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Abstract. Transcranial Magnetic Stimulation (TMS) can be used to
indicate language-related cortex by highly focal temporary inhibition.
Diffusion Spectrum Imaging (DSI) reconstructs fiber tracts that connect
specific cortex regions. We present a novel machine learning approach
that predicts a functional classification (TMS) from local structural con-
nectivity (DSI), and a formal statistical hypothesis test to detect a sig-
nificant relationship between brain structure and function. Features are
chosen so that their weights in the classifier provide insight into anatomi-
cal differences that may underlie specificity in language functions. Results
are reported for target sites systematically covering Broca’s region, which
constitutes a core node in the language network.

1 Introduction

Relating the structure of the human brain to its function is one of the most
fundamental challenges in neuroscience [3]. Diffusion MRI (dMRI) is an estab-
lished method for in vivo mapping of fiber bundles based on how they affect the
motion of water molecules. Reconstructed fibers from dMRI have been used to
derive a structural subdivision of gray matter structures, such as the thalamus
or parts of the cortex, based on their connectivity [2,4].

Transcranial Magnetic Stimulation (TMS) is a non-invasive method to inves-
tigate the function of certain brain regions. It is also referred to as a “virtual
lesion technique” when inducing an acute and reversible focal dysfunction [14],
and it is currently being explored as a tool for neurosurgical planning [15]. In
TMS, a magnetic coil is placed near the head of a subject, and is used to induce,
through the skin and skull, an electric current in the nearby part of the cortex.
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Observing how such stimulation affects the subject’s ability to perform specific
tasks, such as naming objects shown to them, allows us to map the function of
the respective brain region [17].

In this work, we propose a novel computational method that allows us to
explore the relationship between cortical connectivity, as indicated by dMRI fiber
tractography, and its function, as observed in a TMS experiment. A related task
on which more prior work exists is to investigate the relationship between dMRI
tractography and task-based functional MRI (fMRI), which performs functional
mapping by imaging changes in blood oxygenation during certain tasks. In this
context, it is common to cluster cortical regions with similar connectivity, and
compare the results with regions of functional activation [13], or to seed trac-
tography in areas exhibiting distinct function in fMRI, and visually observe
differences in the resulting connectivity patterns [10].

Our approach goes beyond this by quantifying the extent to which differences
in connectivity make it possible to predict differences in function. We introduce
a computational pipeline that combines tractography, clustering, and image reg-
istration with supervised classification and a formal test of the null hypothesis
that the observed functional pattern cannot be predicted with higher accuracy
than a randomly permuted one. Successful prediction indicates that gray matter
function is closely related to its connectivity. Note that TMS affects the local
function, and does not alter the structural connectivity captured by DSI.

We apply our framework to data from a language mapping task. First, we
predict function at a specific target site based on observations elsewhere in the
same subject. Then, we predict functional patterns purely based on training
data from other subjects. In both settings, our method successfully rejects the
above-mentioned null hypothesis, indicating presence of a statistically signif-
icant structure-function relationship that generalizes between subjects. Visu-
alizing feature weights and correlations enables additional insight on specific
anatomical differences that may underlie language functions.

2 Data Acquisition

Our experimental standards and all procedures performed in this study involving
human participants were in accordance with the 1964 Declaration of Helsinki and
its later amendments or comparable ethical standards and were approved by the
local ethics committee (EK 054/13). Prior to investigation, we obtained written
informed consent from all of our volunteers.

Diffusion Spectrum Imaging [18] was performed on 12 healthy, left-dominant
volunteers on a 3T Prisma (Siemens, Germany) with 136 × 136 × 84 voxels of
1.5mm isotropic size, TE/TR = 69/11600ms, including one b = 0 image and
128 DWIs with up to b = 3000 on a Cartesian grid. Anatomical T1 weighted
images with 240 × 256 × 176 voxels of 1mm isotropic size were also collected.

While each subject named objects shown to them on a computer screen,
TMS was performed at 30 target sites distributed on a uniform grid of size 5×6,
covering the entire pars opercularis and the pars triangularis of the left infe-
rior frontal gyrus, as well as the anterior part of the inferior precentral gyrus,
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Fig. 1. TMS language scores of our three subjects. Sites that are misclassified in the
within-subject analysis are marked with a black circle.

as identified in the T1 image. Mapping was repeated five times for each target,
including a sham condition. Audiovisual recordings of the experiment were ana-
lyzed off-line by two speech and language therapists, who rated the severity of
language-specific errors at each site with a numerical score that accounts for all
repetitions. The values indicate no significant error (0.0–0.33), slight (0.5–1.0),
moderate (1.25–1.67), severe (1.75–2.33), or extreme (2.5–3.0) errors. The scale
does not allow for numerical values that would fall between these classes.

