodesic distance map of the

region lx in the individualized parcellation at the iteration i� 1, with the inside of the
region as positive values. The normalization factor Zi�1 xð Þ is computed as:
Zi�1 xð Þ ¼ PL

l¼1 expðb � gi�1
lx ðxÞÞ, with b as a weight parameter setting as 0.04. This

formula turns the previous parcellation into spatial probability maps of region labels.
Intuitively, vertices close to the region lx at the previous iteration have high proba-
bilities of being labeled as lx at the current iteration. Hence, this component encourages
to gradually refine the individualized parcellation, thus eliminating abrupt changes that
can cause noisy fragments in the parcellation.

Spatial Smoothness Term. This term imposes adaptive spatial smoothness into the
individualized parcellation. It represents the sum of the costs of labeling of a pair of
spatially neighboring vertices on the individual’s surfaces:

Es ¼
X

fx;yg2N Vx;y lx; ly
� � ð3Þ

Vx;y lx; ly
� � ¼ expðcorr sp xð Þ; sp yð Þ� �� 1

2
Þ � ð1� dðlx � lyÞÞ ð4Þ

Herein,N is the set of the one-ring neighboring vertex pairs in the subject’s cortical
surface. Vx;y lx; ly

� �
indicates the cost of labeling a pair of spatially neighboring vertices

x and y as lx and ly. d is defined as d lx � ly
� � ¼ 1 if lx ¼ ly; otherwise, d lx � ly

� � ¼ 0.
Intuitively, the neighboring vertices with similar developmental trajectories will have a
large cost, while the neighboring vertices with quite different developmental trajec-
tories will have a small cost, when assigning different labels to them. Thus, this term
adaptively encourages the spatial smoothness in the parcellation, based on the simi-
larity of neighboring vertices’ developmental trajectories.

Energy Minimization. To efficiently solve this energy minimization problem, the
alpha-expansion graph cuts method is adopted, which can guarantee a strong local
minimum for our defined energy function [7].
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3 Results

Dataset and Image Processing. To validate the proposed method, we employed a
longitudinal dataset including fifteen healthy infants, each with its longitudinal mul-
timodal MRI scans (T1-, T2- and diffusion-weighted imaging) at 6 time points, i.e., 1,
3, 6, 9, 12, and 18 months of age. All MR images were processed by an infant-tailored
computational pipeline, which includes the subsequent procedures of skull stripping,
intensity inhomogeneity correction, tissue segmentation, hemisphere separation,
topology correction, cortical surface reconstruction, cortical thickness smoothing and
normalization, and intra-subject/inter-subject surface registration [9, 11].

Validation. To illustrate how the individualized parcellation changes during the iter-
ations, Fig. 2 provides the results from two representative subjects, with the zooming
views of two typical regions. As we can see, the individualized parcellation changes
gradually, which is obvious especially in the regions with high inter-subject variability
of cortical developmental patterns (Fig. 1(b)), e.g., the middle frontal gyrus and
supramarginal gyrus. Although there is no ground truth for the individualized parcel-
lation based on developmental patterns, ideally the vertices within the same region
should exhibit high correlations of growth trajectories, while vertices across different
regions should exhibit low correlations of growth trajectories. Therefore, for each
subject, Fig. 3(a) provides the average values of the Pearson’s correlations of growth
trajectories of any pair of vertices within the same parcellated region at different

Fig. 2. Illustration of iterative changes of individualized parcellation on two subjects: (a) and
(b). The zooming views of two regions enclosed by the red rectangles are also provided.
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iterations. As we can see, for each subject, the average correlation typically increases
dramatically in the first iteration, and then gradually until 5 iterations. For each region,
Fig. 3(b) further shows that the average within-region correlations of growth trajec-
tories of all subjects at different iterations, indicating that our method greatly improves
the within-region homogeneity of growth patterns, especially in the high-order asso-
ciation areas, e.g., prefrontal, temporal, and parietal cortices. Figure 4 shows the
individualized parcellation based on each subject’s developmental patterns of cortical
thickness for each of the fifteen infants. This renders both the certain commonality and
remarkable region-specific variability across subjects in their individualized parcella-
tions, especially in the high-order association areas, e.g., prefrontal and parietal cor-
tices. These results suggest that the inter-subject variability of developmental patterns is

Fig. 3. Illustration of the average within-region correlation of cortical growth patterns during the
iterations. (a) The average correlation of all regions for each subject, with each curve indicating
one subject. (b) The average correlation of all subjects in each region.

Fig. 4. Results of the individualized cortical parcellation for each of the fifteen infants, based on
each individual’s own developmental patterns of cortical thickness.
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captured by our method. Interestingly, the prefrontal and parietal cortices also showed
high inter-subject variability in both the functional connectivity and the individualized
functional parcellation as reported in [4, 6], indicating that our results are scientifically
meaningful.

4 Conclusion

This paper presented a novel method for individualized parcellation of each infant’s
cortical surfaces based on its own developmental patterns. By leveraging the guidance
from the population-based parcellation, our method iteratively generates a reliable
individualized parcellation that is easily comparable across different subjects. Note that
the individualized parcellation could be used to improve the accuracy of inter-subject
cortical surface registration, e.g., using the boundaries of regions in the individualized
parcellation for guiding surface registration, thus possibly further improving accuracy
of population-based parcellation, which will be investigated in future.
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