We report results for direct prediction of this score, as well as for a classifi-
cation task, in which we only distinguish between target sites where TMS either
has a clear effect on language production (1.25–3.0), and ones where it has at
most a slight effect (0.0–1.0). In several of the subjects, no or very few targets
exhibited even a moderate response, which made them unsuitable for this type of
analysis. Therefore, we present our initial proof-of-concept on a subset of three
subjects with a clear region of at least moderate response, as shown in Fig. 1.

3 Image Analysis and Classification Pipeline

An overview of our proposed computational pipeline is shown in Fig. 2.

3.1 Preprocessing

Our navigated TMS system (LOCALITE Biomedical Visualization Systems,
Germany) registers the coil to T1 image space by establishing landmark cor-
respondences via a pointer, and refining them via surface registration. The focus
point of each TMS stimulation is estimated by projecting the position of the coil
onto the brain surface. Based on the expected region of influence, we define the
target site as a (3mm)3 volume around the focus, take the union of the resulting
target maps across runs, and register the T1 to the Diffusion Spectrum Imaging
space of the same subject using linear registration (flirt) from FSL [12].

Multi-fiber deterministic streamline-based tractography is performed using a
previously described constrained deconvolution approach for DSI data [1]. One
seed point is generated in a random location within each voxel in a volume that
extends 7 voxels (in 1.5mm DSI space) beyond the union of all target sites.
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Fig. 2. Our computational pipeline combines tractography, registration, clustering,
and supervised learning into a framework that enables formal hypothesis testing and
visualization for anatomical interpretation.

Tracking uses step size 0.5mm, and terminates when exceeding a maximum
turning angle of 45◦, or when leaving the region in which the white matter
volume fraction as estimated by the multi-tissue deconvolution drops below 0.5.

Fiber tractography is performed in the scanner space of the individual DSI
measurements. Fibers are subsequently mapped to a common space using an
in-house script. It applies the warp that results from nonlinear registration of
Fractional Anisotropy images to an MNI template, which is a standard operation
(called fnirt) within the publicly available FSL package [12].

3.2 Feature Representation

A key step in creating a method that predicts function from fiber tractography
is to represent the estimated connectivity as a feature vector. We follow a “bag-
of-features” approach [16], which we design so that features retain an anatomical
interpretation, as will be illustrated in our experiments.

We assign a subset of fibers to each target site. Considering that streamlines
sample bundles which individual axons might enter or leave along the way, we
assign any streamline that passes a site within 0.5mm to that site. The mar-
gin accounts for the fact that target sites are located in the gray matter, and
streamlines may terminate before reaching them. We make sure that each site
is assigned at least the 100 nearest streamlines. This is required for some sites
that fall in between gyri, and that would otherwise receive very few or no fibers.

Streamlines that are not assigned to any target are discarded. The remaining
N fibers are represented as 9D vectors as proposed in [5], and clustered using the
k means algorithm. Given the resulting k clusters, each target site t is character-
ized by a k-dimensional vector nt whose entries nt

i are the number of streamlines
from cluster i that have been assigned to target t. We obtain feature vectors x
using a term frequency – inverse document frequency weighting

xt
i :=

nt
i

nt
log

N

ni
, (1)

where nt is the sum of all fibers assigned to t, and ni is the sum of all fibers in
cluster i.
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We found that the optimum number of clusters k differs between subjects
and between within- and across-subject analysis. A simple general strategy that
is used throughout this paper is to construct five different feature vectors based
on k ∈ {10, 20, 30, 40, 50}, �2 normalize each of them, and concatenate them into
a single 150-dimensional feature vector.

3.3 Classification, Regression, and Evaluation

Classification is performed using a linear soft-margin support vector machine
(SVM) [8]. Since our training data is quite unbalanced, we assign a higher weight
to the smaller class, by setting values of the SVM parameter C to the fraction of
training samples available for the opposite class. Linear regression is performed
with an �2 regularizer whose weight was empirically fixed at α = 7.

Accuracy is evaluated using two different modes of cross-validation. For
within-subject analysis (leave-one-target-out), each fold trains on the features
and labels from 29 sites of a single subject, and makes a prediction for the
remaining target from that same subject. For across-subject analysis (leave-one-
subject-out), we independently predict all 30 sites of one subject after training
on all features and labels of the two remaining subjects.

For regression, we evaluate the coefficient of determination R2. For classifi-
cation, we compute the area under the ROC curve, which is more informative
than overall classification accuracy in case of unbalanced data. The ROC curve
plots true positive rate over false positive rate, and is obtained by systemati-
cally varying the threshold of the SVM decision function. The area under this
curve (AUC) equals the probability that, given two randomly chosen examples
from different classes, the classifier will rank them correctly [9]. Random guess-
ing would lead to a diagonal ROC curve with AUC = 0.5. Larger AUCs indicate
predictive power above chance level.

We use a formal permutation-based test of whether our predictions are signif-
icantly better than chance. For this, we repeat the cross-validation 1 000 times,
each time with a random permutation of the target labels. The same permu-
tation is applied on training and test data. We record the R2 or AUC values
corresponding to the true labels and all random permutations. Finally, we com-
pute a p value as the fraction of runs in which R2/AUC was at least as large as
for the true labels. This test corresponds to the null hypothesis that the observed
labels cannot be predicted with higher accuracy than randomly permuted ones.
Rejecting it supports the hypothesis of a structure-function relationship, which
is destroyed by randomly permuting the functional labels.

4 Results and Discussion

4.1 Within- and Between-Subject Analysis

We first tried classification on three subjects in a leave-one-target-out manner.
This led to the ROC curves shown in Fig. 3 (left) with areas under the curve
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Fig. 3. For all three subjects (different colors), ROC curves indicate predictive power
that is clearly above chance level both in the within-subject (left) and the between-
subject setting (center). The plot on the right shows the null distributions of area under
the curve, as estimated by our permutation test.

(AUC) 0.99, 0.96, and 0.93, respectively. At a level of α = 0.05, permutation-
based testing rejected the null hypothesis that the same AUC can be achieved
for a random rearrangement of labels, with p values 0.001, 0.002, and 0.003.
Estimated null distributions are illustrated in the right panel of Fig. 3.

We also performed leave-one-subject-out cross-validation on the same three
subjects. Inter-subject variability makes this case more challenging, which is
reflected in the ROC curves in the center of Fig. 3, with reduced AUC (0.84,
0.75, and 0.81). Corresponding p values were greater (0.039, 0.017, 0.010), but
still below the level of α = 0.05.

Similarly, regression worked better within subjects (R2 values 0.66, 0.57,
0.78) than between subjects (0.42, 0.30, 0.36). In all cases, predicting the true
numerical values gave significantly better results than trying to learn randomly
permuted ones (p = 0.001).

4.2 Visualization of Feature Weights and Correlations

In order to gain insight into the specific structural differences that allow us
to predict the functional classification, Fig. 4 visualizes streamlines representing
the 150 cluster centers used in the leave-one-subject-out experiment, colored
according to the weight of the respective feature in the linear SVM (top), or
the Pearson correlation between the feature and the (non-thresholded) TMS
language score (bottom), averaged over subjects.

Fibers that contribute to a classification as “clearly language active” or which
are positively correlated with the TMS score are shown in red; blue fibers con-
tribute to the opposite classification or indicate a negative correlation. Each of
the three cross-validation folds leads to its own weights and correlations. To focus
on the effects that could be reproduced across all subjects, we color streamlines
as white if the direction of the effect is not the same in all three cases.

Figure 4 helps confirm the anatomical plausibility of the learned classifier,
since fiber systems known to be relevant for speech production, such as parts of
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Fig. 4. Visualization of the cluster centers used for prediction. On the top, colors indi-
cate SVM weights whose signs were identical for all three subjects; on the bottom, they
show correlation coefficients with consistent signs. Red indicates a positive correlation
with language impairment, blue a negative one.

the arcuate fasciculus [7], and connections to the supplementary motor area [6],
are shown to lead the SVM to classify corresponding TMS target sites as having
a clear effect on speech. Somewhat surprisingly, the SVM regards two lateral
cluster centers that appear to run at the outer boundary of the arcuate fasciculus
as evidence against a strong effect on speech. As shown in the bottom image,
these particular tracts do not have a clear correlation with the TMS scores. It has
been pointed out that linear classifiers may assign negative weights to features
that are statistically independent from the label in order to cancel out distractors
[11], which in our case might result from errors in the fiber tractography.

5 Conclusion

We have proposed the first computational pipeline that predicts TMS mapping
results from DSI tractography and used it to investigate structure-function rela-
tionship in a language mapping task. Our predictions were significantly above
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chance level both within and between subjects, and we visualized the features to
gain insights into what anatomical differences drive the prediction. Future work
will evaluate and discuss a larger set of subjects.
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